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Evaluation of the feasibility 
of explainable computer‑aided 
detection of cardiomegaly on chest 
radiographs using deep learning
Mu Sook Lee1,6, Yong Soo Kim2,6, Minki Kim3, Muhammad Usman4, Shi Sub Byon4, 
Sung Hyun Kim5, Byoung Il Lee4 & Byoung‑Dai Lee3*

We examined the feasibility of explainable computer-aided detection of cardiomegaly in routine 
clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–
anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models 
for lung and heart segmentation. The training dataset included PA CXRs from two public datasets 
and in-house PA CXRs. Two fully automated segmentation-based methods using state-of-the-art 
DL models for lung and heart segmentation were developed. The diagnostic performance was 
assessed and the reliability of the automatic cardiothoracic ratio (CTR) calculation was determined 
using the mean absolute error and paired t-test. The effects of thoracic pathological conditions on 
performance were assessed using subgroup analysis. One thousand PA CXRs of 1000 patients (480 
men, 520 women; mean age 63 ± 23 years) were included. The CTR values derived from the DL models 
and diagnostic performance exhibited excellent agreement with reference standards for the whole 
test dataset. Performance of segmentation-based methods differed based on thoracic conditions. 
When tested using CXRs with lesions obscuring heart borders, the performance was lower than that 
for other thoracic pathological findings. Thus, segmentation-based methods using DL could detect 
cardiomegaly; however, the feasibility of computer-aided detection of cardiomegaly without human 
intervention was limited.

Cardiomegaly, also known as an enlarged heart, is a symptom of cardiac insufficiency that occurs in various dis-
eases and conditions, including high blood pressure, coronary artery disease, heart valve disease, and pulmonary 
hypertension. Because of its noninvasive nature, minimal radiation exposure, and economic considerations, chest 
X-ray imaging (CXR) is one of the most widely used medical imaging tests for early cardiomegaly detection. 
Recent advances in deep learning (DL) technologies and large-scale CXR database constructions have enabled 
significant performance improvements in computer-aided detection of cardiomegaly to a level comparable to 
that of radiologists1–12. Methods based on binary classification of the entire CXR into cardiomegaly detection 
via image-level label-dependent learning have dominated in the literature on DL-based automated detection of 
cardiomegaly. However, classification-based methods have an intrinsic limitation, as the mechanism by which 
DL arrives at the conclusion (i.e., the condition of anomalies in heart structure) remains obscure. Conversely, 
segmentation-based methods extract boundaries of the lungs and heart on CXRs to automatically calculate the 
cardiothoracic ratio (CTR), which is a useful index of cardiac enlargement. These approaches are more intuitive 
and explainable than the classification-based methods and have demonstrated promising results for limited 
datasets5–12.
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The aim of this study was to determine the feasibility of explainable computer-aided detection of cardiomegaly 
on chest radiographs. Hence, we developed two fully automated segmentation-based methods using state-of-
the-art DL models for lung and heart segmentation, and evaluated their diagnostic performance and reliability 
for CTR measurements using chest radiographs of normal patients and those of patients with diverse thoracic 
pathological conditions commonly encountered in routine clinical practice. According to the experimental 
results, CTRs derived from deep learning models and diagnostic performance exhibited excellent agreement 
with reference standards (method 1: the area under the receiver operating characteristic curve [AUC] = 0.96, 
p = 0.655; method 2: AUC = 0.95, p = 0.917). Performance of segmentation-based methods differed depending on 
the thoracic pathological conditions. When tested using chest x-ray images with lesions obscuring heart borders, 
the performance was lower than that for other thoracic pathological findings (method 1: AUC = 0.86, p = 0.003; 
method 2: AUC = 0.81, p = 0.001).

Results
Study participants.  In total, 1000 posterior-anterior (PA) CXRs of 1,000 patients (mean age ± standard 
deviation [SD], 63 ± 23 years; age range 10–98 years; sex, 480 men and 520 women) were included in our study 
(Table 1).

