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Technological advances in cancer immunity: from
immunogenomics to single-cell analysis and artificial
intelligence
Ying Xu1,2, Guan-Hua Su1,2, Ding Ma1,2, Yi Xiao1,2✉, Zhi-Ming Shao1,2,3✉ and Yi-Zhou Jiang1,2✉

Immunotherapies play critical roles in cancer treatment. However, given that only a few patients respond to immune checkpoint
blockades and other immunotherapeutic strategies, more novel technologies are needed to decipher the complicated interplay
between tumor cells and the components of the tumor immune microenvironment (TIME). Tumor immunomics refers to the
integrated study of the TIME using immunogenomics, immunoproteomics, immune-bioinformatics, and other multi-omics data
reflecting the immune states of tumors, which has relied on the rapid development of next-generation sequencing. High-
throughput genomic and transcriptomic data may be utilized for calculating the abundance of immune cells and predicting tumor
antigens, referring to immunogenomics. However, as bulk sequencing represents the average characteristics of a heterogeneous
cell population, it fails to distinguish distinct cell subtypes. Single-cell-based technologies enable better dissection of the TIME
through precise immune cell subpopulation and spatial architecture investigations. In addition, radiomics and digital pathology-
based deep learning models largely contribute to research on cancer immunity. These artificial intelligence technologies have
performed well in predicting response to immunotherapy, with profound significance in cancer therapy. In this review, we briefly
summarize conventional and state-of-the-art technologies in the field of immunogenomics, single-cell and artificial intelligence,
and present prospects for future research.
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INTRODUCTION
Tumor cells exist with nearby cells in sophisticated community,
which strongly affects how tumor cells grow, behave and
communicate with other cells.1,2 Among these cells, immune cells
are critical players, and many studies have proven that crosstalk
between tumor cells and immune cells is bidirectional. Indeed,
immune cells both promote and inhibit carcinogenesis, tumor
progression, metastasis, and recurrence. Therefore, here we focus
on the tumor immune microenvironment (TIME).2,3 And accord-
ingly, promoting the transition from a pro-tumor to an anti-tumor
effect to maximize the efficacy of anti-tumor immunity is a main
goal of immunotherapy.4,5 Recent tumor immunotherapy strate-
gies, such as immune checkpoint blockades (ICBs), cancer
vaccines, and adoptive cell transfer (ACT) therapy, have shown
unprecedented clinical efficacy.6–12 Nevertheless, in the face of
therapeutic resistance and adverse effects, among others, their
applications are hindered by the incomplete understanding of
tumor immunity.
Despite achieving great advancements in exploring the

mechanism of tumor-immune interplay, traditional techniques,
such as western blotting (WB), coimmunoprecipitation (Co-IP), and
real-time quantitative polymerase chain reaction (RT-qPCR),
cannot provide a thorough landscape of the TIME. There is an
urgent need for novel methods to characterize tumor

immunological features in detail. Applying high-throughput
technologies, such as genomics, transcriptomics, proteomics,
epigenomics, cytomics, and informatics, to comprehensively
understand tumor immunity has emerged as a brand-new
discipline, i.e., tumor immunomics, providing novel insights for
researchers.13,14 Next-generation sequencing (NGS) technologies
greatly promote the development of immunogenomics, an
important branch of immunomics. Furthermore, single-cell
sequencing and artificial intelligence (AI) have ushered in a new
epoch of tumor immunity in recent years. Due to the tremendous
development of tumor immunology and bioinformatics, an
increasing number of technologies and potential clinical implica-
tions are a matter of great concern.
In this review, we discuss the technological advances and

clinical implications of immunomics in tumors to date, especially
in the field of immunogenomics, single-cell, and AI.

BRIEF INTRODUCTION TO THE TIME
Over the past years, knowledge of tumors has undergone
metamorphosis due to innumerous researchers’ efforts to achieve
progress against tumors. The definition of tumors has also evolved
from the mere aggregation of tumor cells to a complex organ-like
structure composed of tumor cells, immune cells, fibroblasts,
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vascular endothelial cells, and other stromal cells in commu-
nities.15–17 Encompassing all structures in the organ, such as
immune infiltration, vascular vessels, the extracellular matrix, etc.
the tumor surrounding, which is also called the tumor micro-
environment (TME), has been one of the hottest research topics in
oncology.18,19 With the development of tumor immunity, the
immune context of the TME, i.e., TIME, has been proven to play a
decisive role in carcinogenesis, tumor progression, metastasis,
recurrence, and potential therapeutic targets making it being the
focus of our review.20,21

There are two main categories for the compositions of the TIME,
i.e., immune cells and secreted factors, such as cytokines,
chemokines, and growth factors. Regarding the former, the TIME
contains extremely diverse subsets of immune cells, including T
lymphocytes, B lymphocytes, natural killer (NK) cells, macro-
phages, dendritic cells (DCs), granulocytes, and myeloid-derived
suppressor cells (MDSCs), among others.22,23 Normally, T cells, B
cells, NK cells, and macrophages help inhibit tumor growth, while
MDSCs and regulatory T cells (Tregs) tend to suppress anti-tumor
immunity.23,24 However, available studies have confirmed that
given the complex interactions with tumor cells, the specific role
of immune cells could dynamically change and even become the
exact opposite. For example, the anti-tumor function of CD8+

T cells may be inhibited via the exhaustion of T cells, and after
CTLA-4 blockade in glycolysis-low tumors, the functional destabi-
lization of Treg cells towards interferon-γ-producing cells may
promote anti-tumor immunity.25

In summary, innumerable immune cell types and even different
functional states of specific immune cell types may produce the
opposite effect on anti-tumor immunity (Fig. 1). Thus, it is not wise
to explore tumor immunity in a reductionistic way. With the aid of
state-of-art bioinformatics technologies, to a great extent,

researchers could characterize tumor immunological features
systematically and provide more information to enhance our
understanding of tumor immunity.

IMMUNOMICS TECHNOLOGIES IN THE NGS ERA—
IMMUNOGENOMICS
Over the last two decades, NGS, including whole-genome
sequencing (WGS), whole-exome sequencing (WES), and RNA
sequencing (RNA-seq), has been successfully developed and
applied to obtain whole-genome information in humans. Com-
pared to Sanger sequencing, NGS generates high-throughput
genomic and transcriptomic data, laying a foundation for research
investigating the multi-step immune response. Studies utilizing
immunogenomics in the NGS era not only provide a global view of
the immune cell compositions of the TIME through bioinformatic
algorithms but also identify immunogenic proteins by abnormal
peptide prediction, human leukocyte antigen (HLA) typing, and
major histocompatibility complex (MHC)-peptide binding affinity
prediction.

Quantification of immune cells in the TIME
The TIME comprises various immunocytes. For the quantification
of tumor immune cell components in the TIME, conventional
methods, such as flow cytometry and immunohistochemistry
(IHC), are impractical for massive profiling because of their high
cost and low tissue availability. With the rapid development of
NGS, in silico analysis has become an alternative approach to
address this issue. Considering the high cellular heterogeneity,
gene expression profiles are very different among the different
immune cell types and could represent immune cell types to a
certain extent. Thus, we are able to estimate the abundance of

Fig. 1 Components and interactions of the tumor immune microenvironment. a Cellular compositions of the tumor immune
microenvironment. b Brief illustration of cell–cell interaction in anti-tumor immunity. cDC conventional dendritic cells, CTL cytotoxic T
lymphocyte, Gzm granzyme, IFN interferon, MHC major histocompatibility complex, NK cells natural killer cells, pDC plasmacytoid dendritic
cells, PFN perforin, TCR T cell receptor, Th T helper cell, TNF tumor necrosis factor

Technological advances in cancer immunity: from immunogenomics to. . .
Xu et al.

2

Signal Transduction and Targeted Therapy           (2021) 6:312 



dozens of immune cell types through NGS data, which have also
been validated as reliable. The sources of these analyses are
mainly DNA and RNA sequencing, especially the latter. Regarding
RNA-seq data, which we mainly discuss, the rationales of the
computational methods are mainly classified into gene set
enrichment analysis (GSEA) and deconvolution26 (Tables 1–2).
In general, the representative GSEA-based algorithms include

ESTIMATE, xCell, and MCP-counter. Based on the gene signature
and single sample GSEA (ssGSEA), the ESTIMATE algorithm
provides an immune score and a stromal score to represent the
proportion and distribution of immune cells and stromal cells.27

