
Structural Characterization of Carbonic Anhydrase–
Arylsulfonamide Complexes Using Ultraviolet Photodissociation 
Mass Spectrometry

Inês C. Santos, Jennifer S. Brodbelt
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States;

Abstract

Numerous mass spectrometry-based strategies ranging from hydrogen–deuterium exchange to ion 

mobility to native mass spectrometry have been developed to advance biophysical and structural 

characterization of protein conformations and determination of protein–ligand interactions. In this 

study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure 

of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. 

Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been 

the target of countless thermodynamic and kinetic studies owing to its well-characterized active 

site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the 

application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis 

of variations in fragmentation of hCAII versus hCAII–arylsulfonamide complexes, particularly 

focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein 

sequence, a supercharging agent was added to the solutions to increase the charge states of the 

complexes. The three arylsulfonamides examined in this study largely shift the fragmentation 

patterns in similar ways, despite their differences in binding affinities.
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INTRODUCTION

Owing to their critical roles in many mechanisms and cellular processes related to 

disease states, proteins remain the most common targets for the development of 

inhibitors that selectively bind and disrupt protein function, typically via formation of 

noncovalent complexes.1,2 Numerous methods have been developed to characterize the 

structures of protein–inhibitor complexes and the conformational reorganization of the 

proteins as well as determine the binding affinities and elucidate the binding sites.1 

Well-established biophysical methods used in this context include surface plasmon 

resonance (SPR), isothermal titration calorimetry, UV–visible, fluorescence, and circular 

dichroism spectroscopies, nuclear magnetic resonance (NMR) spectrometry, and X-ray 

crystal-lography, among others.3–5 A number of mass spectrometry methods have also 

been used in the context of drug development and the characterization of protein targets, 

ranging from the vast array of powerful high throughput proteomics methods6,7 to more 

specialized techniques like hydrogen/deuterium exchange used to probe the impact of 

mutations and binding events on protein stability and conformation.8 A more newly 

emerging strategy, termed native mass spectrometry, has gained traction in the field of 

structural biology owing to the ability to interrogate intact protein complexes in the 

gas phase with high sensitivity.9–11 From the native mass spectra, stoichiometries of the 

protein–ligand complexes can be determined and relative binding affinities, estimated.12–17 

Moreover, the combination of native MS with tandem mass spectrometry (MS/MS) of 

intact, noncovalently bound protein–ligand complexes offers the potential for structural 

characterization and localization of the ligand binding site.12,18

In the context of MS/MS methods for protein complexes, collisional activated dissociation 

typically causes preferential cleavage of noncovalent bonds, which lead to the ejection 

of bound ligands but little information regarding binding site or specific structural 

changes of the protein.19–21 Electron-based activation techniques, including electron­

capture dissociation (ECD) and electron-transfer dissociation (ETD), preserve noncovalent 

interactions and generate sequence ions whose abundances reflect the flexibility of the 

region of the protein from which the backbone cleavages occur (i.e., correlation with 

crystallographic B-factors).22,23 Surface-induced dissociation (SID) has provided incredible 
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insight into the quaternary structures of multimeric protein complexes and subunit 

organization.24 In ultraviolet photodissociation (UVPD), absorption of high-energy photons 

(typically 193 nm) results in the activation of proteins to excited electronic states in a 

way that promotes backbone cleavages and retention of non-covalent interactions.25 This 

process results in holo-type sequence ions in which ligands may remain bound, and the 

pattern of apo and holo product ions reveal the ligand binding sites.26–28 Furthermore, 

changes in the fragmentation patterns of the apo-proteins versus protein-ligand complexes 

suggest conformational re-organization of the proteins upon ligand binding. In essence, 

regions of the proteins that are more flexible exhibit enhanced backbone cleavages, whereas 

more highly structured regions stabilized by networks of noncovalent interactions display 

diminished backbone cleavages.26–28 The latter outcome has been attributed to inhibition of 

the separation of fragment ions during the activation/dissociation process, thus attenuating 

the detection of those products. These features make UVPD a versatile tool for the 

characterization of protein–ligand interactions and have catalyzed a number of recent 

studies.23,26–36 For example, UVPD has been used to elucidate the binding sites of both 

a cofactor (NADPH) and an inhibitor (methotrexate) to dihydrofolate reductase (DHFR) 

and to monitor its conformational changes upon ligand binding.28 The extensive array of 

conformational changes of adenylate kinase was examined during each step of its catalytic 

cycle, further demonstrating the sensitivity of UVPD to changes in protein structure.30 In 

addition, UVPD was used to decipher structural changes promoted by single amino acid 

mutations in the GTP-ase protein K-Ras31 and DHFR.32 More recently, a multistage UVPD 

approach was employed to characterize the impact of a single amino acid mutation of 

the dimeric human mitochondrial enzyme branched-chain amino acid transferase 2 on its 

conformation and to localize the binding location of its cofactor, pyridoxal phosphate.34 