Diagnostic performance of cardiomegaly detection.  The diagnostic performance of cardiomegaly 
detection is summarized in Table 2. When the entire test dataset was considered, both segmentation-based meth-
ods exhibited similar overall performance (method 1: accuracy = 91% (95% confidence interval [CI] 89, 93), sen-
sitivity = 95% [95% CI 94, 96], specificity = 87% [95% CI 85, 89], AUC = 0.96 [95% CI 0.94, 0.97]; method 2: accu-
racy = 92% [95% CI 90, 94], sensitivity = 94% [95% CI 93, 95], specificity = 88% [95% CI 86, 90], AUC = 0.95 [95% 
CI 0.94, 0.97]). Both methods exhibited similar patterns of diagnostic performance for individual subgroups. 
Neither method consistently outperformed the other in all subgroups. No significant difference in performance 

Table 1.   Data and patient characteristics. JSRT Japanese Society of Radiological Technology, SD standard 
deviation.

Dataset source

Training and validation datasets for segmentation of lungs and heart Test dataset

JSRT dataset Montgomery dataset In-house dataset In-house dataset

No. of patients 247 138 408 1,000

Mean age ± SD (years) 58 ± 14 40 ± 19 50 ± 11 63 ± 23

Age range (years) 16–89 4–89 18–95 10–98

Sex

Men 119 74 184 480

Women 128 63 224 520

Unknown – 1 – –

Characteristics
Lung nodules (n = 154) TB (n = 58) PX (n = 270) Patient with thoracic pathological find-

ings (n = 760)

No lung nodule (n = 93) Normal patients (n = 80) TB (n = 138) Normal patients (n = 240)

Table 2.   Diagnostic performance of detection of cardiomegaly. Data in parentheses indicate 95% confidence 
intervals. TP true positive, FN false negative, TN true negative, FN false negative, AUC​ area under the receiver 
operating characteristic curve.

Method Category

No. of samples

Accuracy (%) Sensitivity (%) Specificity (%) AUC​TP FP TN FN n

Segmentation-based method 1

All cases 466 66 444 24 1000 91 (89, 93) 95 (94, 96) 87 (85, 89) 0.96 (0.94, 0.97)

Subgroup 1 25 3 91 4 123 94 (90, 98) 86 (80, 92) 97 (94, 100) 0.96 (0.92, 0.99)

Subgroup 2 107 22 68 5 202 87 (82, 92) 96 (93, 99) 76 (70, 82) 0.92 (0.86, 0.97)

Subgroup 3 43 17 22 1 83 78 (69, 87) 98 (95, 100) 56 (45, 67) 0.86 (0.76, 0.98)

Subgroup 4 25 6 31 1 63 89 (81, 97) 96 (91, 100) 84 (75, 93) 0.93 (0.85, 1.00)

Subgroup 5 314 34 288 16 652 92 (90, 94) 95 (93, 97) 89 (87, 91) 0.97 (0.95, 0.98)

Segmentation-based method 2

All cases 470 61 436 32 1000 91 (89, 93) 94 (93, 95) 88 (86, 90) 0.95 (0.94, 0.97)

Subgroup 1 25 3 91 4 123 94 (90, 98) 86 (80, 92) 97 (94, 100) 0.98 (0.96, 1.00)

Subgroup 2 105 24 62 11 202 83 (78, 88) 91 (87, 95) 72 (66, 78) 0.89 (0.84, 0.95)

Subgroup 3 43 17 19 4 83 75 (66, 84) 91 (85, 97) 53 (42, 64) 0.81 (0.69, 0.93)

Subgroup 4 28 3 29 3 63 90 (83, 97) 90 (83, 97) 91 (84, 88) 0.95 (0.88, 1.00)

Subgroup 5 317 31 288 16 652 93 (91, 95) 95 (93, 97) 90 (88, 92) 0.97 (0.96, 0.99)
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between the methods was observed (Fig. 1). For both methods, the diagnostic performances of subgroups 2 and 
3 were lower than those of other subgroups, most notably that of subgroup 3 (method 1: accuracy = 78% [95% 
CI 69, 87], sensitivity = 98% [95% CI 95, 100], specificity = 56% [95% CI 45, 67], AUC = 0.86 [95% CI 0.76, 0.98]; 
method 2: accuracy = 75% [95% CI 66, 84], sensitivity = 91% [95% CI 85, 97], specificity = 53% [95% CI 42, 64], 
AUC = 0.81 [95% CI 0.69, 0.93]).