The ESTIMATE score can differentiate the tumor and stomal
components but cannot distinguish specific immune cell types.
xCell is another ssGSEA-based method that obtains gene sets to
characterize distinct cell types from multiple RNA-seq and
microarray-based data sources, increasing the robustness to avoid
noise disturbances. Compared with ESTIMATE, xCell uses a
spillover compensation correction to better distinguish among
cell types with close relationships and high similarity.28 MCP-
counter generates an abundance score for each TIME cell
population (including not only immune cells but also endothelial
cells and fibroblasts) in every single sample based on the
geometric mean of marker gene expression levels.29 For the sake
of accuracy, a common characteristic of GSEA-based methods is
the need for a specific gene set for each immunocyte subpopula-
tion of interest.
The deconvolution of cell components is a reverse process of

the convolution of cell subtypes in bulk tissues based on gene
expression signatures. The deconvolution-based tools include
DeconRNASeq, PERT, CIBERSORT, TIMER, EPIC, quanTIseq, and
deconf.26 CIBERSORT, which is among the most popular algo-
rithms based on deconvolution, utilizes linear support vector
regression and a gene expression signature matrix to characterize
immune infiltrating components.30 QuanTIseq is designed speci-
fically for RNA-seq data, and the analysis pipeline comprises raw
RNA-seq data preprocessing, gene expression quantification, and
constrained least squares regression-based deconvolution.
Remarkably, using this method, integrated image information
from hematoxylin-eosin (H&E)-, IHC-, and immunofluorescence
(IF)-stained slides is utilized to complement gene expression
deconvolution, enabling immune profiling of the absolute cell
fraction and unique immune cell densities.31 Recently, more novel
deconvolution-based algorithms have been developed. For
example, FARDEEP focuses on significant issue such that the
deconvolution accuracy is influenced by outlier contamination of
gene expression, which has not been addressed by previous
algorithms.32 FARDEEP relies on the least trimmed square (LTS) to
construct a robust model suitable for datasets with heavy-tailed
noise. MuSiC considers cross-subject and cross-cell consistency
and leverages cross-subject single-cell RNA sequencing (scRNA-
seq) to generate cell type-specific gene sets for the deconvolution
analysis of bulk RNA-seq data.33 However, the sensitivity and
specificity of the newly developed algorithms mentioned above
require more validation. Currently, ESTIMATE, CIBERSORT, and
MCP-counter remain the most commonly used methods for
determining immune components, and CIBERSORT has recently
been updated to CIBERSORTx to fit single-cell sequencing data.34

These immunogenomics technologies are widely used to
elaborate the global immune infiltration characteristics of specific
cancer types. In recent multiomics studies, xCell was applied to
portray the immune landscape of clear cell renal cell carcinoma,
lung adenocarcinoma, and head and neck squamous cell
carcinoma.35–37 Remarkably, an immune landscape was inter-
preted with 10000 tumors of 33 cancer types compiled in TCGA.
Thorsson and colleagues divided the cancer-immune status into
six distinct clusters, and CIBERSORT was used to dissect the
composition of immune cells in each immune subtype.38 In
addition, these algorithms were applied to compare the TIME

composition of two or more groups of patients with distinct
pathological features, therapeutic strategies, and treatment
responses. Using CIBERSORT, Gil Del Alcazar et al.39 uncovered
the difference in the infiltrating T cell subpopulation between
breast ductal carcinoma in situ (DCIS) and breast invasive ductal
carcinomas (IDCs). CD8+ T cells were enriched in DCIS, whereas
Tregs and CD4+ T helper cells were more infiltrated in IDC.
Wheeler et al. analyzed the components of the TME of
hepatocellular carcinoma (HCC). These authors found that
compared to normal adjacent tissue, HCC tissue was more likely
to accommodate immunosuppressive cells. This research por-
trayed an immune evasion microenvironment and supported
evidence suggesting that ICBs might be feasible in HCC patients
with moderate to high levels of immune infiltration.40

Although RNA-seq data have been widely used as input
resources for deconvolution, the instability of RNA molecules
affects the accuracy of results obtained under chemical agent
fixation. DNA molecules are more stable, and DNA methylation is
highly cell-type specific, rendering DNA methylation a potential
surrogate in TIME deconvolution. Cell composition dissection
based on DNA methylation from blood samples has been
reported, such as methylCIBERSORT and MethylResolver. The
accuracy of methylCIBERSORT has been validated in immune
infiltration analysis, and its clinical implications in both head and
neck squamous cell carcinoma and pediatric central nervous
system tumors have been presented.41 By adopting an LTS
regression as described above using the FARDEEP algorithm,
MethylResolver fabricates a methylation signature compendium of
the leukocyte population and accomplishes relative quantification
of immune infiltrates and evaluation of tumor purity.42

Notably, the combination of NGS data and bioinformatics
algorithms could roughly differentiate immune cell types. Never-
theless, immune cells in the TIME comprise numerous subtypes
with different properties and biological functions. Consequently,
single-cell technologies should be developed to identify these cell
subtypes at a higher resolution.

Identification of tumor antigens
Genomic-level mutations, transcriptomic-level mutations, and
proteomic-level alternations can cause the expression of abnormal
proteins, i.e., tumor antigens, which can be recognized by immune
cells and trigger the anti-tumor immune response.43–45 Among
these antigens, viral antigens, cancer germline antigens, and
neoantigens (tumor-specific antigens resulting from somatic DNA
alterations) have relatively high tumoral specificity and, thus, have
become the main tumor vaccine targets.7,45–49 Consequently, we
mainly discuss the identification of these tumor-specific antigens,
particularly neoantigens. According to the process of antigen
recognition, immunogenomics technologies perform in silico
analysis to predict abnormal peptides, perform HLA typing and
predict MHC-peptide binding affinity, which is greatly helpful and
necessary for the identification of tumor antigens (Table 1).

Prediction of abnormal peptides from WES, WGS, or RNA-seq
data. Somatic DNA mutations, including single-nucleotide var-
iants (SNVs) and small insertions and deletions (INDELs), account
for the major sources of abnormal proteins.45 Given recent
systematic reviews concerning variant detection tools, we provide
a summary of several standard tools and briefly discuss future
perspectives.50

Currently, Genome Analysis Toolkit (GATK) is the industry
standard used to identify SNVs and INDELs by analyzing WES,
WGS, and RNA-seq data. Its scope is also expanding to cover copy
number variations (CNVs) and structural variations (SVs).50,51 In the
case of variants with a low allele frequency (normally allelic
fractions as low as 0.1 and below), LoFreq and MuTect have higher
sensitivities with a similar specificity and may be a better choice;
the latter, which applies a Bayesian classifier, has been used more
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widely.52–54 In contrast, VarScan2 and SomaticSniper require
higher allele fractions to guarantee sufficiently high sensitiv-
ity.55–57 Regarding liquid tumor analysis, Strelka2 introduces a
normal sample contamination model to improve the variant
calling accuracy and functions fairly well in the computing
cost.58,59 In addition, VarScan, FreeBayes, Samtools, Vardict, and
EBCall are valuable for identifying tumor antigens.55,60–62

However, regarding false positivity or false negativity, none of
these tools is satisfactory in all aspects. Therefore, the scientific
community has not established gold standards for calling
variants.63,64 How to optimize the present tools and design a
versatile and efficient variant caller to better discriminate true
variants from sequencing errors is worthy of further research.65 By
integrating VarScan, GATK, Pindel, BreakDancer, Strelka, and
Genome STRiP in a large web interface, the Genome Variant
Investigation Platform (GenomeVIP) provides a new method and
has been used in large data projects, such as TCGA PanCanAtlas,
to provide high-confidence annotated somatic, germline, and de
novo variants of potential biological significance.66,67 Furthermore,
it is advisable to select more than two tools to predict abnormal
proteins in practice.

HLA typing. Abnormal peptides need to bind HLA to assist
recognition by the T cell receptor (TCR) to elicit an immune
response. HLA genes are the most polymorphic genes in the
human genome and comprise three major gene loci for class I (A,
B, and C) and three for class II (DP, DQ, and DR).68–71 Different
HLAs have distinct binding affinities to abnormal proteins. Thus,
crucial for antigen recognition, predicting HLA typing is essential
for the identification of tumor antigens.70,72

After a long development period, limited by their efficiency and

reliability, serological and cellular typing methods have been
gradually replaced by DNA typing methods.73,74 Although real-
time polymerase chain reaction (PCR) and sequencing-based
methods have been the standard HLA typing methods, their low
throughput limits their wide application.75 In particular, the tools
used for HLA typing in the era of NGS have dramatically changed
the field. HLA-miner and Seq2HLA are two of the early tools used
for HLA typing from NGS data, massively circumventing the time
and cost at that time.70,76 Subsequently, great efforts have been
achieved to improve HLA typing performance in terms of both
accuracy and resolution. PHLAT, HLAreporter, SNP2HLA, HLA-HD,
Optitype and HLA-VBSeq perform fairly well at a four-digit, six-
digit, and eight-digit resolution in different cancers.77–83 Notably,
among these tools, Polysolver enables high-precision HLA typing
and is among the currently accepted standard tools using low-
coverage WES data, particularly when applied to cancer-
associated somatic mutations.82 Graph-guided genotyping tools
used to perform highly classical HLA typing, such as Kourami and
HISAT2, provide a new perspective to improve the efficacy of
typing.84,85 However, considering the complexity of the HLA types,
we still expect independent benchmarking studies and more tools
to be presented.