These previous studies have demonstrated the utility of UVPD for mapping binding 

sites, monitoring conformational changes related to ligand binding, and deciphering the 

modulation of protein–ligand interactions by single point mutations. The present work aims 

to evaluate the sensitivity of UVPD to variations in binding affinities and binding geometries 

of protein–ligand complexes as demonstrated for human carbonic anhydrase II (hCAII) and 

three arylsulfonamide inhibitors, ethoxzolamide, chlorothiazide, and furosemide.

The well-characterized crystal structure of human carbonic anhydrase II (hCAII) and 

extensive understanding of its binding interactions with arylsulfonamide inhibitors have 

made it a target of numerous fundamental biophysical, kinetic, and thermodynamic 

studies.37–50 Carbonic anhydrase catalyzes the conversion of carbon dioxide to bicarbonate 

and thus plays an essential role in controlling the pH of cells and CO2 transport. 

Overexpression of this enzyme is known to cause glaucoma, and mutations can cause many 

other diseases including osteopetrosis and cerebral calcification.43 Due to these reasons, an 

array of inhibitors has been developed, and numerous biophysical studies have provided 

conformational details about the protein.37–50 Several mass spectrometry studies have 

also evaluated the binding constants of carbonic anhydrase interacting with sulfonamide 

inhibitors on the basis of ion abundances in ESI mass spectra.15–17 In addition, the relative 

stabilities of the carbonic anhydrase complexes have been estimated using sustained off­

resonance irradiation collision-induced dissociation.51–54
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Our work highlights the utility of UVPD for the identification of structural changes of hCAII 

upon ligand binding, ones primarily observed in the hydrophobic pocket. As shown here, the 

addition of a supercharging agent to the solutions allowed access to higher charge states of 

the complexes and offered higher sequence coverage upon UVPD. No significant differences 

were identified between ligands with different binding affinities, which suggests that the 

affinity of the ligands does not significantly affect the structure of carbonic anhydrase for the 

different sulfonamide complexes.

EXPERIMENTAL SECTION

Sample Preparation.

Human carbonic anhydrase II (Sigma-Aldrich, St. Louis, MO), ammonium acetate 

(Sigma-Aldrich, St. Louis, MO), and HPLC grade water (Millipore, Burlington, MA) 

were purchased. Ethoxzolamide, chlorothiazide, and furosemide were purchased from 

Sigma-Aldrich (St. Louis, MO). Equimolar protein/ligand solutions were prepared at a 

concentration of 10 μM with 100 mM ammonium acetate. A supercharging agent, m­

nitrobenzyl alcohol (m-NBA, Sigma-Aldrich, St. Louis, MO), was added at 0.5% to the 

protein solutions to improve sequence coverage upon UVPD and generate extensive holo­

product ions without disrupting the protein–ligand interactions. Solutions were desalted 

using Micro Biospin P-6 gel columns (Bio-Rad Laboratories Inc., Hercules, CA) for MS 

analysis.

Mass Spectrometry.

A Thermo Fisher Scientific Orbitrap Elite mass spectrometer coupled to a 193 nm Coherent 

Excistar XS excimer laser for UVPD in the HCD cell was used. The resolving power was set 

to 240 K at m/z 400. The solutions were infused via a gold/palladium-coated static tip with 

applied voltage ranging from 0.9 to 1.1 kV at a capillary temperature of 200 °C. UVPD was 

performed using a single 1.0–2.0 mJ laser pulse in the HCD cell. The charge states of the 

protein and protein–ligand complexes were selected using an isolation width of 20–40 m/z 
to allow sufficient ion abundance for this moderately large protein complex. An AGC target 

of 5 × 105 with a maximum injection time of 2 s was used. 500 scans were averaged for each 

spectrum. All results were replicated three times.

Data Analysis.

