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Classification for avian malaria 
parasite Plasmodium gallinaceum 
blood stages by using deep 
convolutional neural networks
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Kamonpob Klanboot4, Kaung Myat Naing4, Teerawat Tongloy4, Santhad Chuwongin4 & 
Siridech Boonsang5*

The infection of an avian malaria parasite (Plasmodium gallinaceum) in domestic chickens presents a 
major threat to the poultry industry because it causes economic loss in both the quality and quantity 
of meat and egg production. Computer-aided diagnosis has been developed to automatically identify 
avian malaria infections and classify the blood infection stage development. In this study, four types 
of deep convolutional neural networks, namely Darknet, Darknet19, Darknet19-448 and Densenet201 
are used to classify P. gallinaceum blood stages. We randomly collected a dataset of 12,761 single-
cell images consisting of three parasite stages from ten-infected blood films stained by Giemsa. All 
images were confirmed by three well-trained examiners. The study mainly compared several image 
classification models and used both qualitative and quantitative data for the evaluation of the 
proposed models. In the model-wise comparison, the four neural network models gave us high values 
with a mean average accuracy of at least 97%. The Darknet can reproduce a superior performance 
in the classification of the P. gallinaceum development stages across any other model architectures. 
Furthermore, the Darknet has the best performance in multiple class-wise classification, with average 
values of greater than 99% in accuracy, specificity, and sensitivity. It also has a low misclassification 
rate (< 1%) than the other three models. Therefore, the model is more suitable in the classification of 
P. gallinaceum blood stages. The findings could help us create a fast-screening method to help non-
experts in field studies where there is a lack of specialized instruments for avian malaria diagnostics.

Avian malaria, a mosquito-borne disease, is one of the most common veterinary threats in tropical regions, 
including South East Asia and South Asia1. Plasmodium gallinaceum is an important causative agent of avian 
malaria, which causes more than 80% mortality if left untreated2. The disease entails an economic and agricultural 
loss in poultry processing systems such as poor quality and quantity of meat and egg production1. Early and 
rapid routine screening for a safe and low-cost parasite infection may help prevent transmissions of the disease. 
Microscopic inspection is a gold standard approach and is widely used to examine and identify avian malaria-
infected blood stages under thin-blood film examinations, the outcome of which is validated by highly trained 
and qualified technicians3. Nevertheless, the precise outcome of the above-mentioned procedure depends on the 
consistency of the blood smearing and staining process. In addition, asymptomatic with low parasite infection 
can be time-consuming and may be undetectable or questionable as a result of inter/intra examiner variability3. 
In addition, unspecific clinical symptoms of avian malaria, such as anorexia, anemia, and green stools, are often 
seen1,4. While most of the nucleic acid-based amplification processes, such as the polymerase chain reaction 
(PCR) assay, is an efficient method with high sensitivity and malaria detection specificity, it requires an optimal 
consistency of genomic DNA and expensive tools such as thermocycler and electrophoresis apparatus5–7. A pro-
fessional molecular biologist is also required for further verification of the analysis. Consistently, the molecular 
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biology approach could not always be affordable in low-income and resource-limited nations. As a result, an 
automated identification tool is desired.

Artificial intelligence (AI) technology is currently a positive integration success in a diverse areas of interest, 
including agriculture, medicine and veterinary medicine8–15. Computer-aided diagnosis, an AI subdivision, has 
been developed to identify human malaria infections and to classify their blood stage of the parasite growth. 
These can be used to assist clinical decision-making. Machine learning applications have also been studied in the 
documented veterinary field16. Previous research has suggested a diagnostic tool in veterinary medicine focused 
on image analysis using machine learning techniques17,18, such as microscopic examination used to help diagnose 
disorder and disease in fish farm19. The analysis referred to above is intended to enhance the inspection of the 
pathogen region in the image by means of object detection, which includes various image processing techniques, 
including noise reduction, edge detection, morphological operations and context extraction.

