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Introduction:

Machine Learning (ML) is a potent technique for discovering and integrating big data 

associations. In this perspective, we outline the current opportunities, challenges, and 

limitations of applying ML to pharmacogenomic research.

Pharmacogenomics (PGx) studies the interaction between drug exposure and the 

human genome, including the impact of genetic variants on pharmacodynamics (PD), 

pharmacokinetics (PK) and subsequent clinical outcomes.1 This relatively new field is 

rapidly growing in the past few decades, primarily due to the affordability of genotyped 

data and the exponential increase and availability of phenotypic data. With advances in 

genotyping technologies and improved phenotyping methods using electronic health records 

(EHR), researchers can study millions of genetic variants linked with thousands of disease 

phenotypes and drug treatments. Today, the amount of data generated in genomics and 

PGx phenotypes fits the definition of big data, which is characterized by high volume 

(the dataset size), wide variety (heterogeneity of data types), high velocity (the speed 

of accumulation of data), and inconsistent quality (the veracity and reliability of data). 

Analyzing such very large datasets may uncover novel trends and complex drug response 

patterns that are otherwise hidden from smaller, more controlled experiments. However, the 

task of sifting through these data, formalizing data representations, reconciling datasets 

across multiple sources, and distilling observed associations into knowledge that can 

personalize drug therapy often exceeds the capacity of human cognition. New methods and 
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computing technologies to automate analytical model building for PGx are needed and could 

significantly accelerate the discovery of new PGx relationships.

As one of the foundations of artificial intelligence, Machine Learning (ML) represents a set 

of methods that can automatically uncover patterns in data and use the detected patterns 

to predict future data. ML is more capable of finding hidden patterns among multivariable 

than traditional association analyses; therefore, it is well-suited for high-dimensional data 

analysis needed for PGx research. Supervised, unsupervised, and reinforcement learning are 

the three basic ML paradigms (Figure 1). Supervised learning aims to solve classification/

regression problems. It formulates a model from pre-labeled (training) data and uses the 

model to predict unseen (testing) data, e.g., to estimate an individual’s risk of developing a 

severe reaction after taking a drug. Unsupervised learning, i.e., knowledge discovery, aims to 

recognize patterns in unlabeled data through cluster analysis. A good example is automated 

grouping of individuals with a similar response to a drug. Reinforcement learning has gained 

momentum recently after reaching human-level performance in playing the ancient game of 

Go2. It focuses on sequential decision problems, in which a model interactively learns by 

using trial and error and using feedback from its own actions and experiences. A notable 

implementation of reinforcement learning is to dynamically optimize treatment for sepsis.3

ML has made great strides in the last decade and found use widely. Traditionally, 

investigators start with feature engineering to preselect relevant features such as 

comorbidities. Deep learning (DL), an emerging subtype of ML defined by greater layer 

depth of the underlying neural networks, offers an end-to-end learning ability that can 

automatically extract features. Recently, DeepMind used DL to accurately determine a 

protein’s structure from its amino-acid sequence, demonstrating the real-world impact 

of ML in biomedical research.4 A similar approach could be applied to biological data 

from highly controlled drug discovery experiments that carefully collect drug exposure, 

PK, and PD data over time, e.g., accelerating therapeutics for opportunities in medicine 

(ATOM). That type of systems biology analysis could unearth the network of physiologic 

and molecular influences on drug response. Few studies focus exclusively on PGx data. 

Two recent studies used ML to predict drug response using a combination of perturbational 

data, clinical information, and pharmacogenomic biomarkers.5,6 Several manuscripts have 

provided a systematic review of ML for clinical medicine.7,8 This paper will discuss some 

current opportunities, challenges, and limitations of applying ML within PGx research.

Applying ML techniques to pharmacogenomics faces several significant challenges. First, 

sufficient PGx data for ML model development is difficult to obtain, partially because the 

use of PGx in practice is still limited. Advanced ML models are ‘greedy’ because they 

demand massive training data, including labeled cases (individuals with a target phenotype) 

and controls (individuals without the phenotype). However, many PGx-mediated events 

(e.g., Steven-Johnson syndrome) are much rarer than healthy controls; therefore, most 

datasets annotated for PGx research are inherently imbalanced. ML cannot effectively learn 

from severely skewed data until adequate cases are provided. Additionally, identifying 

PGx phenotypes often requires gathering details about drug exposure (e.g., dose and 

adherence), clinical manifestations (e.g., vancomycin and red-man syndrome), and temporal 

sequence (e.g., events occurring within a specific time-frame following drug exposure). Such 
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fine-grained details are often embedded in unstructured clinical text or dispersed across 

multiple types of EHRs or pharmacy systems; therefore, they remain challenging to extract 

from EHRs.9 An ideal dataset would have both longitudinal drug exposure and response 

phenotypes precisely defined in addition to population-based pharmacogenetic results. To 

be widely generalizable, PGx data from diverse populations is needed to account for the 

differences in pharmacogene allele frequency among individuals of different ancestries. 