The UVPD spectra were decharged and deisotoped using the Xtract algorithm (Xcalibur 

Qual Browser, Thermo Fisher Scientific) with a signal-to-noise ratio of 2, a fit factor of 

44%, and remainder of 25%. Sequence coverage maps were generated using ProSight Lite 

v1.455 with a 10 ppm error tolerance. The searches included all types of fragment ions 

produced by UVPD (a, a + 1, b, c, x, x + 1, y, y − 1, and z) or HCD (b, y). Fragments 

(a, a + 1, b, c, x, x + 1, y, y − 1, and z) were also identified using UV-POSIT56 for 

both UVPD and HCD, and the searches included fragment ions with a designated mass 

shift corresponding to each ligand mass, both with and without the coordinating Zn2+. 

Normalized ion abundances were calculated by summing the abundances of all a, b, c, z, 

y, and z fragment ions associated with a particular backbone position and dividing this 

by the summed abundance of all identified ions. Data was processed using UVPOSIT, an in­
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house algorithm, to calculate backbone cleavage propensities. The propensities for backbone 

cleavages throughout the protein containing R residues were calculated by summing all an, 

bn, and cn ions originating from cleavage immediately C-terminal to a given residue along 

with all C-terminal xR−n+1, yR−n+1, and zR−n+1 ions originating from cleavage N-terminal 

to the same residue. In this way, the degree of backbone cleavages adjacent to each residue 

are compiled to generate maps of the variation in fragmentation throughout the protein. The 

images of protein crystal structures (PDB 2ILI, 1Z9Y, 3CAJ) were generated using Pymol 

(version 1.3).

RESULTS AND DISCUSSION

hCAII was showcased for this study because it has been the target of hundreds of 

biochemical and biophysical studies that have established a vast understanding of its 

structure/function relationships, thermodynamic and kinetic parameters for binding both 

substrates and inhibitors (particularly sulfonamides), and mechanistic insight.37 The binding 

site of hCAII is known to have both hydrophobic and hydrophilic pockets as depicted in 

Figure S1.37,39 The hydrophobic pocket is formed by the residues Val121, Val143, Leu198, 

Thr199, His200, and Trp209 that engage in hydrogen bonds with ligands, whereas the 

hydrophilic pocket is composed of Asn62, His64, Asn67, and Gln92.40–42 The zinc cofactor 

is tetrahedrally coordinated with His94, His96, and His119. Arylsulfonamides are one of 

the most extensively studied class of inhibitors, exhibiting high binding affinities (μM to 

nM) and sharing well-defined binding geometries.37 Sulfonamide drugs bind to the active 

site of carbonic anhydrase and inhibit its function owing to the similarity of the sulfamido 

group and the transition state analog of HCO3
−, a key step in the reversible hydration of 

carbon dioxide. The sulfonamide nitrogen atom coordinates to the zinc cofactor, and the NH 

group engages in hydrogen-bonding with Thr199.37 The aryl ring of the ligand engages in 

interactions with the hydrophobic portion of the binding pocket. Entry of the substrate (CO2) 

or an inhibitor (e.g., sulfonamide ligand) into the binding pocket depends on the orientations 

of loop 2 (composed of residues 230–240) and particularly loop 1 (containing residues 197–

206, the hydrophobic side of the binding pocket). The binding of a sulfonamide ligand does 

not cause major conformational changes to hCAII but rather more modest reorganization 

of residues lining the active site.37 On the basis of the impressive foundational knowledge 

of the hCAII structure and binding interactions, for the present study, UVPD was used to 

characterize the structural changes of hCA II upon binding ethoxzolamide, chlorothiazide, 

and furosemide (Table 1) with dissociation constants of 0.004 μM (high affinity), 0.4 μM, 

and 3.1 μM (low affinity), respectively. Differences in the pattern of backbone cleavages 

between hCAII and hCAII–ligand complexes were mapped onto the crystal structure of the 

protein to visualize changes in conformation attributed to ligand binding. To further expand 

the depth of backbone cleavages and the resulting sequence coverage, the addition of a 

supercharging agent was evaluated to increase the charge states of the complexes prior to 

UVPD.

Native MS and Backbone Fragmentation of Carbonic Anhydrase.

