Skip to main content
. 2021 Jan 22;63(9):1451–1462. doi: 10.1007/s00234-021-02648-4

Table 2.

Areas under the receiver operating characteristic curve for diagnosing Parkinson’s disease with the convolutional neural network

Metrics Cross-validation Pooled
1 2 3 4 5
NOS 0.688 0.767 0.764 0.887 0.843 0.761 (0.698–0.823)
DTI
  Axial diffusivity 0.747 0.722 0.713 0.664 0.864 0.715 (0.649–0.781)
  Mean diffusivity 0.726 0.656 0.713 0.618 0.783 0.672 (0.602–0.741)
  Radial diffusivity 0.667 0.633 0.703 0.684 0.871 0.698 (0.631–0.766)
  Fractional anisotropy 0.703 0.724 0.775 0.665 0.853 0.733 (0.669–0.798)
DKI
  Axial kurtosis 0.839 0.941 0.972 0.911 0.957 0.891 (0.848–0.934)
  Mean kurtosis 0.864 0.845 0.868 0.860 0.989 0.878 (0.833–0.923)
  Radial kurtosis 0.847 0.879 0.913 0.854 0.987 0.895 (0.853–0.937)
NODDI
  Intracellular volume fraction 0.784 0.847 0.798 0.747 0.896 0.801 (0.744–0.858)
  Isotropic volume fraction 0.688 0.798 0.745 0.730 0.868 0.749 (0.686–0.811)
  Orientation dispersion 0.561 0.760 0.743 0.662 0.817 0.691 (0.623–0.759)
g-ratio
  Axon volume fraction 0.749 0.871 0.837 0.926 0.915 0.836 (0.784–0.888)
  Myelin volume fraction 0.681 0.773 0.790 0.788 0.834 0.763 (0.701–0.824)
  g-ratio 0.665 0.760 0.830 0.786 0.866 0.767 (0.706–0.827)

Note: The 95% confidence interval is shown in parentheses