Reliability of CTR calculation.  We observed a high spatial overlap between the manual and automatic 
segmentation results for both segmentation-based methods. On validation data, the average Dice scores for the 
lungs and heart segmentation tasks by the segmentation-based method 1 were 0.968 and 0.955, respectively. 
Similarly, the average Dice scores of the segmentation-based method 2 were 0.971 and 0.957 for the lung and 
heart segmentation tasks, respectively.

When considering all test data, no significant differences were observed between the automatic calculation of 
CTRs and reference standards of both methods (method 1: p = 0.655; method 2: p = 0.917). However, individual 
methods exhibited different behaviors depending on thoracic pathological conditions. In method 1, the p-values 
of subgroups 1, 2, and 3 were < 0.05 (subgroup 1: p = 0.007; subgroup 2: p = 0.043; subgroup 3: p = 0.003). Simi-
larly, in method 2, the p-values of subgroups 1 and 3 were < 0.05 (subgroup 1: p < 0.001; subgroup 3: p = 0.002).

Figure 1.   AUCs for the detection of cardiomegaly according to thoracic pathological conditions. (a) 
Segmentation-based method 1; (b) segmentation-based method 2. Best viewed in color. AUC​ area under the 
receiver operating characteristic curve.
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The overall mean absolute errors (MAEs) of methods 1 and 2 for the entire test dataset were 0.023 and 0.024, 
respectively. Similar to the diagnostic performance, the largest MAE for each method occurred in subgroup 
3 (MAE ± SD, method 1: 0.058 ± 0.074; method 2: 0.059 ± 0.066). For subgroup 5, in which hard cases were 
excluded, the corresponding MAEs were the smallest in each method (MAE ± SD, method 1: 0.019 ± 0.024; 
method 2: 0.019 ± 0.023). The results are summarized in Table 3 and performance examples are presented in 
Figs. 2 and 3.

Discussion
Segmentation-based approaches to detect cardiomegaly are designed to address cardiomegaly detection tasks on 
chest radiographs via segmentation of the lungs and heart and subsequent calculation of the CTR. Here, we devel-
oped two fully automated segmentation-based methods using different state-of-the-art DL models for semantic 
segmentation (method 1: Dice = 0.968 and 0.955 for the lungs and heart segmentation tasks, respectively; method 
2: Dice = 0.971 and 0.957 for the lungs and heart segmentation tasks, respectively). We observed that the CTR 
values derived from the DL models and diagnostic performance exhibited excellent agreement with reference 
standards for the entire test dataset (method 1: AUC = 0.96 [95% CI 0.94, 0.97], p = 0.655; method 2: AUC = 0.95 
[95% CI 0.94, 0.97], p = 0.917). Both segmentation-based methods exhibited noticeable performance differences 
depending on thoracic pathological conditions. For instance, in subgroup 3, the mean difference between the 
automatic CTR calculations and reference standards was statistically significant at the 5% significance level in 
both methods (method 1: p = 0.003; method 2: p < 0.001). Consequently, the corresponding AUCs (method 
1: AUC = 0.86 [95% CI 0.76, 0.98]; method 2: AUC = 0.81 [95% CI 0.69, 0.93]) were the lowest. In contrast, in 
subgroup 5, which did not contain any hard cases, the diagnostic performance and reliability of CTR calcula-
tions were consistent with those obtained with the entire test dataset (method 1: AUC = 0.97 [95% CI 0.95, 0.98], 
p = 0.071; method 2: AUC = 0.97 [95% CI 0.96, 0.99], p = 0.084). Notably, although the paired t-test results for 
subgroup 1 revealed significant differences between the automatic CTR calculations and reference standards 
for both methods, the corresponding AUCs reflected the opposite results (method 1: AUC = 0.96 [95% CI 0.92, 
0.99]; method 2: AUC = 0.98 [95% CI 0.96, 1.00]). The main reason for this was that the test data in subgroup 
1 were imbalanced, as only 80% of CXRs (98 out of 123) were negative. In addition, as both DL models tended 
to underestimate the CTRs for negative CXRs with pneumothorax (PX), the number of true negative cases 
increased, leading to an increase in the overall detection accuracy for subgroup 1. This also accounted for the high 
specificity and low sensitivity observed in subgroup 1. For subgroup 2, no significant differences were observed 
between the automatic CTR calculation and reference standard (p = 0.130), but the diagnostic performance was 
relatively low. This suggested that the CTRs were not underestimated nor overestimated relative to the reference 
standard, but the errors were large.