Prediction of antigen-MHC binding affinity. In addition to identify-
ing abnormal peptides and HLA typing, antigen-MHC binding
affinity is the next focus of tumor antigen prediction.86,87 Human
MHC molecules are divided into the following three subtypes:
Class I, Class II, and Class III. Class I MHC molecules (MHC-Is) are
expressed by all nucleated cells and present intracellular peptides,
such as viral and tumor antigens, to CD8+ T cells to elicit an
immune response. In addition, expressed on professional antigen-

Table 2. Strengths and weaknesses of immune cells quantification algorithms

Algorithm Category Strengths Weakness

ESTIMATE G Available for tumor purity and global immune status Only a stromal score and an immune score are output. The
information is limited27

xCell G Available for inference of 64 immune and stromal cell The definitions of the cell subtypes are sometimes not clear
Accuracy of prediction of some cell types is uncertain26

MCP-counter G Available for inference of fibroblasts and endothelial cells
Available for an absolute quantification of specific cell
population across samples
Available for between-sample comparison

Relatively less cell types included in the inference (8 types)

CIBERSORT D Available for inference of 22 immune cell subtypes
Available for between-cell-type comparison

Relative proportion of distinct cell types in a single sample
Trained on microarray rather than RNA-seq data30

EPIC D Available for inference of fibroblasts, endothelial cells, and
uncharacterized cells
Enabling inference of tumor purity from uncharacterized cell
proportion
Available for both between-sample and between-cell-type
comparison

Only 6 immune cell types available
Not available for discrimination of cell types with
transcriptional similarity

quanTIseq D Available for inference of 10 immune cell subtypes
Available for both between-sample and between-cell-type
comparison

Not available for quantification of stromal cells (e.g., cancer-
associated fibroblasts)

TIMER D A user-friendly analytic web tool for cancer immunology
research

Only 6 immune cell types and no stromal cells available
Relative proportion of distinct cell types in a single sample

CIBERSORTx D Adopting a more convincing gene expression reference
from single-cell sequencing

Suitability for some tumor types needs further validation

MuSiC D Adopting a more convincing gene expression reference
from single-cell sequencing
Available for tissues with intensively correlated cell types

Suitability for some tumor types needs further validation
Not available for TPM data as input33

FARDEEP D A robust machine learning tool eliminating outliers in the
dataset
Suitable for deconvolution of noisy datasets

Different signature matrix should be adopted according to
the type of gene expression data32

G GSEA-based method, D deconvolution method
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processing cells (APCs), such as DCs, macrophages, and B cells,
class II MHC molecules (MHC-II) present exogenous peptides to
activate CD4+ T cells.88,89 Despite substantial research on MHC-I
and tumor immunotherapy, recent studies have shown that
tumor-specific MHC-II molecules are also associated with favorable
outcomes in patients with cancer.90 MHC IIIs are not markers on
the cell surface and are not discussed here.
Compared with MHC-II molecules, MHC-I molecules bind shorter

peptides between 8 and 11 amino acids.50 Based on artificial neural
network (ANN) training methods and position-specific scoring
matrix (PSSM), many peptide-MHC-I (pMHC-I) binding affinity
prediction tools, such as the currently widely used tools, NetMHC
and NetMHCpan, have been developed.91–93 Moreover, even
without ANN training, the PSSM-based software called PSSMHCpan
could accurately and efficiently predict the pMHC-I binding affinity.
After analyzing a 10-fold cross-validation of a training database
containing 87 HLA alleles and another independent dataset, Li
et al. claimed that PSSMHCpan may be superior to other currently
available methods; however, this finding requires verification in
further research.94 Currently, the industry standard for predicting
the pMHC-I binding affinity is NetMHCpan-4.1, though the number
of candidate tumor antigens that could be identified by specific T
lymphocytes remains low.95–97 Using mass spectrometry datasets
for model selection, MHCflurry provides another choice in addition
to tools based on ANNs, which have been validated to show
competitive accuracy.98 With the development of AI, an increasing
number of tools based on deep neural networks are also promising
for improving the current situation, which we would discuss in the
following section of the review.
The process of the formation of peptide-MHC-II (pMHC-II) is

similar to that of pMHC-I, but it usually binds longer peptides up to
30 amino acids. Furthermore, the impressive diversity of the length
of MHC-II-binding peptides and the “openness” of the peptide-
binding groove of HLA class II, which permits the binding of a
highly degenerate set of peptides, both hinder the development of
competitive predictive tools.99,100 Therefore, the prediction of
pMHC-II affinity is more challenging, and naturally, the number of
available pMHC-II binding affinity prediction methods is far less
than pMHC-I, such as CONSENSUS, ProPred, MixMHC2pred,
MHCnuggets, NetMHCII, and NetMHCIIpan.101–105 As frequent
updates, NetMHCIIpan may be the priority for researchers
depending on its competitive performance. Nielsen et al. used
the epitope dataset described by Reynisson et al.106 for
independent validation and found that NetMHCIIpan-4.0 is much
better than the other tools. However, research gaps still persist in
the prediction of antigen-MHC II affinity, representing a pause in
the development of the prediction of tumor antigens.
Although varying in principles, intended uses, and input and

output formats, these tools are not perfect in all aspects, such as
sensitivity, accuracy, and availability. Much work is needed to
optimize the current tools to better predict tumor antigens to
assist with follow-up vaccine design.
Considering the above information, immunogenomics technol-

ogies in the NGS era allow researchers to take full advantage of
and comprehensively understand sequencing data. On the one
hand, considering that conventional tools used to calculate the
content of immune cells, such as flow cytometry and IHC, could
only quantify a few cellular subtypes, immunogenomics technol-
ogies represented by CIBERSORT and ESTIMATE could simulta-
neously quantity dozens of immune cell types at a relatively lower
cost with considerable convenience. On the other hand, with the
development of the abovementioned sequencing technology and
bioinformatic algorithms, researchers could extract maximal mean-
ing from sequencing data to correlate genetic abnormalities with
anti-tumor immunity to make predictions regarding tumor
antigens, enabling the design of tumor vaccines.107 Thus, in the
NGS era, the technological advances of immunogenomics greatly
promote the development of tumor immunity research.

IMMUNOMICS IN THE SINGLE-CELL ERA
Although studies using NGS technologies to investigate tumor
immunity have greatly promoted the development of oncology,
the deficiencies of bulk sequencing have gradually emerged.
Performed with RNA (or DNA) extracted from tissue or large cell
populations, bulk sequencing may result in a dilution of the signal
below the lower detection limit and average out individual cellular
expression patterns, masking the reaction of a single cell.108–111 In
addition to intra-tumoral heterogeneity (ITH) and the dramatic
diversity of immune cells, numerous significant biological
phenomena may be obscured by bulk sequencing in the
exploration of tumor immunity.
Until recently, technological breakthroughs in single-cell-

related approaches revolutionized our understanding of tumor
immunity and transitioned the research level from the bulk level
to the single-cell level.112–115 In addition to immune cells and
tumor cells in the TIME, all cells in the TIME are highly
heterogeneous and have unique gene expression profiles and
membrane protein expression. We can utilize sequencing
technologies and antigen-antibody combination reactions to
reflect the features of a single cell. Here, we mainly discuss several
technologies applied to the tumor immune cell repertoire and
TIME spatial architecture20,116–118 (Table 3).

Single-cell-based tumor immune cell repertoire
As a highly complex whole, the biological behaviors of tumors,
including carcinogenesis, tumor progression, metastasis, recur-
rence, and response to therapy, all depend on the crosstalk
between tumor cells and the surrounding cells in the TIME,
especially the immune stromal elements.22,119 Therefore, char-
acterizing the TIME and determining the cellular components
could be highly beneficial for tumor immunity studies.

Protein-based single-cell analysis—THE KNOWN UNKNOWN
Polychromatic flow cytometry: Based on the physical character-
istics and proteins expressed on the cell surface or within cells that
are relatively unique to each cell type, flow cytometry could
identify and quantify various cell types utilizing fluorescent dye-
conjugated antibodies.120 Flow cytometry has emerged as a core
tool in medical research, particularly regarding tumor immune
cells.121 The power of multiparametric analysis to discriminate
functionally and physically distinct subsets of immune cells has
driven flow cytometry to the routinely used 8-parameter flow
cytometer. In addition, coupled with technological advances, the
design, and implementation of instruments that could measure
more parameters (including fluorescent colors and physical
parameters) are and could be realized, such as 30- and 50-
parameter flow cytometers.122,123 The more parameters that can
be measured by flow cytometry, the more information that can be
attained from the same sample for further advanced analysis (this
also enhances the difficulty of analysis and decreases the
accuracy, which we would discuss below). Technological devel-
opment is confined to not only improving the number of
measurable parameters but also better analyzing the existing
data. For example, more computational tools for preprocessing,
population identification (e.g., FlowJo, FCS Express, WinMDI, and
CytoPaint), clustering (e.g., DensVM, kmeans, and mclust),
visualization (e.g., flowViz, ggCyto, RchyOptimyx, SPADE, Citrus,
and t-stochastic neighbor embedding (t-SNE)), and sorting (e.g.,
fluorescence-activated cell sorting (FACS)) are available.124–126

However, when deciding how to optimize flow cytometry,
researchers are often faced with the following dilemma: more
measurable parameters with a lower accuracy or a higher accuracy
with limited measurable parameters, particularly due to the
overlap between the emission spectra of fluorochromes. Thus, to
some extent, these disadvantages limit the application and further
development of flow cytometry.
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Cytometry by time-of-flight: Mass cytometry, which is a recent
innovation in this field and is also termed cytometry by time-of-
flight (CyTOF), combines flow cytometry with mass spectrometry
and bridges the gap.122,127 Compared with traditional flow
cytometry, mass cytometry labels antibodies with metal isotopes
instead of fluorophores and then quantifies the signal using a
time-of-flight detector, which detects at least 40 parameters and
avoids the problem of spectral overlap. CyTOF has been validated
as an accurate approach for performing high-dimensional
analyses of tumor tissues for exploratory immune profiling and
biomarker discovery.128,129 Chevrier et al.130 applied mass
cytometry to successfully depict an in-depth atlas of the TIME in
clear renal cell carcinoma and correlated immune compositions
with clinical features, which has great clinical significance and
could guide follow-up studies. Another interesting study

performed by Friebel et al. creatively showed that the immune
response to cancer in the brain is shaped by the cancer type.
Using CyTOF, the TIME of patients with primary brain tumors and
brain metastases could be mapped and differentiated according
to the heterogeneous composition of tissue-resident and invading
immune cells, facilitating the proper design of follow-up targeted
immunotherapy strategies.131