Deep learning is a revolutionary and groundbreaking approach that has been incorporated into microscopic 
analysis for the veterinary medicine field20,21. The methods are combined and tailored for individual datasets 
that differ in the size of the region of interest. In specific, deep learning technology is applied to end-to-end 
methods of extraction of features and self-discovery. The deep learning algorithm is very popular and useful 
with the emergence of a high-power computing machine to be used to study the classification of images and the 
recognition of clinical issues. Several neural network models have been used to contend with the animal sector, 
the Single-Shot MultiBox Detector (SSD) model used to evaluate the percentage of reticulocytes in cat’s samples22, 
Alexnet for classification of fish disease such as Epizootic ulcerative syndrome (EUS), Ichthyophthirius (Ich) 
and Columnaris19. Deep learning is a revolutionary and groundbreaking approach that has been incorporated 
recently into microscopic analysis for the veterinary medicine field. The work described above shows that deep 
learning algorithms can be applied successfully in the field of veterinary medicine.

Previously, several techniques for image-based identification and classification of malaria parasite infec-
tions have been discussed, such as dark stretching technique23, modified fuzzy divergence technique, segmenta-
tion techniques24, adaptive color segmentation and tree-based decision classification25, segmentation, feature 
extraction, and SVM classifier26, convolutional neural classification27,28. Moreover, deep CNN research has been 
conducted under the channel color space segmentation method29, deep belief network technique30, the Faster 
Region-based Convolutional Neural Network (Faster R-CNN)31, and the MATLAB-based Zach Threshold pro-
cess for segmentation technique32. Successfully, several studies have reported the use of deep learning models 
to classify malaria parasites as automatic, rapid, and accurate approaches33–35. Interestingly, more than 95% of 
the accuracy is recorded in the detection of malaria-infected cells using three well-known CNNs, including 
LeNet, AlexNet, and GoogLeNet36. The previous work demonstrated micro-platforms to study and identify the 
infected avian red blood cells by using morphological modifications on the RBC surface to reveal the phases of 
P. gallinaceum. Since malaria has been described as a disease of blood and blood-forming tissues, the blood film 
sample has been diagnosed to better understand different degrees of disease37. Early rapid screening of parasite 
infection with reliable and also low-cost development is required, which could help us deter the spread of the 
disease. Therefore, timely identification of the malaria parasite in a blood smear test is crucial because it needs 
reliable and early diagnosis for successful containment.

A hybrid platform (VGG19 and SVM) recently demonstrated high performance in detecting infected and 
non-infected malaria parasite images, as observed follows: 93.44 per cent sensitivity; 92.92 per cent specificity; 
89.95 per cent precision, 91.66 per cent F-score and 93.13 per cent accuracy38. The outstanding performance of 
the hybrid algorithms mentioned previously motivates us to develop a hybrid object detection and classification 
method for further classifying avian malaria in Thailand.

In this work, we employ two-state learning techniques, which combine an object detection model based on 
YOLOv3 with one of four classification models, namely Darknet, Darknet19, Darknet19-448, and Densenet201, 
to characterize the avian malaria blood stages of P. gallinaceum. The primary contribution is a comparison of 
several image classification methods utilizing blood protozoa images as qualitative and quantitative data for 
evaluating the proposed models. We compared the effectiveness of the proposed model in predicting parasitized 
and healthy chicken RBCs in thin blood film images. Furthermore, the suggested model can predict the stage 
of malaria development, which impacts both the severity of illness and the likelihood of malaria transmission. 
Because of the medicinal relevance of human malaria parasites, this type of technique has been used more exten-
sively. To the best of our knowledge, this is the first study to use CNNs deep learning model in the categorization 
of clinical datasets related to clinical issues in P. gallinaceum-infected chickens. This work contributes significantly 
to the field since conventional identification relies heavily on microscopist experts. Such experts require years 
of training and practice. Therefore, it would be very helpful to have CNNs deep learning aid and could be done 
by technicians without intensive training.

Methods
Ethics statement.  Archived Giemsa-stained thin-blood films have been collected from previous studies1,39. 
This study was reviewed and approved by the Chulalongkorn University Faculty of Veterinary Science Biosafety 
Committee (Approval No. 1931011) and was approved by the Institutional Animal Care and Use Committee in 
accordance with university regulations and policies governing the care and use of laboratory animals (Approval 
No. 1931091). In this study, we strictly adhered to the university’s relevant guidelines and regulations. All proce-
dures were carried in accordance with the ARRIVE guidelines.