The overall diagnostic performance of our methods exceeded that reported by Chamveha et al.8 (accuracy: 
68.45%, sensitivity: 75.0%, specificity: 69.5%). The AUCs when hard cases were excluded (e.g., subgroup 5, 
method 1: AUC = 0.97 [95% CI 0.95, 0.98]; method 2: AUC = 0.97 [95% CI 0.96, 0.99]) were comparable to those 
reported by Sogancioglu et al.9 (0.98), in which CXRs with ambiguous heart borders were excluded. The cor-
responding MAEs of both methods for subgroup 5 (method 1: 0.019, method 2: 0.019) were also comparable to 
their results (0.0135). Li et al.6 reported that paired differences between their DL model and reference standards 
for CTR measurements (p = 0.55) using 500 CXRs were not statistically significant, in line with our observations. 
They reported poor performance of their DL model for pleural effusion (PE) and fat pad of the pericardium, 
which belonged to subgroups 2 and 3 in our study, respectively. Gupte et al.10 trained the segmentation deep 
learning model with 1952 CXRs obtained from a public dataset released by the National Institute of Health13 and 
two private hospitals. Interestingly, they achieved a sensitivity of 96% and a specificity of 81% using the held-out 
test data, and a sensitivity of 87% and a specificity of 97% using the out-of-source dataset. Saiviroonporn et al.11 
clinically evaluated a deep learning-based automatic CTR measurement on a large dataset (n = 7517). They 

Table 3.   Reliability of the cardiothoracic ratio calculation. CI confidence interval, RS reference standard, MAE 
mean absolute error, SD standard deviation.

Method Category n Mean ± SD (RS)
Mean ± SD 
(predicted)

95% CI for mean 
differences T-value p-value MAE ± SD

Segmentation-
based method 1

All cases 1000 0.506 ± 0.080 0.505 ± 0.080 (− 0.00195, 0.00310) 0.45 0.655 0.023 ± 0.033

Subgroup 1 123 0.449 ± 0.068 0.455 ± 0.069 (− 0.01156, − 0.00190)  − 2.76 0.007 0.020 ± 0.020

Subgroup 2 202 0.530 ± 0.083 0.522 ± 0.092 (0.00026, 0.01713) 2.03 0.043 0.035 ± 0.050

Subgroup 3 83 0.543 ± 0.088 0.514 ± 0.100 (0.01004, 0.04909) 3.01 0.003 0.058 ± 0.074

Subgroup 4 63 0.493 ± 0.078 0.493 ± 0.081 (− 0.00596, 0.01459) 0.84 0.404 0.025 ± 0.032

Subgroup 5 652 0.505 ± 0.075 0.508 ± 0.075 (− 0.00456, 0.00019)  − 1.81 0.071 0.019 ± 0.024

Segmentation-
based method 2

All cases 1000 0.506 ± 0.080 0.506 ± 0.078 (− 0.00263, 0.00236)  − 0.10 0.917 0.024 ± 0.032

Subgroup 1 123 0.449 ± 0.068 0.457 ± 0.069 (− 0.01234, − 0.00346)  − 3.52 0.001 0.021 ± 0.015

Subgroup 2 202 0.530 ± 0.083 0.524 ± 0.094 (− 0.00194, 0.01509) 1.52 0.130 0.038 ± 0.049

Subgroup 3 83 0.543 ± 0.088 0.514 ± 0.097 (0.01113, 0.04786) 3.20 0.002 0.059 ± 0.066