Although mass cytometry theoretically allows us to detect at
most 100 parameters per cell, the processing speed and
throughput are limited by ion flight. After being atomized and
ionized, cells are completely destroyed during preprocessing,
rendering follow-up cell sorting applications infeasible.122 In
addition, regarding measuring certain low-expressed molecular
features, CyTOF may be inappropriate because of its low
sensitivity.127

Table 3. Comparison of immunomics technologies at the single-cell level

Technology Spatial Strengths Weaknesses

H&E √ Simple intelligible protocol
Lower cost and less time
Impressive preservation of tissue morphology

Lack of specific markers
Only morphological features and basophilic or
eosinophilic information available

mIHC&IF √ Highly specific marker
Detailed information regarding the abundance,
distribution and localization of certain substances

Spectral overlap
Limited simultaneously detectable markers
Time-consuming and labor intensive

Flow cytometry Affordable and fast
Machinery available in most institutes
More tools available for analysis
Could perform cell sorting

Spectral overlap
Fluorescent spill-over
Targets need to be selected carefully (biased)

CyTOF More simultaneously detectable markers
Higher accuracy without spectral overlap

Costly (both the machine and antibodies)
Slower processing speed and lower sensitivity
Targets need to be carefully selected (biased)

Spectral flow cytometry Compatible with flow cytometry (both the machine
and antibodies)
Greatly eliminates confounding factors

Targets need to be carefully selected (biased)

Single-cell seq Unbiased
Parallel multi-omics analysis
Generation of new hypotheses

Limited to nearly 10,000 cells
Limited sequencing depth/coverage
Costly, time-consuming and labor intensive

CODEX √ Higher accuracy and specificity
Detection of over 50 markers in a single slide

Affected by the tissue quality
Accumulative structural changes
Costly, time-consuming and labor intensive

IMC √ At near-optical resolution
Could be applied to biobanked tissues
More simultaneously detectable markers

Lack of suitable commercial antibodies for use
Comparatively lower rate of image acquisition
Limited extent to which slides can be scanned
Costly and only available in high-end facilities

MIBI-TOF √ High accuracy at near-optical resolution
Could be applied to biobanked tissue
Indefinitely stable samples
More simultaneously detectable markers

Lack of suitable commercial antibodies for use
Comparatively lower rate of image acquisition
Limited extent to which slides can be scanned
Costly and only available in high-end facilities

Spatial transcriptomics √ Visualization and quantitative analysis of the
transcriptome with spatial resolution

Small-niche but not real single-cell sequencing
Comparatively low resolution

Slide-seq √ High spatial resolution
High scalability to large tissue volumes
Lower cost and better accessibility

Small-niche but not real single-cell sequencing Not
suitable for analyzing multiple sections
Confined to transcriptomics data

HDST √ Higher spatial resolution than Slide-seq
High scalability to large tissue volumes
Lower cost and better accessibility

Small-niche but not real single-cell sequencing Not
suitable for analyzing multiple sections
Confined to transcriptomics data

DBiT-seq √ Unbiased
High spatial resolution multi-omics seq
Compatible with different tissues
High accessibility and operability

Small-niche but not real single-cell sequencing Existence
of a theoretical limit of the pixel size

ZipSeq √ Provides a complete map of live tissues
May integrate with multimodal measurements

Confined to transcriptomics data
Costly and only available in few facilities

CODEX codetection by indexing, CyTOF cytometry by time-of-light, DBiT-seq deterministic barcoding in tissue for spatial omics sequencing, HDST high-
definition spatial transcriptome, H&E hematoxylin-eosin, mIHC multiplex immunohistochemistry, mIF multiplex immunofluorescence, IMC imaging mass
cytometry, MIBI-TOF multiplexed ion beam imaging by time-of-flight
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Spectral flow cytometry: Spectral flow cytometry is another
recent technological advance that promotes the efficacy of
conventional flow cytometry. Differing from mass cytometry,
spectral flow cytometry still labels antibodies with fluorescent
dyes but replaces classical optics and detectors with dispersive
optics and novel detectors that measure the full emission
spectrum.132 Based on the same principle, conventional flow
cytometry and spectral flow cytometry maintain fairly good
compatibility, particularly regarding the availability of commercial
antibodies, but better eliminate confounding factors, such as
spectral overlap, to improve efficiency. Along with the develop-
ment of compensation technologies, spectral flow cytometry has
the potential to replace polychromatic flow cytometry.133

Flow cytometry, mass cytometry, and spectral flow cytometry all
base on binding a specific label with the corresponding cellular
subgroup and identifying that label, indicating that the targets must
be determined before sample acquisition. Thus, the initial targets
limit the information obtained from these technologies, seriously
diluting the creativeness of research findings.127 We believe that we
can only find “THE KNOWN UNKNOWN” via these technologies. In
addition, during the actual process, the expense, processing speed,
and operability should all be carefully considered. For example,
although mass cytometry can avoid the problem of spectral overlap,
the cost of specific detectors and access to the required commercial
antibodies could render the technique impractical. Finally, we
believe that these three technologies are based on the expression of
proteins, which may provide a relatively narrow view of the single-
cell repertoire, particularly in the era of multi-omics, and urgent
innovations are needed.

Single-cell RNA sequencing—THE UNKNOWN UNKNOWN. Fortu-
nately, the advent of single-cell sequencing has driven the single-
cell area to new heights. Based on NGS, single-cell sequencing can
be divided into the following two main steps: single-cell
separation and single-cell analysis.134 Single-cell separation, which
is also called single-cell isolation, plays an indispensable role in
single-cell studies, including FACS, laser microdissection, manual
cell picking, random seeding/dilution, and microfluidics/lab-on-a-
chip devices.135 Regarding single-cell analysis, genomic, transcrip-
tomic (mainly), proteomic, and even metabolomic profiles of a
single cell are unquestionable research priorities.136–138 No longer
limited by predetermined targets as flow cytometry, an individual
cell can be sequenced using the standard NGS protocol to obtain
unbiased multi-omics profiling that can be used to identify “THE
UNKNOWN UNKNOWN”.
Currently, the application of scRNA-seq is relatively more

mature than other methods, to be our focus here. Zeisel et al.
revealed cell types in the mouse cortex and hippocampus by
scRNA-seq, which is a finding considered a groundbreaking
discovery.139,140 Subsequently, research applying scRNA-seq to
depict the TIME began worldwide. Tirosh et al.141 unraveled the
ecosystem of metastatic melanoma by scRNA-seq to provide
insight with implications for both targeted and immune therapies.
Moreover, in human triple-negative breast cancer (TNBC), the
combination of single-cell DNA and RNA sequencing also helped
depict the evolutionary trajectories of chemoresistance, which
provided further directions for therapies.142 Thus, the prospects of
single-cell sequencing technologies are promising and deserve
further investigation considering their scientific merit and clinical
significance. Since the specific experimental protocols of single-
cell sequencing have been reviewed in detail recently, we do not
list them again but discuss their advantages and disadvantages in
discriminating cellular components.143–145

Commonly, the technical noise resulting from the amplification
of trace materials remains the most significant challenge.
Regarding other drawbacks, considering scRNA-seq, the whole
workflow contains the following five basic steps: single-cell sample
preparation, whole-genome or transcriptome amplification, library

preparation, sequencing, and data analysis. How to isolate a single
cell and maintain its biological activity, how to address the vast
technical noise introduced by amplification and improve sensitiv-
ity, how to obtain the highest amounts of measurable genes at the
lowest price, and how to more efficiently analyze the data greatly
raise the threshold for single-cell sequencing and limit its
widespread use. Although currently, all technologies compromise
coverage, sensitivity or throughput to some extent, we are still
optimistic regarding the development of single-cell sequencing
and expect more benchmarking studies in the future.

Approaches used to identify the TIME spatial architecture
Studies have increasingly found that not only the components of
the TIME but also the spatial architectures significantly influence
anti-tumor immunity.146 Given that single-cell isolation is neces-
sary for flow cytometry and single-cell sequencing, none of the
single-cell technologies mentioned above can be applied to
studies investigating spatial architecture. Thus, we briefly intro-
duce several recent single-cell level spatial technologies. Accord-
ing to the principles, we divide the development of TIME spatial
architecture approaches into the following four stages: initiation
or emerging stage, growing stage, mature stage, and postmature
stage (Fig. 2).

Initiation stage: H&E-staining. In the initiation stage, a micro-
scopic analysis of the tissue components of an H&E-stained tumor
sample slide allows pathologists to clearly differentiate the
alkaliphilic nucleus and acidophilic cytoplasm of cells, providing
an image of the spatial architecture.147,148 However, without
specific markers, we can only empirically divide cells into several
large subgroups, such as parenchyma cells, fibroblasts, muscle
cells, and inflammatory cells, which is not suitable for characteriz-
ing the spatial architecture of the TIME.