ESI of human carbonic anhydrase II resulted in ions in low charge states (9+, 10+, and low 

abundance 11+) characteristic of native-like proteins (Figure 1A). UVPD of the low charge 
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states provided good sequence coverage ranging from 62% for the 9+ to 66% for 10+ as 

shown in Figures S2 and 2, but some of the key residues in the midsection of the protein 

were not mapped, which hampers the structural analysis of the protein–ligand complexes 

(Figure 2). To extend the coverage, a supercharging agent, m-NBA, was added to the native 

hCAII solutions in an effort to produce a larger range of charge states. The mechanism of 

supercharging is still not fully understood with studies supporting that supercharging agents 

cause a chemical/thermal denaturation57–66 resulting in the unfolding of the protein during 

ESI as supported by circular dichroism experiments.60,65 However, other studies defend that 

supercharging does not cause conformational changes as noncovalent ligand binding is not 

disrupted in protein complexes.67–70 In this work, a low concentration of the supercharging 

agent was added to slightly increase the charge states while minimizing the effect on the 

protein conformation. The addition of m-NBA led to the production of charge states between 

11+ and 14+ (Figure 1B) without the loss of the zinc cofactor even for the higher charge 

states. This suggests that the protein structure was maintained in the gas phase and the 

addition of the supercharging agent at 0.5% did not cause denaturation. Greater sequence 

coverage was obtained in the middle section of the protein for the 11+ and 12+ charge 

states as shown in Figure 2. The sequence coverage obtained with UVPD for the different 

charge states is displayed in Figure S2. An increased coverage is observed from the 9+ 

and 10+ (62% and 66%) to the 11+ and 12+ (79% and 76%) charge states followed by a 

decrease in coverage for higher charge states (51% and 50% for 13+ and 14+, respectively). 

Variations in sequence coverage upon supercharging have also been noted in prior studies, 

one which focused on collision-induced dissociation (CID) of bovine CA and also used 

m-NBA to increase the charge states.72 CID of higher charge states did not significantly 

increase the number of identified fragment ions (28 products for 10+ versus 29 products 

for 14+), but an increase in the formation of fragment ions retaining zinc was reported.67 

In the present study, higher charge states provided higher sequence coverage upon UVPD 

and also generated a greater number of zinc-containing fragment ions (Figure S3). UVPD is 

not a process largely mediated by mobile protons like CID, and thus, there is typically not 

an enhancement of preferential cleavages (occurring adjacent to Asp, Glu, or Pro residues) 

that is often observed for CID. The drop in sequence coverage for the highest 13+ and 14+ 

charge states upon UVPD (Figure S3) is attributed to the production of more highly charged 

fragment ions that fall in regions of the mass spectrum that are more congested and thus less 

easy to deconvolve. Since the 11+ species of hCAII provided greater sequence coverage and 

a higher number of fragment ions (Figure 2), it was targeted throughout the rest of the study.

Analysis of Fragment Ions Generated by UVPD.

The type of ions produced upon UVPD were examined for human carbonic anhydrase 

II across different charge states. As shown in Figure 3, a diverse array of fragment ions 

was formed, and the most dominant ions observed were a, x, and y ions, whereas b, c, 

and z ions as well as a few d and w ions were formed with lower abundances. This is 

the usual trend observed with UVPD as fragmentation may occur directly from excited 

states populated upon UV photoabsorption or after internal conversion and intramolecular 

vibrational energy redistribution (IVR) resulting in CID-like fragmentation. The latter 

process typically generates b/y-type ions, whereas the former produces a/x and c/z-type 

ions more unique to UVPD.71 The absence of significant vibrational energy redistribution 
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means that a/x ions frequently retain non-covalent interactions, such as ones stabilizing 

bound ligands or those associated with secondary structural motifs, and thus, these fragment 

ions are anticipated to provide the most insight into protein structure and ligand-induced 

conformational reorganization.

Interestingly, fragment ions containing the C-terminus (x, y, z) were more abundant upon 

UVPD of the protein in lower charge states, and their abundance decreased with increasing 

charge of the protein. The trend reversed for the fragment ions containing the N-terminus 

(a, b, c); the abundances of these ions increased with the charge state of the protein. 

The variations in the preferential formation of N-terminal versus C-terminal fragment 

ions likely arise from a combination of several factors: conformational changes owing to 

increases in the charge state, adjustment of the initial positions of protons as more protons 

are added,72 location of secondary structural motifs that favor direct dissociation from 

excited states versus internal conversion, intramolecular vibrational energy redistribution, 

and preferential fragmentation via CAD-like path-ways, and shifts in salt bridges and other 

charge-stabilizing interactions.73 Nevertheless, our data suggests that the protein structure 

is largely maintained in the gas phase and the addition of the supercharging agent does not 

cause significant conformational changes since all the precursor charge states interrogated 

(9+ to 14+) showed that the zinc cofactor remained bound to the protein. Variations in 

the propensities for the formation of N-terminal versus C-terminal fragment ions as a 

function of precursor charge state is not uncommon in the activation and dissociation of 

intact proteins, and deciphering the underlying reasons via a more elaborate data-mining 

investigation of multiple proteins may facilitate optimization of experimental parameters to 

maximize sequence coverage in top-down proteomics.

