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Abstract

Low test-taking effort as a validity threat is common when examinees perceive an
assessment context to have minimal personal value. Prior research has shown that in
such contexts, subgroups may differ in their effort, which raises two concerns when
making subgroup mean comparisons. First, it is unclear how differential effort could
influence evaluations of scale property equivalence. Second, if attaining full scalar invar-
iance, the degree to which differential effort can bias subgroup mean comparisons is
unknown. To address these issues, a simulation study was conducted to examine the
influence of differential noneffortful responding (NER) on evaluations of measurement
invariance and latent mean comparisons. Results showed that as differential rates of
NER grew, increased Type I errors of measurement invariance were observed only at
the metric invariance level, while no negative effects were apparent for configural or
scalar invariance. When full scalar invariance was correctly attained, differential NER
led to bias of mean score comparisons as large as 0.18 standard deviations with a dif-
ferential NER rate of 7%. These findings suggest that test users should evaluate and
document potential differential NER prior to both conducting measurement quality
analyses and reporting disaggregated subgroup mean performance.
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Low test-taking effort as a validity threat is common when examinees perceive an

assessment context to have minimal personal value (low-stakes testing; Penk &

Schipolowski, 2015). This can occur because examinees do not have (e.g., interna-

tional comparative education studies, such as the Programme for International

Student Assessment [PISA]) or are unaware of the individual consequences for their

test performance (e.g., young children assessed for remediation). When an assess-

ment context is perceived to be low stakes, some examinees have been found to

engage in noneffortful responding (NER; i.e., providing a random guess without con-

sideration for the item content due to low-test-taking effort), leading to random score

error that is generally associated with significant underestimation of examinee ability

(e.g., Rios et al., 2017; Wise & DeMars, 2005). Furthermore, NER has also been

found to produce biased measurement properties, such as estimates of (a) item para-

meters (e.g., Rios & Soland, 2020; van Barneveld, 2007); (b) test information (e.g.,

van Barneveld, 2007); (c) classical test theory (CTT) score reliability (e.g., Wise &

DeMars, 2009); (d) construct dimensionality (e.g., Kam & Meyer, 2015); and (e)

linking coefficients (Mittelhaëuser et al., 2015). As a result of these findings, the

Standards for Educational and Psychological Testing calls for test developers and

users to document the potential role of low-test-taking effort as a source of construct-

irrelevant variance prior to evaluating measurement quality and making score-based

inferences (e.g., Standard 13.9; American Educational Research Association et al.,

2014). The purpose of this article is to investigate the effect of NER on measurement

invariance and mean score comparisons when examinee subgroups possess differen-

tial test-taking effort. In the sections that follow, prior literature documenting sub-

group differences in test-taking effort, its documented effects on measurement

invariance, and the rationale for the current study are discussed.

Differential NER and Measurement Invariance

A significant number of researchers have documented that test-taking effort differs

across subgroups of examinees in low-stakes testing contexts. For instance, differ-

ences have been illustrated by (a) gender (DeMars et al., 2013; Schnipke, 1995;

Soland, 2018; Wise & Cotton, 2009; Wise & DeMars, 2010; Wise et al., 2004); (b)

age (DeMars, 2007; Goldhammer et al., 2016; Wise & DeMars, 2010); (c) ethnicity

(Soland, 2018); (d) language group (Goldhammer et al., 2016; Setzer et al., 2013);

(e) school-track (Penk et al., 2014); (f) educational attainment level (Goldhammer

et al., 2016); and (g) nationality (Boe et al., 2002; Borghans & Schils, 2012; Debeer

et al., 2014; Goldhammer et al., 2016; Rios & Guo, 2020; Zamarro et al., 2019). In

these applied contexts, subgroup differences in NER have been found to be as high

as 23% (Rios & Guo, 2020).1 Thus, it is of little surprise that researchers have heeded

concern that disparities in test-taking effort can lead to inaccurate inferences concern-

ing subgroup comparisons (e.g., Soland, 2018).

However, subgroup comparisons first assume that the statistical property of mea-

surement invariance holds for the given measure across subgroups of interest.
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Measurement invariance is met when an examinee’s group membership adds nothing

to their observed score on measure X above and beyond our knowledge of their

standing on the latent variable measured by X (Millsap, 2011). Although there are

multiple levels of measurement invariance, practitioners concerned with making sub-

group comparisons are most attentive to attaining full scalar invariance (e.g., Fischer

& Karl, 2019). This form of invariance stipulates that the same data configurations

or structures (i.e., the same number of factors and loading pattern) of the purported

construct are present, the strength of the relationships between the indicators and

latent construct(s) are equivalent (i.e., equal factor loadings), and the intercepts are

equal across subgroups. Meeting these assumptions allows practitioners to make

direct subgroup mean comparisons, as the measure of interest has been demonstrated

to possess equal measurement units and the same origin values for all items across

subgroups (Dimitrov, 2010).

Although establishing full scalar measurement invariance is a critical step to

ensuring valid subgroup comparisons, there has been minimal research to date on the

impact of differential NER in establishing this statistical property. One of the only

studies to investigate the relationship between disparities in subgroup test-taking

effort and invariance was conducted by DeMars and Wise (2010); however, the focus

of their analysis was on item-level invariance or differential item functioning (DIF).