Growing stage: mIHC & mIF. Then, at the growing stage, the
development of immunological markers markedly improved TIME
spatial architecture approaches. IHC and IF utilize fluorescent dye-
or enzyme reporter-labeled antibodies targeted against certain
antigens in specific cells to more precisely discriminate cell
types.149,150 Multiplex immunohistochemistry/immunofluores-
cence (mIHC/IF) enables the simultaneous detection of multiple
markers on a single slice, improving our understanding of the
TIME spatial architecture. Unfortunately, similar to flow cytometry,
mIHC/IF remains limited by spectral overlap.

Mature stage: CODEX, IMC, and MIBI-TOF. Entering the mature
stage, codetection by indexing (CODEX), which is a multiplexed
cytometric imaging approach, replaces fluorescent dyes or
enzyme reporters with designed specific barcodes comprising a
unique oligonucleotide sequence. The fluorescent dNTP analogs
and in situ polymerization-based indexing procedure help provide
an image of the slice. Interestingly, cells are stained with a mixture
of all tagged antibodies simultaneously, but only two or three
antibodies are imaged by fluorescence microscopy at each cycle.
Then, the fluorophores are cleaved and washed, and the cycle is
repeated until all antibodies are imaged. Using computational
tools, all antibodies are visualized to reconstruct the multi-
parameter image.151 Hence, the accuracy of CODEX is higher
than that of mIHC/IF to minimize spectral overlap. With the help of
CODEX, Goltsev et al.151 observed many previously uncharacter-
ized splenic cell-interaction dynamics in fresh-frozen spleen
tissues from animals with systemic autoimmune disease, which
is promising for enabling the systemic characterization of tissue
architecture. Regarding cancer, the application of CODEX also
enabled Schürch et al.146 to identify conserved, distinct cellular
neighborhoods (CNs) and explore their correlation with clinical
outcomes, re-engineering them to be compatible with formalin-
fixed, paraffin-embedded (FFPE) tissue and tissue microarrays.
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The multiplexed fluorescence microscopy method (MxIF) and
multiepitope ligand cartography (MELC) are two other technolo-
gies that use dye cycling analogous to that in CODEX, allowing the
detection of at most 100 antigens in a single sample.152–154 In
contrast, MxIF is superior to MELC because it can provide a

quantitative, single-cell, and subcellular characterization of multi-
ple analytes in FFPE tissue and integrate histological staining with
DNA fluorescence in situ hybridization (FISH) to unambiguously
compare identical regions in the same sample.154 However, the
characteristic feature of these technologies also results in a
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disadvantage, as follows: repeated elution and imaging could
change the antigenicity of the target specimen and may cost too
much time and money.
In addition, imaging mass cytometry (IMC) is another expansion

of mass cytometry that is perhaps similar to the combination of
IHC and mass cytometry. IMC uses laser ablation to generate
particles that are carried to the mass cytometer by inserting gas
and then yields a high-resolution picture of the region of interest
on the slide.155 Notably, IMC preserves the antigen specificity and
can simultaneously provide the spatially resolved analysis of 32
proteins.156 On this basis, Damond et al.157 presented a new
mechanism of type I diabetes progression as follows: the loss of β
cell markers and recruitment of cytotoxic T cells and T helper cells
precede β cell destruction. Regarding tumors, Fisher and
colleagues unraveled the spatial architecture of classic Hodgkin
lymphoma to correlate LAG3 3-expressing Tr1-type Treg cells with
MHC-II-negative Hodgkin lymphoma.158

In addition, based on analogous but more complex principles,
matrix-assisted laser desorption/ionization (MALDI) mass cytome-
try can directly identify the distributions of proteins, lipids,
metabolites, and drugs with a higher accuracy and sensitivity
but lower sample requirements to identify large molecules rather
than the TIME spatial architecture.159–161 Further application of
laser ablation coupled with inductively coupled plasma mass
spectrometry (LA-ICP-MS) is also limited by the laser spot size,
analysis speed, and sensitivity but may be combined with IHC,
which we do not discuss in detail here.156,162

Notably, the onset of multiplexed ion beam imaging by time-of-
flight (MIBI-TOF) had an impact on this field. Compared with
mIHC/IF, MIBI-TOF utilizes secondary ion mass spectrometry to
image antibodies tagged with mental isotopes and can analyze at
most 100 targets simultaneously with high accuracy, low spectral
overlap, and no need for channel compensation.163 For example, a
structured TIME in TNBC characterized by in situ expression of 36
proteins covering identity, function, and immune regulation at
subcellular resolution in 41 TNBC patients has been revealed using
MIBI-TOF.164 In 2019, a purpose-built mass spectrometer for MIBI
analysis was also designed to further promote the application of
MIBI-TOF.165 Combined with CyTOF, MIBI-TOF helped researchers
to draw a single-cell metabolic profile of cytotoxic T cells.166 In
addition, MIBI-TOF and IMC can both be applied to FFPE tissue
sections to perform a retrospective analysis of patient cohorts
whose outcome is known.

Post-mature stage: spatial transcriptomics. Finally, the develop-
ment of spatial technologies has entered the post-mature stage.
Recently, the post-genomics era started with an increasing
number of sequenced model organisms and further decreases
in cost. How to correlate high-resolution spatial information with
single-cell expression data and whether single-cell sequencing
technology can be utilized to characterize spatial architectures
have remained hurdles for a long time in this era. Fortunately,
spatial transcriptomics has emerged to address this issue. Making
the best use of NGS, similar to spatial transcriptomics, slide-seq

and high-definition spatial transcriptome (HDST) utilize a mono-
layer of spatially barcoded beads on a glass slide to capture
mRNAs released from tissue placed on top to demonstrate spatial
transcriptome mapping at the cellular level (which could be
reduced to 2 µm for HDST).166–171 Furthermore, not confined to
transcriptomics data, a recent innovation involving a microfluidic-
based method, deterministic barcoding in tissue for spatial omics
sequencing (DBiT-seq), enables the realization of high-spatial-
resolution multi-omics sequencing in FFPE slides, revolutionizing a
range of research fields.172 Notably, ZipSeq can label live cells in
intact tissues with unique illumination and photocaged oligonu-
cleotide “zipcodes” and then lyse tissues into individual cells for
RNA-seq to broaden the scope of research.173,174 Using these
technologies to match clustered regions with individual cells, a
spatial landscape of the transcriptome can be generated.
However, depending on the designed bead decoding or
deterministic barcoding, the number of detected genes is limited;
therefore, real spatial transcriptome sequencing has not been
realized but is warranted.
Using scRNA-seq data and in situ hybridization patterns as the

input, Seurat, which is a spatial map technique, uses a series of
sophisticated models to infer the original spatial location of a
single cell. This R package (Seurat v3) can accurately localize
cellular subpopulations and has been developed into one of the
standard tools that have been validated in zebrafish (Danio
rerio).175,176 Andersson et al.177 also developed a model-based
probabilistic method that performs guided deconvolution of
mixed expression profiles to integrate scRNA-seq and spatial
transcriptomics data and then spatially map cell types.
The field of single-cell spatial transcriptomics is greatly

expanding, and the number of correlative technologies is
exploding. Nonetheless, most technologies do not perform NGS
or characterize the spatial architecture completely at the single-
cell level but rather have tiny pixel sizes (10 µm, even 2 µm). These
technologies still perform bulk analyses only for a smaller mixture
of cells, possibly representing the greatest challenge faced by
current single-cell spatial technologies. Thus, more single-cell
technologies and related benchmarking studies are still expected
for a long time.

IMMUNOMICS AND AI
With the development of computer technology, AI, i.e., an
intelligence demonstrated by machines that mimic the cognitive
functions performed by the human mind, such as learning and
making decisions, has been applied all to various fields world-
wide.178 In medicine, scientists and clinicians are paying extensive
attention to the applications of machine learning or even more
advanced deep learning in disease diagnosis, prognosis, and
therapeutic response prediction.179 Regarding tumor immunity, AI
assists clinicians in better analyzing tumor immunological features
associated with the TIME and response to immunotherapy. The
technological advances of AI in cancer immunity research
principally involve the following aspects: (1) attenuating the

Fig. 2 Development of single-cell spatial technologies: from germination to maturity. (1) Initiation stage: H&E staining, a conventional but
significant method that clearly demonstrates the cellular and tissue structure but underperforms in the discrimination of immune cells. (2)
Growing stage: The specific binding of antibodies and antigens drove the spatial technologies to a new height as represented by IHC and IF. In
addition, multiplex IHC/IF technologies allow the detection of multiple markers simultaneously on a single slice, improving our understanding
of the TIME spatial architecture. (3) Mature stage: Given that the spectral overlap limits the further application of mIHC/IF, utilizing dye cycling
is a main optimization strategy in which only two or three antibodies are imaged by fluorescence microscopy in each cycle. Then, the
fluorophores are cleaved and washed, and this cycle is repeated until all antibodies are imaged, such as CODEX, MxIF, and MELC. Also, IMC and
MIBI-TOF utilize mental-conjugated antibodies to eliminate confounding factors, such as spectral overlap, and are also promising. (4)
Postmature stage: Combining high-resolution spatial information with single-cell expression data, spatial transcriptomics, slide-seq, HDST, etc.
explore brand-new ideas for the characterization of the spatial architecture. CODEX codetection by indexing, HDST high-definition spatial
transcriptome, H&E hematoxylin-eosin, IF immunofluorescence, IHC immunohistochemistry, IMC imaging mass cytometry, MELC multiepitope
ligand cartography, MIBI-TOF multiplexed ion beam imaging by time-of-flight, MxIF multiplexed fluorescence microscopy method
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workload of the manual recognition of immune infiltration on
pathological slides; (2) offering an alternative technology to
recognize immune cell subpopulations and spatial architectures
that can be hardly distinguished by the human eye; and (3)
providing a non-invasive approach to predict specific patient
characteristics of the TIME and response to immunotherapy. The
major theory of AI in cancer immunity research harnesses high-
dimensional features or a black-box operation program to deeply
excavate the characteristics of patients’ intra-tumoral immune
infiltration.