Backbone Fragmentation of Carbonic Anhydrase–Ligand Complexes.

Electrospray ionization of solutions containing human carbonic anhydrase II and one ligand 

(ethoxzolamide, chlorothiazide, or furosemide) with 0.5% NBA resulted in the formation 

of abundant 1:1 complexes in charge states ranging from 10+ to 14+ (Figures S4–S6). 

Without 0.5% NBA, the charge states range from 9+ to 11+ (Figure S7). For each complex 

examined, the 11+ charge state was isolated and subjected to 193 nm UVPD (1 pulse at 2 

mJ per pulse). Figures S8–S10 display the UVPD mass spectra of hCAII and hCAII–ligand 

complexes (all 11+ charge state), demonstrating high sequence coverage ranging from 63% 

to 66% for the complexes.

Backbone cleavage propensity maps throughout the entire protein sequence were generated 

by summing the abundances of all a, b, c, z, y, and z fragment ions originating from 

cleavages C- and N-terminal to each residue and dividing by the summed abundance 

of all identified ions. The backbone cleavage propensity maps for hCAII and hCAII–

ethoxzolamide are depicted in Figure 4. The corresponding maps for the complexes 

containing the other two inhibitors (chlorothiazide and furosemide) are displayed in Figures 

S11 and S12. It is evident that in certain regions backbone fragmentation is suppressed 

upon ligand binding. On the basis of previous studies,26–28,30–33,35 conformational changes 

of a protein that are related to ligand binding may be reflected in the variations of the 

backbone cleavage efficiencies upon UVPD. In essence, regions of a protein that engage in 
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intramolecular interactions with a ligand may exhibit suppressed fragmentation (compared 

to the ligand-free protein) owing to a reduced ability of the fragments to separate from each 

other. Similarly, other regions of the protein that undergo conformational reorganization as 

a result of ligand binding may display enhanced fragmentation upon UVPD. In this context, 

the various N-terminal and C-terminal fragment ions serve as the reporters of the backbone 

cleavage propensities throughout the protein, and the comparison of the abundances of 

the fragment ions for the apoprotein (no ligand) versus the corresponding protein–ligand 

complex may be used to map the variations in backbone cleavage propensities that 

arise from ligand binding. To better visualize the changes in fragmentation between the 

ligand-free protein and each protein–ligand complex, difference plots were constructed by 

subtraction of the abundances of fragment ions generated from carbonic anhydrase from 

the abundances of fragment ions of the carbonic anhydrase–ligand complexes (Figure 5). 

The corresponding histograms of the p-values calculated from the t test for each difference 

plot are shown in Figure S13, thus allowing the application of a confidence level of 99% 

to filter the most meaningful differences in backbone fragmentation. In the resulting series 

of difference plots in Figure 5, negative values signify a decrease in UVPD fragmentation 

efficiency of the carbonic anhydrase–ligand complex relative to the apoprotein, whereas 

positive values indicate an increase in UVPD fragmentation efficiency of the carbonic 

anhydrase–ligand complex relative to the apoprotein.

A number of notable differences are observed upon inspection of the fragmentation trends 

for hCAII relative to its complexes: cleavages at some backbone sites were enhanced; 

others were significantly suppressed upon ligand binding. Most of the significant variations 

in backbone cleavage efficiency upon UVPD occurred near the putative binding region 

(His-64, His-94, His-96, His-119, Val-121, Val-143, Thr-199, and Thr-200).37–44 To help 

visualize these differences, the residues for which backbone fragmentation is enhanced 

or suppressed are highlighted in the carbonic anhydrase structures in Figure 5D–F. The 

red shading represents locations of enhanced UVPD fragmentation, and the blue shading 

indicates positions of suppressed UVPD fragmentation for the sulfonamide complexes. 

The presence of the ligand generally suppressed fragmentation in the active site loop 

composed of residues 197–206 (loop 1) where Leu 198, Thr 199, and His 200 are 

known to participate in ligand binding by electrostatic contacts (gas phase) or hydrophobic 

interactions (solution),37,74 implying the establishment of noncovalent interactions of hCAII 

with the ligand. All three ligands interact with carbonic anhydrase through the sulfonamide 

headgroup (SO2NH), the aryl ring, and the tail region (see the structures in Table 1). 