In simulating a context in which the generating item parameters were the same, but

differential NER differed between subgroups by upwards of 25%, DeMars and Wise

assessed whether detectable levels of DIF were present using the Mantel–Haenszel

procedure. Findings from this study illustrated that as many as 18% of items were

incorrectly misclassified as possessing DIF across item characteristics. However, a

closer examination of the item properties showed that misclassification rates as high

as 100% were observed for very easy (b = 22.5) and discriminating (a = 1-2) items.

This was due to overestimation of item difficulty for the unmotivated subgroup, as

most of these simulees would have provided a correct response if full effort was

given. Overall, the results of this study illustrated that differential NER can lead to

inaccurate inferences concerning DIF; however, it is yet to be determined how differ-

ing effort across subgroups could affect scale-level invariance analyses (i.e., simulta-

neous invariance analyses for all items of a given measure).

Rationale for Current Study

Better understanding the impact of differential NER on evaluations of full-scalar

invariance is of critical importance in establishing the robustness of inferences in the

presence of disparate subgroup test-taking effort, which has been documented across

multiple testing contexts and populations. This work is inspired by the important pol-

icy implications that low-stakes assessments, such as those used in test-based

accountability systems (e.g., state mandated end-of-year assessments), can have for

monitoring achievement gaps between subpopulations.
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To support these efforts, the objective of this study is to investigate the influence

of differential NER on evaluations of full scalar invariance and latent mean compari-

sons. This objective was examined via a simulation analysis that represented a con-

text in which an assessment measuring a unidimensional construct via keyed

multiple-choice items was administered to a population that was divided into two

subgroups. The generating item parameters were held constant across both subgroups

reflecting full scalar invariance. However, these subgroups differed in their test-

taking effort, with one subgroup far less motivated (hereon referred to as the focal

subgroup) than the other (hereon referred to as the reference subgroup). Furthermore,

as is common in practice, the presence of NERs was ignored (see Wise, 2017).

Based on this context, the following research questions were addressed:

1. How does differential NER affect Type I error (i.e., incorrectly rejecting the

true null hypothesis of full scalar invariance) rates of measurement invariance

analyses?

2. When attaining full scalar invariance in the presence of differential NER,

what is the degree of bias on latent subgroup mean comparisons?

Findings have the potential to inform testing programs about the importance of

considering NER prior to conducting measurement quality evaluations and reporting

disaggregated subgroup mean performance.

Method

Data Generation

Data were generated for a unidimensional test consisting of n (either 30 or 60 items)

multiple-choice items that were administered to two subgroups (focal and reference)

comprising a total of 5,000 simulees. A total sample size of 5,000 was chosen as it is

expected to provide both stable parameter estimates and adequate power for model

fit statistics (e.g., Kim, 2005; Wolf et al., 2013). Effortful item response probabilities

were created in both subgroups based on the two-parameter logistic (2PL) model.

This was done by first sampling item and person generating parameters. The former

were taken from an operational administration of the NAEP reading assessment (for

a full list of item parameters, see Appendices A and B of the online Supplemental

Material). Generating ability parameters were sampled from a normal distribution

(more detail is provided in the next section). Both the item and ability generating

parameters were then entered into the 2PL model to obtain effortful item response

probabilities.

For unmotivated simulees, the next step consisted of replacing effortful probabil-

ities with chance probabilities (assuming each item possessed four response options)

to reflect progressive NER (i.e., decreasing examinee effort as the test proceeds),

which has been observed in operational testing contexts (e.g., Wise & Kingsbury,

2016). This was done via a three-step process. First, the total test length was split into
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five bins (for the 30-item condition, each bin consisted of six items, while for the 60-

item condition, 12 items comprised each bin). Second, the number of NERs in each

bin was specified. These numbers were determined based on the condition’s specified

within-simulee responding rate. As an example, when this rate was 50%, the number

of NERs in each of the five bins for the 60-item condition was 0, 3, 6, 9, and 12.2

Third, once this distribution was determined, NERs were randomly selected in each

bin and the true item probability was replaced with the chance rate. Both effortful

and noneffortful (i.e., chance) probabilities obtained were then compared with a ran-

dom number sampled from a uniform distribution ranging from 0 to 1. For each simu-

lee, if the random number was less than the probability, the item response was treated

as correct. All data generation was conducted in R, version 3.5.0 (R Development

Core Team, 2018).

Conditions

Below is a description of how NER was manipulated across five factors: (a) test

length, (b) subgroup sample sizes, (c) group impact, (d) relationship between NER

and true ability (NER–ability relationship), and (e) differential subgroup NER rate

(hereon referred to as NER rate). These five variables were fully crossed producing

96 total conditions, with each condition replicated 100 times.

Test Length. Given that the number of items loading onto a latent factor can influence

goodness of fit indices (Cheung & Rensvold, 2002), total test length was manipulated

in the current study across two levels: 30 and 60 items. These two levels were chosen

as they reflect the range of common test lengths of low-stakes assessments in which

NER has been shown to be a concern (e.g., DeMars, 2007; Smith et al., 2013). For

the 30-item condition, the mean item difficulty and discrimination were 1.07 (SD =

0.39; minimum = 0.4, maximum = 1.74) and 0.17 (SD = 0.89; minimum = 22.14,

maximum = 1.55), respectively, while the averages were nearly identical for the 60-

item condition (item discrimination: M = 1.12; SD = 0.41; minimum = 0.4, maximum

= 1.91; item difficulty: M = 0.14; SD = 1.10; minimum = 22.14, maximum = 2.17)

based on item parameters obtained from a NAEP assessment.