Data collections.  In the present study, blood films were prepared immediately after withdrawal of blood 
samples from the infected chickens. This results in the proper shape of an erythrocyte’s nuclei. The parasite infec-
tion was confirmed by three well-trained investigators using microscopic diagnosis. In addition, all P. gallina-
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ceum positive slides used in this study were also confirmed by PCR and sequencing as described in Xuan et al.40. 
Ten P. gallinaceum-infected chicken blood films were randomly chosen. A total of 432 images of chicken blood 
cells at various stages of malarial growth were taken at 1000 × using an oil immersion magnification mounted 
to a light microscope (Olympus CX31, Tokyo, Japan).The digitized chicken blood cells were captured using an 
Olympus DP21-SAL digital camera (Tokyo, Japan). An individual RBC image from each blood film was selected 
to be used in an image with a region of interest to the so-called monolayer area.

A hybrid two‑stage model: RBC detection and classification models.  The proposed methodology 
for classifying the blood stages of avian malaria, P. gallinaceum, uses a hybrid two-stage model (object identifi-
cation YOLOv3 and Darknet/Densenet201 classification algorithms). Previously, the combination of two CNN 
models was reported to have increased prediction accuracy41,42. It was more beneficial when a combination of 
two deep learning models such as using two-state learning strategies of concatenated YOLO models for identify-
ing genus, species and gender of the mosquito vector42. In this work, the first stage of the proposed model is the 
YOLOv3-based object detection, which aims to distinguish a single RBC image from those inside a microscopic 
image. Among other object detection models, the YOLOv3 model outperformed the others, in terms of localiza-
tion and classification accuracy14. Model inference, in particular, can be accomplished in real-time by processing 
45–155 frames per second. It can also recognize up to 9000 object classes. After encoding the circumstantial 
information of the relative classes, the model can detect the entire area of an input image set with only a few 
false positives43 and shows a balance of accuracy and speed in practical applications that time is not restrictive44.

Cropped images (single RBC) from its first stage model inference were used as inputs for the second stage 
model. The classification model was used in the second stage to categorize the single RBC detected. CNN model 
candidates were widely used for studying image classification, from a top-5 pre-trained model which was meas-
ured as single-crop validation accuracy at 94.7%45. The models employed in this study are the top ranking of 
the ILSVRC2016 ImageNet competition to identify pathological tasks. These versions are in the following sizes; 
Densenet201, Darknet, Darknet19, and Darknet19-44845. The model prediction was automatically masked and 
colored with a JET color map generated by the Class Activation Map (CAM) algorithm46.

Dataset preparation.  Two datasets were developed by a team of experts who labeled all 432 microscopic 
examination images for RBCs1,39. The first dataset is obtained from microscopic images of chicken RBCs scat-
tered around the whole image. A rectangular bounding box closely fitting to the RBC image region was manually 
designated for each individual RBC. The ground truth data file was saved as a collection of RBCs with designated 
bounding boxes. The first dataset was then set as the ground truth file for the object detection model (YOLOv3). 
The ground truth was deposited as shown in this link as followed; https://​git.​cira-​lab.​com/​cira-​medic​al/​class​
ifica​tion-​of-​avian-​malar​ia-​paras​ite. Using the first dataset, the YOLOv3 model was subsequently employed to 
learn and detect individual RBC. By feeding all microscopic images to the trained YOLOv3, the model output 
reported all the image regions that contained any chicken’s RBC. Where an RBC was detected, the image region 
of a single RBC (both normal and parasitized-RBCs) was cropped using the standard image crop technique. 
Each single RBC image was then used for the preparation of the second dataset (Fig. 1).