Tumor antigen prediction with deep learning methods
Concise and accurate tumor antigen prediction is necessary for
the investigation and fabrication of personalized tumor vaccines.
An important problem resulting in a relatively high false-positive
rate is that the current tools predicting antigen presentation are
mostly trained by in vitro binding affinity data, thus ignoring other
factors, such as gene expression, proteasome cleavage, and
transporters associated with antigen processing (TAP) transporta-
tion. Considering the aforementioned factors, a robust neoantigen
prediction model that comprises reliable training data and an
advanced algorithm framework is necessary.
The first step to deciphering tumor antigens is to predict

abnormal peptides. In addition to the multiple developed
algorithms identifying SNVs, a recently designed CN-learn tool
has been designed to detect CNVs, exhibiting favorable perfor-
mance.180–182 Regarding HLA typing, Bulik et al.183 generated a
large integrated dataset including HLA types and HLA peptides
from various types of cancer tissues and published data that could
be used to train the full mass spectrometry deep learning model
EDGE, which has been validated in non-small-cell lung cancer
(NSCLC) patients. Two promising computational deep learning
methods, MARIA and MixMHC2pred, were recently introduced,
greatly increasing the MHC-II prediction accuracy. MARIA is trained
using not only in vitro binding affinity data but also naturally
presented MHC-II ligand detected by liquid chromatography-
tandem mass cytometry (LS-MS/MS) and gene expression levels
and conducts a recurrent neural network (RNN) to output a
presentation score.184 Racle et al.103 developed a motif deconvo-
lution algorithm, i.e., Modec, to train the deep learning MHC-II
peptide predictor MixMHC2pred. These two deep learning
methods outperformed the previously prevalent tool NetMHCII-
pan, and the neoantigens predicted by both programs have been
proven to stimulate responsive CD4+ T cells.

Radiomics in tumor immunity
With the development of AI in medical imageology, imaging is far
beyond simply a picture but a large scale of digital data. The
quantitative and qualitative features extracted from regions of
interest (ROIs, usually containing tumor sites) characterize tumor
biological behavior and can be correlated with clinical outcomes.
This process of analyzing imaging data using AI technology is
radiomics.185 To the best of our knowledge, radiomics technology
applied to tumor immunity is mainly used to identify biomarkers
reflecting immune infiltration and predict the therapeutic
response of ICB-treated patients (Fig. 3).
First, radiomics provides a non-invasive method to estimate

immune-related biomarkers, such as the cytolytic activity score
(CytAct) predicted by the deep learning of fluorodeoxyglucose
positron emission tomography (FDG-PET)186 and the Immuno-
Score of gastric cancer predicted by radiomic features.187,188 A
tumor mutational burden radiomics biomarker (TMBRB) was also
developed and outperformed the current clinical models in
dividing NSCLC patients into high and low tumor mutation
burden (TMB) patients who have different clinical outcomes.189

Interestingly, researchers have compared the alterations in the
radiomic texture (DelRADx) between baseline and post-treatment
CT imaging to discriminate responders from nonresponders. In

particular, the relationship among DelRADx, the tumor-infiltrating
lymphocytes (TILs) density, and programmed cell death ligand 1
(PD-L1) expression provides a reasonable interpretation for
predicting clinical outcomes via radiomics approaches.190

On the other hand, radiomics applications in immunotherapy
start with a radiomics signature of CD8+ T cell output by a
machine learning model. Imaging-related features and RNA-seq
from patients in the MOSCATO clinical trial were input as the
training set. This radiomics signature was confirmed to be a
biomarker of the response to immunotherapy in validation
cohorts. Compared with establishing connections between radio-
mics features and clinical responses via T cell infiltration, a
radiomics biomarker was directly trained and validated using
images and clinical data.191 This biomarker was more effective
than the lesion volume in predicting the immunotherapy response
and overall survival.192

During ICB administration, some atypical responses have been
reported. One is hyperprogression (HP), which represents an
unexpected accelerated progression after immunotherapy is
initiated.193,194 Due to its poor prognosis, predictive biomarkers
are desperately required. Textural characteristics and novel
quantitative vessel tortuosity features were integrated to distin-
guish HPs from responders and nonresponders.195 Another
response is pseudoprogression, which is defined as an increase
in tumor size or newly identified lesion after treatment is initiated
before a decrease in tumor size is observed. This phenomenon is
due to an inflammatory pseudotumor formed by lymphocyte
infiltration.193,194 By comparing blood, volume, and radiomics
models alone or combined, a multimodality approach combining
the blood biomarker LDH and radiomics features best-predicted
pseudoprogression (AUC= 0.82).196

Altogether, radiomics technology enables the identification of
changes in tumors during an early stage, stratifying patients’
sensitivity to immunotherapy and predicting their clinical out-
comes via a noninvasive method. However, since most current
studies are retrospective studies, these results still need to be
validated in larger cohorts and prospective studies.

Computational pathology in tumor immunity
Distinct from radiologists, pathologists are devoted to identifying
histological alterations from a more microscopic perspective. H&E
staining, IHC, and IF help pathologists differentiate among distinct
cell populations. AI in pathology, or so-called digital pathology,
provides novel insight into exploring the interaction between
immune cells and tumor cells and the connection among key
behaviors of cancer biology via computational analyses.
CNN-based deep learning models have been established to

explore the quantification and spatial distribution of tumor
infiltrating immune cells on H&E or IHC staining slides.197–200 In
a recent study, AbdulJabbar et al. developed a deep learning
framework to profile the spatial architecture of the TIME, revealing
that heterogeneity in immune infiltration exists in different
samples from identical patients and that prognosis depends on
the number of “immune-cold” regions. In addition, evolutionary
patterns, clonal neoantigens, and antigen presentation are
associated with TIL distribution and the spatial complexity of the
TIME.201 Furthermore, predictive models that incorporate the
immune cell composition and spatial organization correlate with
cancer prognosis, which several groups have proven in colorectal
cancer, HCC, and melanoma202–205 (Fig. 3).
Similar to radiomics, digital pathology combined with deep

learning excavates invisible information from images; however,
the latter enables us to comprehend the TIME on a cellular or
molecular level. Consistent with the high-dimensional imaging
technology IMC and MIBI-TOF,156,163,165 digital pathology could be
a promising approach for investigating the TIME structure and the
relationship between cancer biology and therapy. More impor-
tantly, deep learning of computational pathology is a paradigm of
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Fig. 3 Radiomics and computational pathology in tumor immunity exploration. Radiological and pathological image-derived omics data
enable the investigation of the tumor immune microenvironment (TIME) and response to immunotherapy. For a raw radiology image, regions
of interest, generally representing the tumor lesion area, are segmented, while a pathological image is divided into numerous sub-images.
Two methods can be applied to analyze these high-dimensional data. First, features, including but not limited to statistical features, tumor
volume features, and texture features, are extracted and analyzed by professional clinicians. Alternatively, images are input into a
convolutional neural network (CNN). After a complicated deep learning process, robust models are output. These radiomics or digital
pathologic models could finally be established to evaluate or predict the immune index, which can be divided into three aspects. First, TIME
dissection encompasses distinct immune cell subset classification and TIME spatial architecture characterization, resembling single-cell
technologies and CODEX, respectively. Second, immune-related biomarkers, such as the tumor mutation burden (TMB), could be predicted.
Third, response to immunotherapy and clinical outcomes could be predicted. ROI regions of interest, TIME tumor immune microenvironment,
TMB tumor mutation burden
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large-scale detection, i.e., AI can analyze numerous pathological
slides simultaneously. Moreover, AI maps analytical results to
original slides, which provides a better visualization performance.
In this section, we focus on the AI-based excavation of

medical imaging and pathological slides in the era of cancer
immunity and immunotherapy. The last decade has observed
great achievements in radiomics in clinical practice. In particular,
radiomics exhibits potential in predicting immune infiltration
and the response to immunotherapy. Although the processes of
feature extraction and model training are mainly conducted
manually in the current stage, we envision that in the near
future, deep learning approaches in medical imaging will be
highlighted in research investigating the TIME. In comparison,
digital pathology primarily adopts a deep learning approach to
dissect the spatial architecture. Although pathological slides
involve invasive examination, they can provide more detailed
immune information than imaging; thus, radiomics and digital
pathology complement each other in the study of the immune
microenvironment.