Subgroup Sample Sizes. In operational settings, there may be contexts in which there

is interest in making comparative inferences between subgroups that differ in sample

size (e.g., English learners vs. native English speakers). When there is such an imbal-

ance, researchers have shown that factorial invariance tests can be affected (Yoon &

Lai, 2018). To examine this issue under the current study context, subgroup sample

sizes were manipulated. Specifically, the first level included equal sample sizes

across subgroups (each consisted of 2,500 simulees), while the second reflected a

scenario in which the focal subgroup (n = 3,350) outnumbered the reference (n =

1,650) by a 2:1 ratio. Across all conditions, the total sample size was constrained to

5,000 (this sample size provided stable parameter estimation).
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Group Impact. Differences in subgroup latent mean ability (group impact) were

manipulated for motivated simulees in both the reference and focal subgroups, as

prior literature has suggested that group impact can increase measurement invariance

Type I errors (Stark et al., 2006). This was done for two scenarios. In the first,

referred to as the no group impact condition, the true latent mean ability was con-

strained equal for motivated simulees in both the focal and reference subgroups by

sampling both subgroups’ generating ability parameters from a standard normal dis-

tribution. In the second scenario, which is referred to as the group impact condition,

the latent mean ability between motivated simulees from the two subgroups differed

by 0.5 SDs (reference: N [0, 1]; focal: N [20.5, 1]). This condition assumed that the

focal subgroup was on average of lower ability than the reference subgroup, which is

an assumption that has been examined in numerous studies (e.g., DeMars, 2010).

NER–Ability Relationship. There is some debate as to whether NER is related to exami-

nees true underlying ability or whether such a relationship has a nonnegligible impact

on ability parameter estimation accuracy (for a discussion, see Wise, 2015). To

address this debate, two levels were manipulated in which unmotivated simulees were

sampled from (a) across the ability continuum (unrelated); and (b) predominately

below the mean ability (related). For this factor, the sampling procedure across unmo-

tivated simulees in both subgroups was constrained equal. Specifically, for level (a),

ability parameters for unmotivated simulees were sampled from the same distribution

as their motivated counterparts (reference: N[0, 1]; focal: N[0, 1] or N[20.5, 1]

depending on whether group impact was present). As prior literature has demonstrated

that in some contexts NER occurs more often for low-ability examinees when com-

pared with their higher achieving counterparts (Goldhammer et al., 2016; Kuhfeld &

Soland, 2020; Rios et al., 2017; Soland & Kuhfeld, 2019), unmotivated simulees’

ability parameters for level (b) were sampled to be 20.5 SDs below the mean of the

motivated simulees in their respective subgroup. This mean difference value was cho-

sen because Rios et al. (2017) found an average prior ability difference of 0.5 SDs

(favoring motivated examinees) between motivated and unmotivated test takers. Thus,

for the reference subgroup, unmotivated simulees’ ability parameters were sampled

from N(20.5, 1). Depending on the presence of group impact, ability parameters for

focal subgroup unmotivated simulees were sampled either from N(20.5, 1) or N(21, 1)

for no impact and impact, respectively, when NER and ability were related.

NER Rate. Although the context simulated reflects a situation in which the reference

subgroup is more motivated than the focal, NERs were generated in both subgroups.

This was done to mirror the reality that in most low-stakes testing situations, not all

examinees will be fully motivated, regardless of subgroup membership. To this end,

for the reference subgroup, the percentage of NERs in the data matrix was con-

strained to 0.5% across all conditions, reflecting the NER rate observed for some of

the more motivated subgroups found in DeMars (2007). This percentage was
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produced by constraining the percentage of unmotivated simulees in the reference

subgroup to 5% and the percentage of NERs for each unmotivated simulee to 10%.

In contrast, the percentage of NERs in the data matrix varied for the focal sub-

group, with percentages of 2.5%, 5%, 7.5%, 15%, and 22.5%. To produce these

NER rates, the percentage of unmotivated simulees (either 10% or 30%) and percent-

age of NERs (25%, 50%, or 75%) for each unmotivated simulee was manipulated to

within acceptable levels observed in both applied and simulated research (DeMars &

Wise, 2010; Rios et al., 2017; Wise & DeMars, 2006). Comparing these NER rates

between subgroups reflects the differential NER percentages (ranging from 2% to

22%) observed in operational settings (1% to 23%; e.g., DeMars, 2007; Goldhammer

et al., 2016; Rios & Guo, 2020).

Analyses
Evaluating Measurement Invariance. Measurement invariance can be evaluated in both

confirmatory factor analytic and item response theory frameworks. In this study,

measurement invariance was tested in the former framework for two reasons. First, a

single-factor confirmatory factor analysis is equivalent to a unidimensional 2PL item

response theory (IRT) model (this was the model used for data generation; e.g.,

Kamata & Bauer, 2008). Second, reviews of psychological literature have shown that

the factor analytic approach is most popular among researchers when testing for

measurement invariance (Putnick & Bornstein, 2016). Therefore, as the methodolo-

gical approaches are identical in the current context, this study adopted the common

approach in practice.