Subgroup 4 63 0.493 ± 0.078 0.496 ± 0.081 (− 0.01237, 0.00653)  − 0.62 0.539 0.025 ± 0.028

Subgroup 5 652 0.505 ± 0.075 0.507 ± 0.072 (− 0.00443, 0.00028)  − 1.73 0.084 0.019 ± 0.023
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Figure 2.   Radiographs of correctly classified examples. CTR values and three lines were generated by segmentation-based 
methods using deep learning models for the detection of cardiomegaly. The red lines represent the maximum transverse 
diameter of the left or right side of the heart, respectively; the yellow and blue lines represent the transverse thoracic diameter 
and the midline of the spine, respectively. For each case, the left image was generated by segmentation-based method 1, 
and the right image was generated by segmentation-based method 2. (a) PA CXR of a patient with cardiomegaly (reference 
standard [RS] = 0.522); (b) PA CXR of a patient with cardiomegaly and pleural effusion (RS = 0.611); (c) PA CXR of a patient 
with pneumothorax, pleural effusion, and left lung collapse, (RS = 0.466); (d) PA CXR of a patient with no finding (RS = 0.41). 
CTR​ cardiothoracic, PA CXR posterior-anterior chest X-ray.
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Figure 3.   Radiographs of selected misclassified examples. CTR values and three lines were generated by segmentation-based 
methods using the deep learning models for the detection of cardiomegaly. The red lines represent the maximum transverse 
diameter of the left or right side of the heart, respectively; the yellow and blue lines represent the transverse thoracic diameter 
and the midline of the spine, respectively. For each case, the left and right images were generated by segmentation-based 
methods 1 and 2, respectively. (a) PA CXR of a patient with cardiomegaly, pleural effusion, consolidations in both lungs, and 
lesions obscuring the border of the heart (reference standard [RS] = 0.693); (b) PA CXR of a patient with cardiomegaly and 
linear atelectasis in the left lower lung (RS = 0.522); (c) PA CXR of a patient with cardiomegaly (RS = 0.581); (d) PA CXR of a 
patient with cardiomegaly and pleural effusion (RS = 0.639). CTR​ cardiothoracic, PA CXR posterior-anterior chest X-ray.
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reported that the diagnostic performance based on the automated calculation of CTRs using the DL model can 
provide an excellent outcome (AUC = 0.96). However, similar to our findings, they observed that it should be 
improved on heart diameter calculation, which is difficult to be performed because its pixel value is low, and its 
edges are fused with the lung borders or the thoracic spine12.

The methodology used in this study is distinct to segmentation-based methods used in previous work in 
several ways, which makes our study novel. First, segmentation of anatomical structures in chest radiographs has 
been extensively investigated, but only a few studies have evaluated lung boundary detection algorithms in lungs 
with structural deformities14. Thus, in an effort to process more comprehensively a wide variety of lung shapes, 
we manually annotated the masks of the lungs and heart of CXRs from 270 patients with PX or manifested tuber-
culosis (TB), which were subsequently employed as training data. Second, previous studies have only performed 
statistical analyses on the entire test data as a whole to evaluate the performance of their solutions. In contrast, 
in our work, we analyzed the overall performance of segmentation-based methods for the entire test data and 
their detailed behaviors depending on various thoracic pathological conditions, particularly those recognized as 
hard samples for automatic CTR measurements. To the best of our knowledge, this is the first study to explore 
the impact of individual thoracic pathologies on the effectiveness of DL-based automatic CTR measurements 
and application in diagnosis. Further, we harnessed state-of-the-art semantic segmentation DL models, which 
may be more efficient at segmenting the lungs and heart compared to the standard 2D U-Net architectures with 
different backbone networks used previously6,9,11.

This study had several limitations. First, we only considered the CXRs from patients with PX or TB to 
more accurately analyze abnormal lung anatomy. In general, DL models can recognize more patterns with the 
availability of more training data15. Therefore, training using a wide variety of CXRs with ambiguous lung and 
cardiac silhouettes because of a disease, accidents, or postsurgical alternations would enhance the generaliza-
tion capability of DL models. Second, the accurate segmentation of the lungs and heart is a prerequisite for the 
automatic CTR calculation. Our findings were based on results obtained from two state-of-the-art DL models for 
segmentation. Therefore, future studies should validate whether similar results can be obtained using other state-
of-the-art DL models. Third, we used training data from different institutions, but the test data were retrieved 
from a single institution, which may have affected the reliability of our findings.