APPLICATIONS OF IMMUNOMICS IN TUMOR
IMMUNOTHERAPY
Major categories of cancer immunotherapy
Cancer immunotherapy is mainly classified into the following six
categories: oncolytic viruses, cytokine therapy, antibody-based
therapy, ICBs, ACT, and cancer vaccines. (1) Oncolytic viruses.
Oncolytic viruses are genetically modified viruses that enable
tumor cells to attack and stimulate the immune system
simultaneously. Recently, due to progress in genetic engineering,
an oncolytic virus, i.e., talimogene laherparepvec (T-VEC), has been
proven to benefit advanced melanoma patients and was
approved by the Food and Drug Administration (FDA).206 (2)
Cytokine therapy. As messengers in communication between
immune cells and crucial orchestrating factors in the immune
system, cytokines also have the potential to restrict tumor
growth.207 Interleukin 2 (IL-2) was approved by the FDA for
metastatic melanoma and kidney cancer as an immunotherapy
regimen.208 Interferon (IFN) and tumor necrosis factor (TNF) are
also regarded as cytokines with potential cancer therapeutic
effects. (3) Antibody-based therapy. Monoclonal antibodies
were attached to the surface marker of tumor cells and, thus,
triggered an enlarged immune response or impeded signal
transduction in tumor cells. At the end of the 20th century,
rituximab was approved by the FDA for the treatment of non-
Hodgkin’s lymphoma. Rituximab binds the CD20 molecule on
immature B lymphocytes, guiding NK cells to eradicate these
abnormal monoclonal tumor cells.209 (4) Immune checkpoint
blockades. Immune checkpoint refers to negative costimulatory
molecules expressed on immune cells and tumor cells. In the
immune system, the interaction of checkpoint molecules partially
offsets positive costimulatory signals to prevent the excess
activation of the immune response, which is utilized by tricky
tumor cells to render them capable of immune evasion.210–212

Consequently, blockades of such checkpoints reinforce anti-tumor
immunity and yield durable therapy responses in cancer patients.
(5) ACT. ACT involves the genetic modification of autologous
lymphocytes to strengthen anti-tumor activity and reinfusion to
the patient’s body.213 Engineering TCRs and chimeric antigen
receptors (CARs) are the two types of antigen receptors designed
to be expressed on T cells expanding ex vivo, redirecting T cells
toward tumor cells specifically.214 (6) Cancer vaccines. Distinct
from the prevention effect of conventional antimicrobial vaccines,
cancer vaccines trigger the immune system to eradicate preexist-
ing tumor cells. Effective components of cancer vaccines consist of
DNAs, RNAs, proteins, and cells (e.g., tumor cells or DCs).215 Cell-
based vaccines are classified into autologous and allogenic cell
vaccines.

Immunomics technologies: a milestone of immunotherapy
Principle of immunomics application in cancer immunotherapy.
Immunotherapy has been one of the most important therapeutic
approaches in addition to surgery, chemotherapy, and radio-
therapy in multiple types of cancers. Tremendous benefits have
been provided to cancer patients with this promising treatment
option. Nevertheless, large numbers of patients show less
response to immunotherapy. We must address two crucial
missions. First, it is necessary to identify novel biomarkers to
discriminate responders from non-responders to ICBs. Second, it is
essential to authenticate effective targets for engineering T cells
and cancer vaccines.
Immunomics technologies offer considerable insight into the

microenvironment of tumors to facilitate achieving the two goals
above. First, prospective biomarkers of ICBs could be identified by
bioinformatics algorithms and single-cell-based technologies.
With transcriptomic data, researchers enumerate the immune cell
composition in the TIME and estimate the tumor purity with GSEA-
based or cell deconvolution-based algorithms, such as ESTIMATE,
CIBERSORT, and MCP-counter. Recent years have marked the rapid
development of the identification of membrane molecules at a
single-cell resolution. In addition to conventional techniques, such
as IHC and flow cytometry, techniques, such as CyTOF and single-
cell sequencing, permit the identification of more unraveled
prognosis- or ICB efficacy-related immune cell subpopulations.
Furthermore, promising techniques, such as IMC, CODEX, and
MIBI-TOF, offer not only therapeutically significant cell populations
but also the relative spatial distribution of distinct immune cells
and tumor cells, which are potential targets or biomarkers.
Radiomics technology is also able to predict the immune
infiltration status in multiple cancer types and patient responses
to immunotherapy.
Second, neoantigen prediction via bioinformatic algorithms and

AI enables the identification of effective targets of adoptive cell
therapy and cancer vaccines. Initially, HLA typing was inferred
from genomics and transcriptomic data, and candidate neoanti-
gens were predicted by mutation information and MHC-peptide
binding affinity. After experimental validation (i.e., mass spectro-
metry, ELISpot, and MHC tetramers), selection and prioritization,
ultimately determined neoantigens are utilized to generate
neoantigen vaccines or neoantigen-targeted engineered T cells.216

Identifying biomarkers of ICBs for patient stratification. Although
ICB is undoubtably a milestone of tumor therapy, only a
proportion of patients benefit from it. Thus, therapeutic biomar-
kers are needed to stratify patients into sensitive and non-
sensitive to ICB and guide precision medicine. These aforemen-
tioned technologies have remarkably promoted the identification
of ICB-related biomarkers.
As a target of ICB, the PD-L1 expression level detected by IHC

was the first discovered prediction biomarker,217 but several
clinical trials have revealed moderate efficacy of ICB in patients
with high PD-L1 expression.218 Other biomarkers are urgently
required to fill this gap. Promising biomarkers are roughly
classified into the following two categories: tumor cell-related
biomarkers and immune cell-related biomarkers.
In 2014, investigators first connected TMB with the clinical

survival of patients accepting CTLA-4 inhibitor therapy through
WES. Subsequently, other retrospective studies also proved that
high TMB correlates with a durable clinical benefit.219–221

Translational analyses using clinical trial cohorts of immunologi-
cally “cold” metastatic castration-resistant prostate cancer demon-
strated that higher TMB is related to a better prognosis after
nivolumab plus ipilimumab combination administration.222

Regarding the approaches used to assess TMB, due to the high
cost and complicacy of WES, two surrogate NGS panels, i.e.,
FoundationOne CDx (F1CDx) and MSKCC Integrated Mutation
Profiling of Actionable Cancer Targets (MSK-IMPACT), were
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approved by the FDA and validated by several prospective studies
of multiple cancers.221

On the other hand, immune cell infiltrations, particularly TILs,
play a pivotal role in the immune response. Among the
determinants of the anti-tumor response of immune cells, counts,
phenotypes and the spatial architecture are the three most
highlighted.22,223 Initially, quantified by IHC or flow cytometry, the
density of TILs was used to reflect the intensity of the anti-tumor
response.224,225 Substantial studies have proven that the intensity
of TILs strongly correlates with the ICB response and clinical
outcomes.224 Furthermore, according to the number of TILs and
their proximity to tumor cells, the TIME can be divided into
immune-inflamed, immune-excluded, and immune-desert, which
explicitly determine the response to immunotherapy and have
better application.226

Nonetheless, a considerable proportion of TILs are only a
bystander without cytolytic effects on tumor cells.227 To discover
more ideal therapeutic and prognostic biomarkers, single-cell
sequencing was used to identify more immune cell subpopula-
tions. It has been found that TCF7+memory-like T cells improved
the clinical outcomes of melanoma patients with anti-PD1
treatment, and stem-like TCF1+ PD1+ T cells were confirmed to
be conducive to tumor control in response to ICB.228,229 More
therapeutic and prognosis-related T cell subsets and functional
status were identified.230–233 CyTOF was performed to compare
the TIME of pre- and post-ICB-administered advanced melanoma
patients. Krieg et al.234 identified CD14+ CD16− HLA-DRhi mono-
cytes for the prediction of the response to anti-PD-1 therapy.
Furthermore, Helmink et al.235 leveraged CyTOF and single-cell
sequencing to reveal a distinctive B cell functional status and
tertiary lymphoid structure localization in a melanoma neoadju-
vant ICB clinical trial cohort. In addition to adaptive immune cells,
new subtypes of innate immune cells, such as macrophages, DCs,
and innate lymphoid cells, were also classified by single-cell
transcriptome analyses and demonstrated to influence anti-tumor
immunity and prognosis236–238 (Table 4).
In addition to the components of immune cells in the TIME, the

spatial organization largely influences the anti-tumor efficacy of
immunotherapy. Recently, CODEX was used to image distinct cell
subtypes from low-risk and high-risk colorectal cancer patients.
Through a computational analysis, researchers established a CN
model and then revealed different functional states in CNs and
communication networks between CNs, representing the spatial
heterogeneity of the TIME and correlates to clinical outcome.146

From another perspective, deep learning models have been used
to analyze digital pathological slides to elucidate the spatial
heterogeneity of tumor antigen presentation and tumor evolu-
tion.201 In breast cancer, researchers designed an IMC panel that
enables 35 biomarkers to be labeled simultaneously, thus
revealing breast cancer and connecting heterogeneity with clinical
outcomes.239 While these emerging technologies are not mature
enough, a landscape will be portrayed, and the TIME organization
could be watched even from a higher dimensional perspective in
the future (Table 4).