Using multiple group confirmatory factor analysis, measurement invariance was

evaluated by testing (in order) for configural (equality of factor model configura-

tions), metric (equality of factor loadings), and scalar invariance (equality of factor

loadings and intercepts; partial invariance was not assessed) via the lavaan R package

(version 0.6-5; Rosseel, 2012). Across all tests of measurement invariance, parame-

terization of the models occurred by setting the factor variance to one for both sub-

groups. Furthermore, the latent means were constrained to zero for the reference and

focal subgroups at the configural and metric invariance levels, given that valid latent

mean comparisons cannot be established at these levels (Putnick & Bornstein, 2016);

however, once testing for scalar invariance, the focal subgroup latent factor mean

was allowed to be freely estimated, which provided an approximation of the differ-

ence between latent means of the reference and focal subgroups. This parameteriza-

tion approach was taken instead of the common tactic of fixing a referent item’s

factor loading and intercept to 1 and 0, respectively, as the presence of differential

NER could have led to choosing a referent item that was noninvariant across groups.

The consequence of doing so could lead to other items incorrectly appearing metric

and/or scalar invariant due to differences in the latent factor scales across subgroups

(Putnick & Bornstein, 2016). The weighted least squares with mean and variance

adjustment (WLSMV) estimator was used for each model, as all indicators were

dichotomous.3
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Measurement Invariance Type I Error Rates. A primary interest of this study was to

determine the conditions of NER that would lead to model fit deterioration, and ulti-

mately, Type I error when assessing both metric and scalar invariance tests. For

metric invariance tests, this was done by comparing model fit between the configural

and metric invariance models, while the latter test evaluated fit between the metric

and scalar invariance models. To investigate fit for these nested models, three indices

commonly used in research and practice were evaluated: Dcomparative fit index

(CFI), Droot mean square error of approximation (RMSEA), and Dstandardized root

mean square residual (SRMR) (Cheung & Rensvold, 2002; Joo & Kim, 2019;

Putnick & Bornstein, 2016). Using the guidelines proposed by various researchers

(Chen, 2007; Cheung & Rensvold, 2002; Rutkowski & Svetina, 2014), the null

hypothesis that invariance should not be rejected was based on meeting two of the

following three criteria: DCFI �20.01, DRMSEA � 0.01, and DSRMR � 0.015.

Although most researchers rely on only meeting a single criterion (Putnick &

Bornstein, 2016), multiple criteria were employed based on the recommendation that

multiple fit indices should be examined prior to making conclusions concerning

invariance tests (Cheung & Rensvold, 2002). Type I error was calculated for each

replication when the true null hypothesis of full scalar invariance was incorrectly

rejected.

Type I Error and Bias in Latent Mean Subgroup Differences. The second variable of inter-

est examined estimated differences in latent means between subgroups. This was

investigated only for replications that correctly failed to reject the null hypothesis of

full scalar invariance. Replications that did not meet this criterion were dropped from

the analysis, as it is recommended that direct mean subgroup comparisons should be

avoided if full scalar invariance cannot be established (Putnick & Bornstein, 2016).

For replications meeting the criterion, two dependent variables were of interest: (a)

Type I error and (b) bias. The former outcome was included to determine whether

the estimated focal subgroup latent mean difference was statistically different from

its true value. This was done by calculating a one-sample z statistic:

z =
�x� m

se
, ð2Þ

where �x and se are, respectively, the estimated latent mean difference and standard

error for the data possessing NERs, and m was the known latent mean difference. The

z-statistic was compared with the critical value for a two-tailed test at an alpha level

of .05 (1.96) to determine statistical significance. This index was averaged across

replications to compute a summary value for a given condition.

Although this test was informative, it did not provide an indication of the magni-

tude and direction of difference between estimated and known latent mean subgroup

differences. To provide this information bias was calculated:
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Bias =
1

R

� �XR

r = 1

ûr � ur, ð3Þ

where ûr is the estimated difference in latent means between subgroups for replica-

tion r, ur is the known latent mean difference between subgroups, and R is the total

number of replications.4 Given that the latent mean variances were set to one, bias

was interpreted in SD units.

Results

Results are presented separately for measurement invariance and latent mean differ-

ence outcomes.

Measurement Invariance Type I Error Rates

Across all conditions, model convergence was met for every replication. As expected,

when no NER was present in the baseline data, full scalar invariance was attained for

all replications under impact (across conditions, the grand mean DCFI \ .0001) and

no impact (across conditions, the grand mean DCFI \ .0001). Concerning the effect

of NER on measurement invariance, approximately 26% of replications incorrectly

rejected the true null hypothesis of full scalar invariance. A closer examination of fac-

tors demonstrated that Type I errors only occurred when testing for metric invariance.

That is, configural invariance was met for every replication, while full scalar invar-

iance was attained in all cases in which metric invariance was also attained. Given

this finding, results are presented below for tests of metric invariance only.

As shown in Table 1, a logistic regression model demonstrated that increased

NER rates were significantly associated with a rise in Type I errors of metric invar-

iance; however, after controlling for test length, this relationship was found to be

moderated by both group impact and focal subgroup percent. This finding is illu-

strated in Figure 1, which NER rate on the x-axis and Type I error rate on the y-axis

for test lengths of 30 and 60 items. Within each plot, results are presented separately

by subgroups differing in their interaction between sample balance and impact.