In conclusion, segmentation-based methods using DL detected cardiomegaly with an acceptable level of 
performance and better interpretability. For patients with certain thoracic pathologies, such as PE or lesions 
obscuring the heart border, CTR calculations may be inaccurate and generate more false positive errors. Our 
findings suggested that the feasibility of explainable computer-aided detection of cardiomegaly without complete 
human intervention is limited and, thus, careful attention should be paid to patients with certain thoracic lesions.

Methods
This study was approved by the institutional review board of the Keimyung University Dongsan Medical Center, 
with a waiver for written informed consent (DSMC-2021-02-021). In addition, we confirm that all methods were 
performed in accordance with the relevant guidelines and regulations.

Dataset for training DL models.  In total, 408 unique PA CXRs between January 2016 and December 
2019 were extracted from the picture archiving and communication system repository of our hospital (mean 
age ± SD, 50 ± 11 years; age range 18–95 years; 184 men and 224 women). To enable processing of a variety of 
lung shapes, 270 PA CXRs were randomly selected from patients with PX and the remaining 138 PA CXRs were 
obtained from patients with TB. Digital Imaging and Communication in Medicine images were converted into 
lossless 24-bit gray-scale JPEG format while maintaining their original resolution and default window level 
settings as stored in the Digital Imaging and Communication in Medicine metadata. All the images were de-
identified before analysis. Masks of the lungs and heart in CXRs were manually segmented by a board-certified 
radiologist (M.L.).

To prevent overfitting and enhance the generalization capacity of the DL models for lung and heart segmenta-
tion, CXRs obtained from two publicly available datasets were used in this study (Table 1). The Japanese Society 
of Radiological Technology dataset16 contained 247 PA CXRs, of which 154 had lung nodules (100 malignant 
cases, 54 benign cases) and 93 had no lung nodules. All CXRs had a resolution of 2048 × 2048 pixels and a 
gray-scale color depth of 12 bit. The dataset provided reference boundaries for the lungs, heart, and clavicle. 
The Montgomery dataset17 contained 138 PA CXRs, including 80 normal patients and 58 patients with TB. The 
resolution of CXRs was 4020 × 4892 or 4892 × 4020 pixels with a 12-bit gray-scale color depth. As the Montgom-
ery dataset only provided pixel-wise lung mask annotations, annotations for heart masks were performed by a 
board-certified radiologist (M.L.). In total, 793 PA CXRs of 793 patients in different age groups were used for 
training DL models for lung and heart segmentation (Fig. 4).

The segmentation performance was evaluated using the Dice score that was calculated using the following 
formula: (2 × TP)/((TP + FP) + (TP + FN)), where TP, FP, and FN indicated the number of true positive, false 
positive, and false negative pixels, respectively.

Test dataset.  Additional 1000 PA CXRs were collected between January 2016 and December 2019 from our 
picture archiving and communication system repository to evaluate the diagnostic performance and reliability 
of CTR measurements of segmentation-based methods. The test dataset was carefully curated to encompass 
diverse cases including the CXRs with deformed lungs and/or the silhouette sign to investigate the feasibility of 
explainable computer-aided detection of cardiomegaly in routine clinical practice. The inclusion criteria were as 
follows: (1) PA CXRs and (2) no overlap of patients. Each CXR in the test dataset was reviewed and annotated by 
two board-certified radiologists (M.L. and S.K.). For cases of disagreement in findings or CTR measurements, 
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consensus was achieved by discussion between the two radiologists. Consequently, the annotation information 
included the existence of any thoracic pathologies and the corresponding CTR value. Details of the breakdown 
of the test dataset are presented in Table 4.