The deep learning classification model was used in the second stage to identify a specific relative class within 
the cropped image extracted from the captured image containing a single chicken’s RBC. The second dataset 
consists of 12,761 cropped images containing a significant proportion of regions of interest (ROI). Pooled single 
cropped-cell images were grouped and assigned labels according to four classes based on their physiological 
and morphological stages, including: (i) normal RBC for 6724, (ii) trophozoite for 5343, (iii) schizont for 657, 
and (iv) gametocyte for 37, respectively. Each class above was randomly divided into training (90 per cent) and 
testing (10 per cent) sets, minimizing potential similarities between these two sets. This protocol can be trustable 
for preventing sample selection bias from the same patient’s slides. While disproportionate sample size between 
classes has been identified and can trigger biased-prognosis against a class with a large number of image sets, a 
deep learning approach with multi-layered layers and data annotation can be explored prior to model training. 
To speed up model convergence, rescale the image from raw pixels to 448 × 448 pixels before training with a 
chosen neural network model.

Data augmentation and model training.  Data augmentation techniques were introduced to the data-
set prior to training to avoid over-fitting of the training image collection, and it was also used in the case of an 
unbalanced class. The technique involves rotations, brightness/contrast, blurriness and Gaussian noise under 
the following conditions:

	 (i)	 The rotational angle was performed with the degree value specified from − 180° to 180°, varied at every 
45°.

	 (ii)	 The brightness and contrast were adjusted by multiplying all pixel values for seven steps, ranging from 
0.4 to 1.6.

	 (iii)	 The Gaussian noise distribution was applied to help the model to distinguish an original image from the 
annotated image with noise. We used 5 steps accompanying to 5-standard deviation (σ = 0, 4, 8, 12 16 
and 20).

	 (iv)	 Gaussian blur was used to vary the image’s sharpening to blurring with 5 steps (Gaussian filter) with a 
standard deviation of 5, ranging from 1 to 10.

These models mentioned above were trained on the in-house deep learning platform CiRA CORE (https://​
git.​cira-​lab.​com/​cira/​cira-​core), under Ubuntu version 16.04, 16 GB RAM, and NVIDIA GeForce GTX1070Ti 

https://git.cira-lab.com/cira-medical/classification-of-avian-malaria-parasite
https://git.cira-lab.com/cira-medical/classification-of-avian-malaria-parasite
https://git.cira-lab.com/cira/cira-core
https://git.cira-lab.com/cira/cira-core
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graphic processor unit. Furthermore, the qualified models were trained for at least 100,000 epochs in order to 
record the learned parameters. The likelihood of a threshold greater than and equal to 50% is considered to be 
a true positive value, which incurs no cost42,44. Otherwise, the result of image classification would produce false 
positive values that are unexpected in medical diagnosis.

Model evaluations.  The performance quality of the model- and class-wise prediction was evaluated in 
terms of the following statistical metric parameters: accuracy, sensitivity, specificity, precision and misclassifica-
tion rate11,42,47.

(1)Sensitivity =
TP

TP + FN
,

(2)Specificity =
TN

TN + FP
,

(3)Accuracy =
TP + TN

TP + TN + FP + FN
,

Figure 1.   The schematic of the two-state learning strategies for classification of the single chicken’s RBC 
infected by P. gallinaceum. (A) A microscopic image with multiple RBC infected malaria stages was captured 
under oil immersion field (×1000 magnification). An individual RBCs were cropped under CiRA CORE 
platform if these cells were correctly detected by well-trained YOLO v3 model. (B) Each cropped-RBC cell 
with/without malaria infection was then classified by trained image classification networks including Darknet, 
Darknet19, Darknet19-448 and Densenet201, respectively. In the extracting hierarchical features, feature 
(attention) maps was generated by filters of each convolution layer (within the feature extractor part) and used 
for visualization through channel-wise averaged gradients. The attention map of the JET color gradient is used 
to visualize self-region of the interest of the input based on optimal weight. [the figure is drawn by Microsoft 
PowerPoint. https://​www.​micro​soft.​com/​en-​us/​micro​soft-​365/​power​point].

https://www.microsoft.com/en-us/microsoft-365/powerpoint
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where TP is the number of true positive values, TN is the number of true negative values, FP is the number of 
false positive values, and FN is the number of false negative values.

The confusion matrix table was created to demonstrate the overall accuracy of both the model capability in 
the multi-class classification. An area under the Receiver Operating Characteristic (ROC) curve (AUC) at 95% 
confident of interval (CI) was designed to calculate the average accuracy of the model using python software.