Across both test lengths, Type I errors were not observed when NER rates were 2%

and 4.5%. Therefore, results are discussed for the remaining NER rates in which

Type I error rates were observed to be as high as 100% under certain conditions.

Across NER percentages of 7%, 14.5%, and 22%, conditions in which samples

were unbalanced (i.e., focal group simulees comprised 67% of the sample) were

found to possess Type I error rates that were consistently lower than conditions where

focal and reference simulees were equal. For instance, when averaging across impact

conditions for a 60-item test, the mean Type I error rate for unbalanced conditions

was lower by 19% and 22% for NER rates of 14.5% and 22%, respectively. In addi-

tion, Type I error rates were greater for conditions in which subgroup impact was

present (i.e., the focal subgroup possessed an average ability that was 0.5 SDs lower
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than the reference subgroup). As an example, across focal subgroup percentages and

test length conditions, average Type I error rates ranged from 96% to 98% for impact

conditions, while they were as low as 40% to 60% under no impact. Taken together,

Figure 1 clearly shows that when examining the interactions between sample balance

and group impact for NER rates ranging from 7% to 22%, the lowest Type I error

Table 1. Results of Regressing Measurement Invariance Type I Error on Study Factors.

Predictor Estimate SE

Intercept 29.77*** 0.46
Test Length 0.21* 0.09
Group Impact 4.08*** 0.50
Ability Relationship 20.11 0.09
Focal Percent 2.40*** 0.53
NER Rate 93.65*** 5.02
NER Rate 3 Group Impact 258.79*** 5.21
NER Rate 3 Focal Percent 228.33*** 5.67
Group Impact 3 Focal Percent 22.19*** 0.62
NER Rate 3 Group Impact 3 Focal Percent 18.01** 5.98

Note. A logistic regression analysis was conducted for the Type I error dependent variable (N = 4,800).

Estimates are on a logit scale. NER = noneffortful responding.
*p \ .05. ** p \ .01. *** p \ .0001.

Figure 1. Measurement invariance Type I error rates.
Note. Type I error rates shown are aggregated across relationship with ability conditions.
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rates were observed for conditions in which there was an unbalanced sample with no

impact, while the highest rates occurred for conditions with a balanced sample and

group impact (see Appendix C of online Supplemental Material for descriptive

results).

Latent Mean Type I Error and Bias When Attaining Full Scalar Invariance

Table 2 presents the Type I error rates and bias for estimated latent mean subgroup

differences. Results are only presented for replications that attained full scalar invar-

iance (allowing for direct mean comparisons) when the subgroups differed in NER

by 2%, 4.5%, and 7% (NER rates of 14.5% and 22% were excluded due to their high

Type I errors). Across these conditions, this led to the inclusion of between 85% and

93% of replications for a NER rate of 7% (dependent on test length) and 100% of

replications for NER rates of 2% and 4.5%.

Across test length, group impact, and NER–ability relationship conditions, Type I

errors increased as the differential NER rate between subgroups increased, with error

rates ranging from 6% to 100% (Table 2). However, as is shown in Table 3, the asso-

ciation between Type I error and NER rate was moderated by both test length and

the NER–ability relationship. Concerning the former moderator, higher Type I error

rates of latent mean subgroup differences were observed for the longer of the two test

length conditions. For instance, aggregating across group impact and NER–ability

relationship conditions, Type I error was greater for the 60-item condition by 5%,

13%, and 5% for NER rates of 2%, 4.5%, and 7%, respectively; though, this result

may be associated with the greater statistical power obtained in the longer test

Table 3. Results of Regressing Latent Mean Difference Type I Error on Study Factors.

Predictor Estimate SE

Intercept 0.52*** 0.02
No. items 20.03 0.02
Group Impact 20.10*** 0.01
Ability Relationship 0.19*** 0.02
Focal Percent 0.03* 0.02
NER Rate: 4.5% 20.38*** 0.03
NER Rate: 7% 20.22** 0.03
No. items 3 NER Rate: 4.5% 0.17*** 0.03
No. items 3 NER Rate: 7% 0.18*** 0.03
Ability Relationship 3 NER Rate: 4.5% 20.01 0.03
Ability Relationship 3 NER Rate: 7% 20.11*** 0.03

aDue to the extensive number of replications that failed to attain full scalar invariance, the 14.5% and 22%

NER rate conditions were excluded. Estimates are on a logit scale. NER = noneffortful responding.
*p \ .05. ** p \ .01. *** p \ .0001.
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condition (i.e., more statistically significant differences were observed because the

standards errors of the latent subgroup mean differences estimates were smaller).

This is supported by an examination of the bias results, which showed nearly identi-

cal magnitude of negative bias between test lengths.

Turning to the NER–ability relationship moderating effect, results demonstrated

that when simulees engaging in NER were predominately of lower ability a greater

degree of Type I errors was observed. As an example, for the unrelated NER–ability

condition, estimated latent mean differences across test lengths were found to be sta-

tistically different from their known values by 9%, 16%, and 74% for NER rates of

2%, 4.5%, and 7%, respectively. In comparison, for the same NER rates, when NER

was related to simulees’ underlying ability, Type I error rates increased to 24%, 36%

and 100%. Concerning the extent and direction of estimation distortion, the bias

results demonstrated that across conditions estimated latent mean differences were

always lower than the true difference; however, the degree of negative bias was con-

sistently smaller for the unrelated NER–ability condition. For instance, when NER

and ability were related, the average bias for NER rates of 2%, 4.5%, and 7% were

equal to 20.04, 20.05, and 20.19 SDs across test length and impact conditions,

which was two times larger than the values observed in the unrelated condition.