In addition to the performance analysis for the whole test dataset, a subgroup analysis was performed to 
determine whether specific thoracic pathological conditions influenced the performance of segmentation-based 
methods. The test dataset was grouped into the following five overlapping subgroups: subgroups 1 (patients with 
PX), 2 (patients with PE), 3 (patients with lesions obscuring the heart border [e.g., right middle robe pneumonia, 
left lingular segment pneumonia, atelectasis, among others]), 4 (patients with lesions obscuring the diaphragm 
border excluding PE [e.g., right lower lobe consolidation, left lower lobe consolidation, cancer, among others]), 
and 5 (patients with no findings, cardiomegaly only, or other thoracic pathological findings that did not belong 
to the other subgroups). Interestingly, subgroups 1–4 included various hard cases, such as lungs with a deformed 
appearance or ambiguous cardiac silhouette.

Deep neural network architecture for semantic segmentation.  Two fully automated segmenta-
tion-based methods were developed and evaluated using different state-of-the-art DL models to minimize the 
derivation of biased conclusions. Method 1 used two separate XLSor18 models for segmenting the lungs and 
heart, respectively. The XLSor model consisted of three functional components: a deep convolutional neural net-
work, a recurrent attention module, and segmentation layers. The deep convolutional neural network employed 
the ImageNet pre-trained ResNet-10119 as a backbone, and replaced the last two down-sampling layers with 
dilated convolution operations. The output feature map of the convolutional neural network was fed into the 
recurrent attention module, in which long-range contextual information was collected from all pixels to enhance 
pixel-wise representation capability. Finally, the segmentation layers applied multiple transpose convolution 
operations to the output of the attention module to generate the final segmentation masks.

The DL model of method 2 was built upon the standard U-Net20 architecture for multi-class semantic seg-
mentation (e.g., lungs, heart, and background). Similar to the XLSor model, the DL model of method 2 applied 
self-attention modules to improve discriminative feature representation ability. The channel attention block of 
the attention module extracted the inter-channel relationships of the input feature map. The spatial channel block 
encoded the relative importance of each spatial position of the input feature map21. Because of the self-contained 
nature of the attention module, it could be located in the U-Net architecture at any point and in any number. 
The current implementation applied the attention modules at shallow layers of both contracting and expanding 
paths of the U-Net, which was determined empirically. The code for DL models of both methods is accessible in 
Github (https://​github.​com/​mkmk0​612/​segme​ntati​on-​based-​cardi​omega​ly-​detec​tion).

Training and validation details.  Of the total data, 80% were used as training data and the remaining 
20% were used as validation data for semantic segmentation. This split was conducted for three datasets, respec-
tively, and the resulting sets were recombined for training and validation. Because of the variation in the image 

Figure 4.   Flow chart for datasets. The final training and validation sets were used to train the DL models for 
lung and heart segmentation. The final test dataset was used to evaluate the segmentation-based methods using 
DL models. PACS picture archiving and communications system, PX pneumothorax, JSRT Japanese Society of 
Radiological Technology, TB tuberculosis, DL deep learning.

https://github.com/mkmk0612/segmentation-based-cardiomegaly-detection
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intensity of CXRs in the dataset, histogram equalization was applied to reduce source-dependent variance and 
increase the levels of contrast before feeding CXRs into the DL models for both training and testing. Further-
more, because of the variation in the image resolution of CXRs, all CXR images were rescaled into 512 × 512 pix-
els, which enabled retention of sufficient visual details to delineate boundaries of the lungs and heart. Since the 
conventional data augmentation schemes based on affine transformations (e.g., shifting, flipping, and zooming) 
did not improve performance in pilot trials, data augmentation was not applied. Following prediction of lung 
and heart masks, image post-processing (e.g., small object removal and hole filling) was performed to further 
improve segmentation, followed by automatic calculation of CTR.

DL models were implemented using the PyTorch framework (https://​www.​pytor​ch.​org/) with a CUDA back-
end. The entire networks of both DL models were trained end-to-end using the stochastic gradient descent 
optimizer with a mini-batch size of 4. For the DL model of method 1, the initial learning rate was 0.02 and was 
updated using a ploy learning rate policy18. For the DL model of method 2, the base learning rate was set to 0.01 
and subsequently decreased by a factor of 10 when the validation set accuracy stopped improving. For both DL 
models, the mean square error loss function was employed, and the number of iterations for training was set to 
40,000 on two graphic cards (GTX Titan XP; NVIDIA, Santa Clara, CA, USA). Early stopping was applied to 
avoid overfitting.