Results
Accompanying those protocols in the method part, we combined YOLOv3 and image classification (Darknet/
Densenet201) models in order to localize, identify and classify a single RBC cell from any microscopic examina-
tion image with multiple-RBCs. Their relative RBC’s classes were then classified as both normal and that infec-
tion varied based on pathological features (Supplementary Fig. S1). Besides, the hybrid platform of YOLOv2 
with ResNet-50 detector helps improve the average precision of the proposed detector up to 81% compared to 
a previous single model41.

Performance comparison of classification models.  In this analysis, the model-wise performance was 
assessed as to whether the classification model was the best-selected model based on an attention map and 
used to estimate P. gallinaceum-infected blood phases (Supplementary Fig. S1). These models included Darknet, 
Darknet19, Darknet19-448 and Densenet201 as described above. For classification models for avian malaria 
parasite phases, performance metrics such as average precision, uncertainty confusion matrix table, and ROC 
curve were estimated and compared. In addition, we randomly split the single-cell images for training and com-
pared the image sets to determine if the different models generated the same classifier performance. All well-
trained models provided us with high average accuracy values of more than 97%, which increased to 99.2% 
for the Darknet algorithm (Table 1). In addition, all other two statistics also support the Darknet network as a 
superior performance at 99.2 per cent for both sensitivity and specificity, respectively (Tables 2, 3). Interestingly, 

(4)Missclassification rate =
FP + FN

TP + TN + FP + FN
,

(5)Precision =
TP

TP + FP
,

Table 1.   Model-wise comparison and multiclass-wise comparison based on the accuracy from one-class 
versus total.

DCNNs Average Normal Trophozoite Schizont Gametocyte

Darknet 0.992 0.983 0.983 1.000 1.000

Darknet19 0.991 0.981 0.981 1.000 1.000

Darknet19_448 0.984 0.967 0.967 1.000 1.000

Densenet201 0.979 0.963 0.957 0.994 1.000

Table 2.   Model-wise comparison and multiclass-wise comparison based on the sensitivity from one-class 
versus total.

DCNNs Average Normal Trophozoite Schizont Gametocyte

Darknet 0.992 0.974 0.992 1.000 1.000

Darknet19 0.991 0.972 0.990 1.000 1.000

Darknet19_448 0.982 0.972 0.957 1.000 1.000

Densenet201 0.977 0.966 0.940 1.000 1.000

Table 3.   Model-wise comparison and multiclass-wise comparison based on specificity from one-class versus 
total.

DCNNs Average Normal Trophozoite Schizont Gametocyte

Darknet 0.992 0.993 0.976 1.000 1.000

Darknet19 0.992 0.991 0.975 1.000 1.000

Darknet19_448 0.984 0.962 0.975 1.000 1.000

Densenet201 0.981 0.960 0.969 0.994 1.000
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all models used showed less than 2% error rate, which was particularly impressive considering that the Darknet 
network gave less than 1% error rate (Table 4). On average, the precision of the Darknet also showed outstanding 
performance at 99.0% more than others (Table 5).

General accuracy, obtained from the confusion matrix table, showed outstanding values for all four models 
(Table 6). In addition, the Darknet model outperformed all other models by more than 97% (Table 6(1)–(4)). 
Overall, the general accuracy from the confusion matrix gave greater than 95 per cent, except for the Dark-
net19-448 for classifying the normal RBC class and followed by the DenseNet201 for classifying the trophozoite 
class gave us at 91.21 and 94.01 per cent, respectively (Table 6(3), (4)). Specifically, this manifested in an overall 
AUC ranking of 0.986–1.000 (Fig. 2). Hence, the Darknet models can reproduce superior performance in the 
classification of the development phases of P. gallinaceum in every other model architecture.

Table 4.   Model-wise comparison and multiclass-wise comparison based on misclassification rate from one-
class versus total.

DCNNs Average Normal Trophozoite Schizont Gametocyte

Darknet 0.009 0.017 0.017 0.000 0.000

Darknet19 0.010 0.019 0.019 0.000 0.000

Darknet19_448 0.017 0.033 0.033 0.000 0.000

Densenet201 0.022 0.037 0.043 0.006 0.000

Table 5.   Model-wise comparison and multiclass-wise comparison based on precision from one-class versus 
total.