Applied Analysis

An applied analysis is included to examine how differential NER may influence

decisions around measurement invariance analyses in practice. To do this, data were

examined for examinees sampled from two countries (mirroring the simulation study

design) who were administered the PISA. Details of the methodology for this analy-

sis are described below.

Methodology
Sample. Data were sampled from examinees administered the PISA science domain

(more detail provided below) from the United Arab Emirates (UAE; n = 763) and

China (n = 452). These countries were selected as they provided some of the largest

sample sizes compared with all other countries and represented distinctive cultures

from the Middle East and Asia that have been shown to display differential levels of

test endurance (OECD, 2019). In each country, examinees were sampled (using a

matrix sampling design) from 5,000 nationally representative students attending 150

schools or more. Examinees were excluded if possessing: (a) a moderate to severe

permanent physical, cognitive, behavioral, or emotional disability that would not

allow them to participate in testing; (b) and/or limited proficiency in the assessment

language.

Measure. PISA is an international assessment measuring 15-year-old’s knowledge

and skills in reading, mathematics, and science. The focus of this study is on Form 18

of the 2018 administration of the science literacy (i.e., knowledge of science and of
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science-based technology) domain, which comprised item Clusters 1 and 6 (each

cluster was expected to take 30 minutes to complete). As response times were utilized

as a proxy of NER (more detailed is provided below), only the 30 keyed selected-

response option items were utilized, due to the limitations associated with current

methods to evaluate test-taking effort for items with open-ended response options

(see Wise, 2017).

Analysis. The analysis consisted of two distinctive activities. First, NER was identi-

fied via response times. Specifically, a response time threshold was established in

which any response provided in less time than the criterion was classified as a none-

ffortful response. Although there are multiple approaches to choosing a threshold (for

details, see Wise, 2017), this study adopted the same approach taken by Wise and

Kuhfeld (2020) in which any response provided in less than 30% of the sample’s

average response time for the given item of interest was deemed to be a noneffortful

response. Due to differences in reading load introduced by the separate testing lan-

guages employed for the Brazilian and Chinese samples, a criterion threshold for each

item was established separately by country. On identifying noneffortful responses, a

filtered data set was created in which noneffortful responses were treated as missing

based on the assumption that such responses are uninformative in reflecting an exam-

inee’s underlying science knowledge (see Wise & DeMars, 2006).

To examine the potential impact of noneffortful responses on inferences related to

measurement equivalence, nested invariance analyses were conducted separately for

unfiltered (including noneffortful responses) and filtered (treating noneffortful

responses as missing) data sets. These invariance analyses were conducted in the

exact manner described in the analysis subsection of the simulation study. Following

the recommendations of Kline (2005), the chi-square statistic, CFI, RMSEA, and

SRMR fit indices were reported. Adequate model fit was supported by meeting the

following criteria for at minimum two of the three fit indices: CFI � .90, RMSEA

� .06, and SRMR � .08 (Hu & Bentler, 1999). Similar to the simulation study, the

following criteria were used to evaluate the fit of nested models: DCFI \ 2.01,

DRMSEA \ .01, and DSRMR \ .015. If the fit of a constrained model was found to

exceed two of the three criteria, it was determined that the additional equalities spec-

ified led to significant model deterioration.

Results

Invariance analyses are first presented for the unfiltered data. The first step of this

analysis was to establish a baseline model by fitting each country’s data separately to

test for unidimensionality. Across both UAE (x2 = 501.34, df = 405, p = .001; CFI =

.988; RMSEA = .018; SRMR = .052) and Chinese samples (x2 = 426.68, df = 405, p

= .24; CFI = .991; RMSEA = .010; SRMR = .079), the unidimensional model was

found to provide adequate fit to the sample data. Next, configural invariance was

evaluated across countries based on the unidimensional model and found to be
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supported in the sample data based on CFI, RMSEA, and SRMR model fit statistics

(CFI and RMSEA; x2 = 974.68, df = 868, p = .007; CFI = .989; RMSEA = .014;

SRMR = .063), suggesting that the overall factor structure stipulated fit equally well

across UAE and Chinese examinees. However, constraining the factor loadings equal

across countries (x2 = 1527.85, df = 899, p \ .001; CFI = .937; RMSEA = .034;

SRMR = .090) led to significant model deterioration according to the DCFI (2.052),

DRMSEA (.020), and DSRMR (.027) indices. This result indicates that the magni-

tudes of the factor loadings across countries were not equivalent (i.e., the scale origin

differed by sample). As a consequence, there is a lack of evidence to support the

validity of making direct mean comparisons across UAE and Chinese samples on the

science assessment examined based on the unfiltered data.

Turning next to the invariance analyses based on filtered data, a comparison

between the two countries sampled demonstrated large differences in NERs.