Predicting neoantigens for ACT therapy. ACT is an immunotherapy
approach in which genetically modified or expanded autologous
or allogeneic T cells are reinfused into patients to enhance anti-
tumor immunity.240 Immunogenomics primarily functions in the
identification of ideal tumor antigens in ACT therapy. Specifically,
once patient NGS data are obtained, it is feasible to enter an ACT-
targeted tumor antigen prediction pipeline comprising abnormal
peptide prediction, HLA typing, antigen-MHC binding affinity, and
neoantigen prioritization.
As the first approach of ACT, engineering TCR T cells construct

tumor antigen-specific TCRs to recognize tumor-associated anti-
gens (TAAs), such as MAGE, NY-ESO-1, or more ideal target
neoantigens defined by immunogenomics data by WES and RNA-

seq.241 chimeric antigen receptor T cells (CAR-T cells) are another
approach in which T cells are armored by CAR dominantly
composed of a single-chain variable fragment (scFv) from a
monoclonal antibody. In contrast to TCR-engineered T cells, CAR-T
cells recognize tumor antigens with an MHC-independent pattern,
directly identifying and combining targeting surface molecules
expressed on tumor cells.242 Although successful in multiple
hematopoietic malignancies, the benefit of CAR-T cells in solid
tumors has not been forthcoming.243–245

Clinical trials have been conducted to demonstrate the
antitumor response of TAA-specific T cells produced by TCR
engineering in synovial sarcoma, melanoma, and colorectal
cancers.246–248 Currently, neoantigen-specific TCR-engineered
T cells have not been applied clinically at bedside. However, it is
gratifying that several case reports have shown the efficacy of
T-cell recognition against tumor neoantigens predicted by
immunogenomics in colorectal cancer, breast cancers, and
cholangiocarcinoma.249–251 Researchers cocultured T cells with
neoantigen-armored APCs and T cells to identify neoantigen-
activated T cells and reinfused them back into the body. Tran et al.
conducted WGS of a sample from a metastatic cholangiocarci-
noma patient to identify 26 somatic mutations. Tandem mini-
genes composed of the mutated genes were transcribed and
transfected into autologous APCs, after which the neoantigen-
presenting APCs were cocultured with patient-derived TILs,
eventually identifying antigen-specific CD4+ Vb22+ T cell clones,
which induced regression of epithelial cancer.251

Resulting from the difficulty in isolating TILs from tumor sites,
peripheral blood neoantigen-recognizing T cells were isolated and
proved to be identical to TILs in the immunological process.252

Thus, WES along with neoantigen T cell isolation has become a
promising approach for promoting noninvasive cancer therapeu-
tic strategies.
However, conventional neoantigen selection based on auto-

logous APC and T cell coculture is limited by its low throughput,
high cost, and time-consuming attributes. To eliminate these
barriers, more high-throughput immunogenic neoantigen detec-
tion technologies have been developed. Li et al. established a
trogocytosis-based platform in which surface marker proteins
transfer from APCs to T cells when TCR and pMHC combine.
Therefore, ideal neoantigens could be identified by analyzing
marker protein-positive cells.253 Coincidently, another cell-based
platform utilizing signaling and antigen-presenting bifunctional
receptors was established for neoantigen identification.254 In
these cases, cell lines expressing the predicted neoantigens and
TCR replaced patient-derived APCs and lymphocytes and realized
high-throughput neoantigen selection as burgeoning immunoge-
nomics technologies.

Selecting neoantigens for personalized cancer vaccines. Since
William Coley discovered that bacterial toxins elicited body
immunity to attack tumor cells, cancer vaccines have received
attention.255,256 Subsequently, the discovery of TAA paved the
way for further investigations of tumor-specific vaccine therapeu-
tics.257,258 However, targeting TAAs likely harms normal cells by
autoimmunity, and anti-tumor immunity is insufficient since T cells
experience negative selection in the thymus against autoanti-
gens.259–261 Personalized “neoantigens” from tumor mutations are
more appropriate for effective vaccine design, and personalized
vaccines have achieved favorable efficacy in several clinical trials,
such as GAPVAC-10 and IVAC MUTANOME.262–269

Immunogenomics approaches have been widely applied in
vaccine development in clinical research. In general, neoantigens
used to generate personalized vaccines are identified by analyzing
WES and RNA-seq of tumor and normal tissues and predicting
effective epitopes via algorithms, such as NetMHCpan. Through
this method, for instance, four in six high-risk melanoma patients
accepting vaccination were free of recurrence in 25 months, while
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the other two patients received ICB after recurrence and had a
complete response. Furthermore, ex vivo immunological experi-
ments indicated that polyfunctional CD4+ T cells and CD8+ T cells
were stimulated by 60% and 16% neoantigens, respectively.262

Similarly, neoantigen vaccines have shown efficacy in phase Ib
clinical trials of glioblastoma. Single-cell TCR analysis also suggests
that antigen-specific T cells are stimulated and distributed in
intracranial tumor lesions.267

Similar to ACT, the crucial parameter of tumor vaccine
development is ideal neoantigen identification. Considerable
efforts have been exerted to develop immunogenomics technol-
ogy to improve the neoantigen prediction accuracy and prioritize
immunogenic neoepitope selection pipelines. In a recent study,
Wells et al.270 compiled all neoantigen prediction and selection
methods and provided a brand-new candidate determination

pipeline incorporating 14 immunogenic features of MHC pre-
sentation and T cell recognition. This study lays a solid foundation
for promoting the efficacy of tumor vaccines and adoptive cell
therapy.

CONCLUSIONS AND FUTURE DIRECTIONS
It is patently obvious that with the giant leap of emergent
technologies in the realm of immunomics, we are now able to
dissect tumor immunity at an unprecedented depth (Fig. 4). In this
review, we present a picture of conventional and state-of-the-art
technologies in tumor immunology along with prospects for
clinical application as a reference for researchers.
In the era of bulk sequencing, methods for estimating tumor

immune cells, mainly including computational algorithms, such as

Fig. 4 A landscape of immunomics: developmental tendency and future direction. a The timeline of immunomics technologies. b Historical
development trajectory and future prospective of tumor immunomics. CODEX codetection by indexing, CyTOF cytometry by time-of-light,
ESTIMATE estimation of stromal and immune cells in malignant tumors using expression data, GATK Genome Analysis Toolkit, GenomeVIP
Genome Variant Investigation Platform, HDST high-definition spatial transcriptome, IMC imaging mass cytometry, MCP-counter
microenvironment cell populations-counter, MIBI-TOF multiplexed ion beam imaging by time-of-flight, mIF multiplex immunofluorescence,
mIHC multiplex immunohistochemistry
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CIBERSORT and MCP-counter, allow us to better explore the
individual infiltration pattern of tumor immune cells. Furthermore,
comprising the prediction of abnormal peptides, HLA typing, and
prediction of tumor antigen-MHC binding affinity, the use of
immunogenomics technologies to predict tumor antigens has
demonstrated credible efficacy in both preclinical and clinical
studies, as represented by personalized tumor vaccines and ACT.
Moreover, it is wise to explore tumor immunity at the single-cell

level considering the high diversity of immune cell subtypes and
ITH. With the development of single-cell immune-related tech-
nologies, from flow cytometry and spectral flow cytometry to
CyTOF, the single-cell tumor immune atlas should assist with
immune cell subgroup classification to decipher components of
the TIME. Regarding spatial architecture, using H&E, IHC/IF, MIBI-
TOF, or spatially resolved transcriptomics, which is a crowned
method of 2020, provide a high-resolution visualization of the
TIME.271

The advent of AI also provides a new direction for the
development of immunomics. Radiological and pathological
image-derived omics data enable the characterization of the TIME
to predict the prognosis and response to immunotherapy,
indicating the potential of clinical applications with noninvasive
or minimally invasive methods.
As immunomics technologies flourish, several issues should be

considered for sustainable development. First, although numerous
methods for quality control and improvement of the algorithm
principle have been implemented, the efficacy of these technol-
ogies can be improved. In particular, regarding the prediction of
tumor antigens, single-cell sequencing, and spatially resolved
transcriptomics, technical noise and confounding factors hamper
subsequent analyses. Second, more cost-effective, accessible, and
automated technologies are expected to emerge to revolutionize
the development of the discipline. Third, we also expect that
researchers will fully use existing technologies to explore tumor
immunity and promote clinical transformation. Utilizing advanced
technologies to analyze samples from clinical trials may be a
practical solution. For example, Grasso et al.272 showed that an
increase in T cell infiltration and downstream IFN-γ signaling drive
clinical responses by analyzing the CheckMate 038 study using
technologies, such as NGS and immune cell quantitation,
representing the regeneration of immunogenomics in the
NGS era. Studies investigating tumor immunotherapy, such as
tumor vaccines and ACT, should be promoted. Finally, it is
necessary to develop more cancer type-specific technologies.
Currently, some technologies are indeed appropriate and
perform well in specific tumor types. For example, spatial
single-cell technologies are suitable for solid tumors because
the spatial architecture of the TIME is not involved in
hematological malignancies. TCR-T cell therapy is mainly
applied in melanoma, and CAR-T cell therapy performs better
in hematological malignancies such as leukemia and lym-
phoma; neoantigen prediction technologies are suitable for
these cancer types. However, as discussed above, tumor type-
specific technologies are confined to hematological/solid
malignancies or immune “hot” tumors in the current stage.
We anticipate that further cancer type-specific technologies will
emerge based on the distinctive characteristics of each cancer,
greatly contributing to the development of precision oncology.
Although there is much to be accomplished, immunomics is

likely to dominate the field of future tumor immunology, and its
clinical value will undoubtedly dramatically promote the devel-
opment of this discipline, in the field of immunogenomics, single-
cell, and AI.
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