DCNNs Average Normal Trophozoite Schizont Gametocyte

Darknet 0.990 0.993 0.968 1.000 1.000

Darknet19 0.990 0.992 0.966 1.000 1.000

Darknet19_448 0.983 0.966 0.965 1.000 1.000

Densenet201 0.980 0.964 0.956 0.896 1.000

Table 6.   Comparison of the studied model performance using the confusion matrix table.

Darknet Normal Trophozoite Schizont Gametocyte

(1) Darknet model

Normal 594 (97.38%) 4 (0.83%) 0 (0.00%) 0 (0.00%)

Trophozoite 16 (2.62%) 480 (99.17%) 0 (0.00%) 0 (0.00%)

Schizont 0 (0.00%) 0 (0.00%) 60 (100.00%) 0 (0.00%)

Gametocyte 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (100.00%)

Darknet19 Normal Trophozoite Schizont Gametocyte

(2) Darknet19 model

Normal 593 (97.21%) 5 (1.03%) 0 (0.00%) 0 (0.00%)

Trophozoite 17 (2.79%) 479 (98.97%) 0 (0.00%) 0 (0.00%)

Schizont 0 (0.00%) 0 (0.00%) 60 (100.00%) 0 (0.00%)

Gametocyte 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (100.00%)

Darknet19-448 Normal Trophozoite Schizont Gametocyte

(3) Darknet19-448 model

Normal 593 (91.21%) 21 (4.34%) 0 (0.00%) 0 (0.00%)

Trophozoite 17 (2.79%) 463 (95.66%) 0 (0.00%) 0 (0.00%)

Schizont 0 (0.00%) 0 (0.00%) 60 (100.00%) 0 (0.00%)

Gametocyte 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (100.00%)

Densenet201 Normal Trophozoite Schizont Gametocyte

(4) Densenet201 model

Normal 589 (96.56%) 22 (4.55%) 0 (0.00%) 0 (0.00%)

Trophozoite 21 (3.44%) 455 (94.01%) 0 (0.00%) 0 (0.00%)

Schizont 0 (0.00%) 7 (1.45%) 60 (100.00%) 0 (0.00%)

Gametocyte 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (100.00%)
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Multiple class comparison.  Based on the best-selected network model, an interpretation of the classi-
fication outcome produced an empirical result in distinguishing the malaria parasite stages. Despite training 
the model with disproportionate sample sizes across classes, the neural network model’s multiple class-wise 
consistency demonstrated great statistical values for all classes, with greater than 99% of all output matrices 
used showing no bias against either class (Tables 1, 2, 3). This is because our best-chosen model can distinguish 
malaria phases with high precision but a low rate of misclassification of less than 1% found (Tables 4, 5). This 
may be one of the benefits of applying the class-balancing data augmentation protocol to the prepared dataset. 
This study’s findings indicate that the model could be validated using multiple blood smears derived from real-
world contexts.

Discussion
In this study, the robustness of deep neural network models led to the discovery of a new approach for more 
rapid screening of avian malaria under a microscope. Asymptomatic diseases, in particular, can lead to disease 
transmission and even death if not adequately prevented48,49. This study may contribute to the main comparison 
of several image classification models based on images of avian malaria, P. gallinaceum. Also, both qualitative 
and quantitative data were used to evaluate the performance of the proposed models.

Several CNNs have also been developed to provide a number of pre-trained ImageNet classification models, 
including AlexNet, Darknet, VGG-16, Resnet50, ResNext, and Densenet20151, for use as effective in image clas-
sification applications. According to an evaluation of the performance of these pre-trained models, the Darknet 
model has a higher accuracy than the Densenet201 model and also provides the fastest processing time in both 
CPU and GPU45,52. Even though we trained network models with actual patient-level yet unbalanced class sizes, 