Statistical analysis.  All statistical analyses were performed using Minitab software (Minitab 17.3.1; 
Minitab LLC, Sate College, PA, USA) and R-programming (Version 3.1.2 [2014]; R Foundation for Statistical 
Computing, Vienna, Austria). Diagnostic performance was evaluated in terms of accuracy, sensitivity, specific-
ity, and AUC; the cutoff value of the CTR regarded as cardiomegaly was set to 0.5 in accordance with the regular 
diagnostic practice. Reliability of automatic CTR calculation was determined using MAE and the paired t-test 

Table 4.   Details of the test dataset to evaluate the performance of segmentation-based methods using deep 
learning models for detection of cardiomegaly. Data in parentheses indicate the percentage of radiographs with 
respect to the total number of radiographs. NF no finding, CM cardiomegaly, PX pneumothorax, PE pleural 
effusion, L1 lesions obscuring the border of heart, L2 lesions obscuring the border of diaphragm except PE, OT 
other common thoracic pathological findings.

Without cardiomegaly With cardiomegaly

Thoracic pathological findings

Total

Thoracic pathological findings

TotalNF CM PX PE L1 L2 OT NF CM PX PE L1 L2 OT

✓ 241 (24.1) ✓ 291 (29.1)

✓ 44 (4.4) ✓ ✓ 6 (0.6)

✓ 24 (2.4) ✓ ✓ 53 (5.3)

✓ 4 (0.4) ✓ ✓ 15 (1.5)

✓ 12 (1.2) ✓ ✓ 11 (1.1)

✓ 64 (6.4) ✓ ✓ 56 (5.6)

✓ ✓ 11 (1.1) ✓ ✓ ✓ 8 (0.8)

✓ ✓ 4 (0.4) ✓ ✓ ✓ 1 (0.1)

✓ ✓ 2 (0.2) ✓ ✓ ✓ 3 (0.3)

✓ ✓ 12 (1.2) ✓ ✓ ✓ 4 (0.4)

✓ ✓ 3 (0.3) ✓ ✓ ✓ 18 (1.8)

✓ ✓ 2 (0.2) ✓ ✓ ✓ 7 (0.7)

✓ ✓ 13 (1.3) ✓ ✓ ✓ 25 (2.5)

✓ ✓ 5 (0.5) ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ 2 (0.2) ✓ ✓ ✓ 9 (0.9)

✓ ✓ ✓ 7 (0.7) ✓ ✓ ✓ 3 (0.3)

✓ ✓ ✓ 6 (0.6) ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ 5 (0.5) ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ 2 (0.2) ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ 4 (0.4) ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ 1 (0.1) ✓ ✓ ✓ ✓ 11 (1.1)

✓ ✓ ✓ 1 (0.1) ✓ ✓ ✓ ✓ 2 (0.2)

✓ ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ ✓ ✓ 1 (0.1)

✓ ✓ ✓ ✓ ✓ 1 (0.1)

Subtotal 469 (46.9) Subtotal 531 (53.1)

Total: 1000 (100)

https://www.pytorch.org/
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for the test dataset. A p-value < 0.05 was considered to indicate a significant difference between automatic and 
manual calculations.

Data availability
The JSRT dataset used in this study is published by the Japanese Society of Radiology Technology (JSRT) and 
is accessible at http://​db.​jsrt.​or.​jp/​eng.​php, The Montgomery dataset used in this study is published by the U.S. 
National Institute of Health and is accessible at https://​lhncbc.​nlm.​nih.​gov/​LHC-​downl​oads/​downl​oads.​html#​
tuber​culos​is-​image-​data-​sets.​The in-house dataset that supports the findings of this study is available at Health-
Hub, Co. Ltd. but restrictions apply to the availability of these data, which were used under license for the current 
study, and thus, are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of HealthHub, Co. Ltd.
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