Specifically, the percentage of noneffortful responses in the UAE data matrix was

approximately 20% compared with only 8% for the Chinese sample. Although, the

percentage of noneffortful responders (i.e., examinees engaging in at least one none-

ffortful response) was only 9% higher in the UAE sample (85% compared with 76%

in the Chinese sample), nearly 50% of Emirati examinees noneffortfully responded

on more than five of 31 items and 15% provided a disengaged response on 50% or

more of items. In comparison, almost 70% of Chinese noneffortful responders pro-

vided a disengaged response for 15% or less of items, while no examinees provided

noneffortful responses on 50% or more of items. Furthermore, the average number

of noneffortful responses per examinee was higher by 0.70 SDs for Emirati exami-

nees (M = 6.08; SD = 7.12) when compared with the Chinese (M = 2.32; SD = 2.39).

On filtering noneffortful responses, a unidimensional model was fit separately to

each country’s data to establish a baseline model. Across UAE (x2 = 472.40, df =

405, p = .01; CFI = .987; RMSEA = .015; SRMR = .063) and Chinese samples (x2 =

414.51, df = 405, p = .36; CFI = .994; RMSEA = .007; SRMR = .088), the data were

found to support a unidimensional factor structure. Fitting the multiple group config-

ural invariance model showed excellent fit to the sample data across the CFI,

RMSEA, and SRMR indices (x2 = 942.07, df = 868, p = .04; CFI = .989; RMSEA =

.012; SRMR = .073). Turning to the stricter metric invariance model, the analysis

showed significant model fit deterioration (x2 = 1281.98, df = 899, p \ .01; CFI =

.944; RMSEA = .027; SRMR = .092) across all three criteria (DCFI = 2.055;

DRMSEA = .015; DSRMR = .019).

This result has two implications. First, based on filtered data, there is no evidence

to support direct mean comparisons between Emirati and Chinese samples, given a

failure to attain metric invariance. Second, although the measurement invariance

inferences between the filtered and unfiltered data sets were similar, the results

demonstrated improved model fit at the metric invariance level when filtering none-

ffortful responses for two of the three indices (filtered—unfiltered; DCFI = 2.003;

DRMSEA= 2.005; DSRMR = 2.008).
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Discussion

The objective of this study was to examine the impact of differential NER on mea-

surement invariance analyses and latent mean subgroup comparisons. Overall,

results demonstrated that Type I errors of measurement invariance were found to

occur as differential NER rates between subgroups grew, with Type I errors

observed under certain conditions with as little as a 7% difference in NER, which

is well within the range observed in prior applied analyses (e.g., Goldhammer

et al., 2016; Rios & Guo, 2020). When invariance was incorrectly rejected, which

was observed for 26% of replications investigated, it was done consistently at the

metric invariance level, with no negative impacts on either configural or scalar

invariance. This finding indicates that NER significantly led to biased factor load-

ing estimates, which supports prior literature that has demonstrated that NER,

when ignored, typically leads to significant underestimation of item discrimination

(an equivalent of factor loadings in the IRT framework; e.g., Rios & Soland,

2020). Another potential cause for the incorrect rejection of measurement invar-

iance is that differential NER could be associated with misspecified correlated

errors, which have been shown to lead to Type I errors of metric invariance tests

(but not scalar invariance tests; see Joo & Kim, 2019).

The relationship between NER rate and Type I error was found to be moderated

by subgroup sample sizes and group impact. Concerning the former, when the sub-

groups were unbalanced (i.e., focal group simulees comprised 67% of the sample),

the percentage of Type I error was lower. One potential reason for the lower Type

I errors is that imbalanced subgroup sample sizes can mask violations of measure-

ment invariance (Yoon & Lai, 2018). In addition, across conditions, group impact

was associated with higher Type I error rates. Prior research conducted by Stark

et al. (2006) supports this finding, as these authors showed that when testing for

measurement invariance within a confirmatory factor analytic framework, Type I

errors can increase in the presence of group impact, particularly when sample

sizes are large (N = 1,000). This is likely due to differential stability of model

parameter estimates based on a shifting of the ability distribution, leading to less

available data for estimation. When this is coupled with differential NER, mea-

surement invariance model parameter estimates and Type I errors can be biased.

Taken together, findings from this study suggest that Type I error rates may be

quite high (as high as 100%) when testing for measurement invariance in the pres-

ence of differential NER between subgroups that are unbalanced in sample size

and differ in their underlying mean abilities; however, this is largely dependent on

the NER rate. As demonstrated via data from PISA and other operational testing

contexts, subgroups in practice can differ in NER by as much as 22%, which at

minimum can lead to model fit deterioration, and potentially incorrect measure-

ment invariance inferences under the certain contexts.

Although minimal Type I errors were observed for NER rates less than or equal

to 7% when testing for measurement invariance, differential NER still led to bias in
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estimates of latent mean differences. Specifically, the relationship between latent

mean difference Type I error (and bias) and NER rate was moderated by whether

simulees engaging in NER were predominately of lower ability or were representa-

tive of the entire ability continuum. As expected, greater Type I error and bias were

observed for the former condition, due to the tendency of overestimating group abil-

ity when NER is related to the underlying ability of examinees (see Rios & Soland,

2020). As a consequence, for a NER rate of 7%, Type I error rates reached 100%,

while latent mean differences were biased by an average of 20.18 SDs. To put this

magnitude into context, the observed degree of negative bias is nearly equivalent to

two-thirds a year reduction in the average annual growth in science for K-12 students

in the United States (0.29 SDs; Bloom et al., 2008). Such a degree of bias has the

potential to negatively affect the validity of inferences around subgroup inferences

concerning achievement gains (e.g., Wise & DeMars, 2010), treatment effects (e.g.,

Osborne & Blanchard, 2011), and international comparisons (e.g., Debeer et al.,

2014), to name a few. Taken together, findings from this study suggest that even

when differential NER does not lead to Type I errors of measurement invariance,

under certain conditions, its presence is still linked to making potentially incorrect

inferences concerning subgroup comparisons given the tendency of NER to mask

true differences.