Without this type of data, ML could compound existing inequities through algorithmic bias. 

If used to find patterns of drug response related to genetic diversity, ML will need to account 

for existing healthcare disparities associated with poor drug outcomes that may confound 

the clinical-genetic relationships. Currently, these types of datasets and the associated deep 

phenotyping techniques to accurately extract PGx phenotypes remain underdeveloped.

Lack of sufficient data also impedes the generalizability of ML models. Even when large 

genetics studies exist, the number of participants is typically much smaller than the number 

of variants studied. Considering genomics has millions of variants while most are not related 

to prediction, such high dimensionality significantly increases the model complexity and 

quickly leads to overfitting, a type of error that occurs when a mathematical function is too 

closely aligned to a limited set of data points. Overfitting leads to poor reproducibility of 

an ML model when applied to another dataset, particularly from a health system external 

to the one that produced the test data. Standard technical solutions include compensation 

by imposing a penalty and feature reduction. However, methods to efficiently learn data 

representation for genomic data are still in their infancy. Data augmentation techniques like 

cropping and padding aid in optimizing the training dataset’s potential, but their help is 

limited. As many large-scale data for genomics analyses are becoming publicly available, 

researchers can combine datasets from multiple studies. Techniques like federated learning 

and cloud computing enable multiple study sites to collaboratively learn a shared prediction 

model on the cloud while keeping all the training data for their own to reduce data security 

and privacy concerns. Nevertheless, considerable preprocessing and data harmonization are 

needed to generate a representative cohort for ML training.

The quality of the training data is crucial for ML’s performance as a model needs to 

estimate the feature distribution of the target population based on these preselected samples. 

Yet, obtaining high-quality data requires both substantial effort and expense. Although 

genotyping is more affordable than ever before, extracting desired drug-relevant phenotypes 

from EHR remains complicated, typically demanding complex natural language processing 

and text mining techniques. We need to explore novel ways to formalize knowledge so 

a computer can understand the connections between drugs and other clinical terminology 

concepts, such as linking RxNorm and their indication diagnoses. Besides, data entry errors, 

outdated information, missing values, and inconsistent text in EHR generate loads of errors 

for using phenotypic data. Insufficient understanding of such challenges leads to failure in 

an ML task. Although several data quality dimensions have been proposed, there still lacks 

a consistent and generalizable method to assess EHR data quality.10 Understanding and 

cleaning data properly are probably the most critical step of applying ML to biomedical 

data.
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Another prominent issue of ML models is interpretability. Traditional ML models, e.g., 

decision tree, are interpretable. However, advanced ML models such as convolutional 

neural networks suffer from the black-box issue due to their complex innate structure. It 

remains challenging to use derived models to explain the mechanism behind and establish 

the causality relationship between the data and the outcome. This observation is more 

evident in the PGx domain, considering that researchers prefer scientific rationale of what 

actionable biomarkers are essential for translating clinical practice knowledge. Network­

based approaches such as the deep graph network represent a promising alternative to 

elucidate the interaction among data. Existing efforts in decoding a black-box include SHAP 

(SHapley Additive exPlanations) and LIME. Besides, interpretation of the analysis results 

requires multi-field collaborations.

Considering that the drug response is often polygenic, researchers need to conduct large­

scale gene analysis in carefully assessed cohorts before applying prediction models to 

real-world data. As PGx research moves quickly and irreversibly into the era of big data 

analytics, ML will almost certainly be used more frequently. We anticipate that scientists 

will discover many PGx associations, unveil the integrated effect of drug-drug interactions, 

and develop helpful ML models to predict drug responses. A standard flow to compare 

ML-enhanced treatment versus clinical-guideline-driven management will be necessary 

for future work before implementing ML-derived knowledge in clinic flow. To fulfill the 

power of advanced ML, we would hope to establish evaluation standards and create PGx 

benchmark datasets for assessing model performance. Investigators need to be careful when 

selecting data for ML training to avoid bias and ensure the clinical utilities. Tools that can 

assess the data quality, such as the cohort’s diversity and the missing data, are essential. 

To accurately predict an individual’s drug response requires understanding multi-view data, 

including the complex interactions among genetic, phenotypic, environmental, and lifestyle 

risk factors. It would also be critical to developing a data standard for collecting these data 

from various sources. Finally, the effect sizes of genetic variants are usually smaller than 

clinical risk factors. Applicable ML models need to be robust in handling heterogeneous 

data with disparate effect sizes.
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Figure 1. 
Machine learning and PGx research.
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