Figure 2.   The AUC under the ROC curve analyzed by the model- wise performance following; (A) Darknet, 
(B) Darknet19, (C) Darknet19_448 and (D) Densenet201, respectively. Besides, the plot also present class-wise 
comparison following; Gametocyte, Normal RBC, Schizont and Trophozoite, respectively. All images were 
plotted under the CiRA CORE plug-in encoded by using Python 3.5.0 (https://​launc​hpad.​net/​~deads​nakes/+​
archi​ve/​ubuntu/​ppa), matplotlib 3.4.2 (https://​pypi.​org/​proje​ct/​matpl​otlib/) and pandas 1.3.1 (https://​pypi.​org/​
proje​ct/​pandas/).

https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://pypi.org/project/matplotlib/
https://pypi.org/project/pandas/
https://pypi.org/project/pandas/
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the performance of well-trained proposed models has shown an outstanding outcome based on several statisti-
cal parameters, even in a multi-class comparison. Since the project was a significant success, this would help to 
advance the development of innovative technologies in order to implement and validate them in a real-world 
environment.

We would like to illustrate our approach to developing deep learning models from concatenated neural 
network architectures to make clinical applications by viewing the video as follows: https://​youtu.​be/--​pzvwS​
rUdc. Nonetheless, before the technology is implemented, the inter- and intra-variability examinations should be 
performed in order to validate the degree of consensus between the predictive model’s functional performance 
metrics and the human expert53.

The limitation of the study is deeply based on the determination of three key points for the preparation of 
the dataset54, including; (i) differences in the parasite-blood stages24, (ii) infection status that can induce either 
single or multiple infections, and (iii) co-infections in any single blood cell. It is worth noting that in this study, 
only fully grown gametocyte were counted as gametocytes because young gametocytes are transformed from 
late trophozoites. The imbalance data is another consequence of dataset preparation, though it is less severe 
than the others listed above. In the case of differences in the blood stage of each parasite, an increasing number 
of samples is a potential solution. The analysis has influenced model efficiency under the research design. This 
may be because the image set is a special attribute between classes that helps to increase class differentiation for 
the well-trained models. We have different sizes of test set including 610, 484, 60 and 5 images for normal RBC-, 
trophozoite-, schizont-, and gametocyte classes, respectively. Although our datasets used are imbalanced, in the 
study, the overall accuracy shows more than 98–100% in classifying between the independently different classes. 
Since our models were trained utilizing the well-planned dataset preparation described in the method section, 
the role of data augmentation and data balancing for environmental simulation improved the classification 
efficiency47. Additionally, five-fold cross validation was also studied to help confirm whether our selected model 
gave consistently general accuracy and no predictive bias54,55. According to our results, cross-validation solves 
the problem of overfitting. This is because the cross-validation applied can help minimize the cross-validated 
error to build the optimal model and result in indifferent statistical parameters used between any experiment 
(Supplementary Tables S1, S2). Furthermore, we appropriately chose an image of a single species of parasite 
infection to be examined. Since the staining of artifacts/impurities of uninfected blood cells can interfere with 
the prediction, the expert’s simple staining of color under the Giemsa staining process also provides us with 
the ideal dataset56. It is important to note that all images to be included in this application should be prepared 
properly, otherwise the abnormal host cells such as segmented erythrocyte nuclei or other debris might lead to 
false identification. Confirmation by a technician is still necessary. Nevertheless, the model must be validated 
in a specific environment of multiple pathogens and co-infections, which could already exist in field samples.

Conclusions
In this study, the application of a deep neural learning network to identify and verify avian malaria and to assess 
it by using truly invisible images that have never been published. Based on our results, we demonstrated the 
superior performance of a novel hybrid two-stage model (object detection YOLOv3 and Darknet/Densenet201 
classification algorithms). Although we trained network models with real patient-level yet unbalanced class 
sizes, the performance of well-trained proposed models was exceptional based on many statistical parameters, 
including in a multi-class comparison. Furthermore, we can deduce that only a model learning methodology 
and data preparation should be used in the research design. Fortunately, the study showed a high value of the 
various statistical measurements listed above, which could be useful for cytological technicians in making deci-
sions. It would be useful to diagnose malaria infections wherever there is due to a shortage of molecular biology 
and veterinary knowledge.

Data availability
The data that support the findings of this study are available from the corresponding author’s GitHub repository: 
URL: https://​git.​cira-​lab.​com/​cira-​medic​al/​class​ifica​tion-​of-​avian-​malar​ia-​paras​ite.
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