Table 8.
The fitting results for wind power output with different degree i. The eight-degree polynomial with the highest correlation coefficient R2 = 0.9932 is selected as the best model for wind power output. For nine-degree polynomial, its correlation coefficient higher slightly than that of eight-degree polynomial, but the coefficient a9 is zero.
i = 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|
a0 | 190.9752 | 300.1130 | 50.3861 | − 71.7432 | − 29.7084 | 8.2388 | 0.9578 | − 9.6752 |
a1 | − 269.9311 | − 382.1442 | − 22.8256 | 233.5924 | 103.3182 | − 73.2569 | − 23.2012 | 83.4538 |
a2 | 83.2476 | 117.1197 | − 36.9182 | − 191.5619 | − 85.8043 | 100.0191 | 34.3568 | − 136.7091 |
a3 | − 3.8966 | − 7.6637 | 19.2781 | 58.9500 | 22.0650 | − 61.4883 | − 24.9013 | 91.1207 |
a4 | 0.1333 | − 1.8654 | − 6.6945 | − 0.2396 | 19.1791 | 8.4253 | − 33.6795 | |
a5 | 0.0517 | 0.3245 | − 0.2651 | − 2.7679 | − 0.9466 | 8.0854 | ||
a6 | − 0.0057 | 0.0210 | 0.2006 | 0.0175 | − 1.1788 | |||
a7 | − 0.0005 | − 0.0072 | 0.0036 | 0.1022 | ||||
a8 | 0.0001 | − 0.0002 | − 0.0051 | |||||
a9 | 0.0000 | 0.0001 | ||||||
a10 | 0.0000 | |||||||
R2 | 0.9851 | 0.9864 | 0.9915 | 0.9928 | 0.9930 | 0.9932 | 0.9933 | 0.9933 |
The results of the best model are in bold