Limitations and Directions for Future Research

A number of study limitations should be noted. First, although the simulation design

in this study included factors that considered underlying sample size, ability, and

NER rate differences between subgroups, additional variables should be explored in

future research. As an example, across simulation conditions, the number of sub-

groups in the invariance analyses was constrained to two. Although this reflects the

most common number of subgroups included in most simulation research on mea-

surement invariance topics, given the limited research, it is unclear what the influ-

ence on fit indices and measurement invariance inferences would be if increasing the

number of subgroups (Putnick & Bornstein, 2016). Clearly, more research is needed

in this area, and as a result, readers should limit the generalizability of findings to

the two-group context. Similarly, while this study assumed normal ability distribu-

tions, prior research has found that skewed latent trait distributions can influence

measurement invariance testing (Finch et al., 2018). As such, future research should

investigate the dependent variables examined in this study under conditions with

skewed ability distributions and group impact.

Second, there is a need to research the practical effect of differential NER on other

measurement contexts. One area with serious potential consequences is score linking.

Though Mittelhaëuser et al. (2015) examined the role of differential test-taking effort

for linking under external anchor and pretest designs, many international testing
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programs, such as PISA, use an internal anchor design with IRT concurrent calibra-

tion linking. In such an approach, item parameters are tested for invariance across

forms (or countries) to identify an internal anchor for which to link scores. However,

as countries in international testing contexts, such as PISA, have been found to show

large variation in test-taking effort (e.g., Debeer et al., 2014), it would be of interest

to examine how differential NER could affect the accuracy of identifying anchor

items, and ultimately, bias in linking coefficients.

Recommendations for Practice

As the presence of differential NER can negatively influence both evaluations of

scale property equivalence and latent mean comparisons across subgroups, it is vital

that practitioners document evidence that subgroups put forth equal effort when dis-

aggregating data. To provide this evidence, a number of procedures have been pro-

posed that rely on survey data, item responses, and/or the availability of response

time data (for a review, see Wise & Kong, 2005). Furthermore, a number of filtering

procedures and IRT models have been developed to improve ability estimation in the

presence of NER (e.g., Liu et al., 2019; Rios et al., 2017; Rios & Soland, 2020; Wise

& Kingsbury, 2016). Although further research is needed to continually improve the

accuracy of both identification and ability estimation procedures for NER, many

options are readily available for practitioners to document and attempt to improve

ability estimation in the presence of differential NER.

Beyond documenting this information post hoc, practitioners can attempt to

increase test-taking effort either before and/or during test administration to mitigate

NER. To this end, Rios (in press) has documented several interventions that research-

ers have developed to improve test-taking effort, which include increasing test rele-

vance, providing feedback, altering test design and administration procedures, and

offering contingency-based external incentives. Although Rios found the latter two

intervention types to be most successful on average, there has been minimal research

that has investigated whether the utility of interventions is equivalent across subpopu-

lations. Clearly, further research is needed on this topic; however, practitioners can

still attempt to mitigate NER by addressing low test-taking effort via some of these

interventions.

Therefore, it is recommended that prior to evaluating measurement invariance and

making subgroup comparisons from low-stakes testing contexts, practitioners should

(a) employ interventions to improve test-taking effort, (b) document potential differ-

ential NER, and (c) filter (i.e., remove) or model NERs to improve item and ability

parameter estimation accuracy. A failure to do so may lead to incorrect inferences

concerning scale property equivalence and subgroup mean comparisons when differ-

ential NER is present.
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Notes

1. This research has primarily relied on the use of response times to identify one type of

noneffortful responding referred to as rapid guessing (i.e., a respondent provides a

response in so little time that they would be able to read the item stem and response

options; for more detail, the reader is referred to Wise, 2017).

2. The number of noneffortful responses in each of the five bins for a within-simulee NER

rate of 25% was 1, 2, 3, 4, and 5, while for 75% it was 6, 6, 9, 12, and 12. It is acknowl-

edged that there is a multitude of ways to disperse noneffortful responses across the test,

however, the approach taken was meant to reflect a progressive decrease in an exami-

nee’s test-taking effort.

3. One reviewer suggested employing maximum likelihood estimation with robust standard

errors. Although this estimation procedure has been found to perform similarly to the

WLMSV (weighted least squares with mean and variance adjustment) estimator under

certain conditions (Bandalos, 2014), it was not employed in this study due to its unavail-

ability in the lavaan R package at the time of this writing.

4. It should be noted that the baseline data captured latent mean differences under com-

pletely effortful responding in both subgroups, while for the estimated data the latent

mean differences were captured based on the inclusion of NER in both subgroups,

including the reference subgroup (0.5%). As such, it is expected that the degree of bias

is underestimated; however, the degree of underestimation is likely negligible.
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