The ionized sulfonamide interacts with the zinc cofactor, and the sulfonamide headgroup 

interacts with residues that are hydrogen-bonding acceptors or donors such as Thr199. The 

aryl group interacts with the hydrophobic pocket of CA, thus explaining why all inhibitors 

suppress UVPD fragmentation of the hydrophobic pocket.

Most of the enhanced fragmentation of the carbonic anhydrase–ligand complexes occurred 

in the N- and C-terminus regions. An increased degree of backbone fragmentation of the 

N- and C-terminus regions has been commonly observed upon UVPD of other protein–

ligand complexes,75 suggesting that the terminal ends cleave more readily, perhaps owing 

to preferential stabilization of other regions of the protein upon ligand binding. In general, 

enhanced fragmentation near the N- and C-termini has been observed in many top-down 
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studies of both denatured and native-like proteins owing to their greater exposure on the 

surfaces, and thus, these terminal regions are in many ways the least diagnostic of specific 

conformational changes.

Another region of the carbonic anhydrase–ligand complexes that exhibits notable variations 

in fragmentation encompasses loop 2 (residues 230–240), a structural element that 

modulates the entrance to the binding pocket and is composed of a very flexible loop motif 

that is prone to significant conformational rearrangement. The variation in fragmentation 

near the loop 2 region is rationalized by the conformational flexibility of loop 2 in the 

presence of the ligand. These observations are generally in agreement with the findings 

of an extensive modeling study of hCAII (apo CA and CA with CO2)74 that has shown 

that carbonic anhydrase has multiple conformations of loops 1 and 2, including the open, 

semiopen, and closed conformations. Once a ligand binds, loop 1 is expected to close and 

compress the pocket in order to bury the ligand in the active site and move it closer to the 

residues involved in hydrogen bonding. Loop 2, on the other hand, is a surface loop and 

can only adopt open or superopen conformations to allow the entrance of the ligand into the 

binding pocket.

The region where zinc binds (His 94, His 96, and His 119) and consequently where 

the ligand interacts via the Zn–N bond did not show significant differences in backbone 

cleavage propensity for the ligand-bound versus ligand-free forms of hCAII. This lack of 

change in the backbone cleavage propensity is rationalized on the basis of the significant 

stability of the zinc binding site, thus mitigating its structural reorganization during ligand 

binding.

Suppressed fragmentation was uniquely observed for the carbonic anhydrase–chlorothiazide 

complexes in the hydrophilic portion of the binding pocket (Asn62, His64, Asn67, and 

Gln92). This interesting difference might be related to the fact that chlorothiazide is 

significantly more hydrophilic (XLogP3 = −0.2) than ethoxzolamide and furosemide 

(XLogP3 = 2), meaning that chlorothiazide might preferentially participate in hydrophilic 

contacts that stabilize this region of the protein.76

There was no clear correlation between the binding affinities of the three sulfonamide 

ligands and the backbone cleavage patterns (i.e., the abundances of fragment ions or the 

overall degree of enhancement or suppression of fragmentation) upon UVPD. Although a 

much more extensive study with numerous ligands is warranted, this outcome is consistent 

with previous evidence that inhibitors containing aromatic functional groups all orient into 

the hydrophobic binding pocket of the binding site in a similar manner.

CONCLUSION

Here, we used UVPD to study conformational changes of human carbonic anhydrase II 

upon binding of sulfonamide ligands with different affinities. A supercharging agent was 

used to improve coverage in the middle of the protein sequence as well as to increase the 

number of holo ions. The apo and holo ions produced after UVPD of the human carbonic 

anhydrase II–ligand complexes provided insight into some structural changes of the protein 
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after ligand binding. Most of the significant variations in backbone cleavage efficiency upon 

UVPD occurred near the binding region. The presence of the ligand generally suppressed 

fragmentation in the hydrophobic pocket possibly due to noncovalent interactions between 

hCAII and the ligand and enhanced fragmentation in the loop 2 and N- and C-terminus 

regions, suggesting greater conformational flexibility of these regions in the presence of 

the ligand. The three arylsulfonamides examined in this study cause similar structural 

changes despite their differences in binding affinities. Nevertheless, UVPD allowed the 

characterization of general conformational changes upon ligand binding, and this outcome 

is consistent with previous evidence that inhibitors containing aromatic functional groups 

all orient into the hydrophobic binding pocket of the binding site in a similar fashion. A 

more extensive study is necessary in the future to continue to assess conformational changes 

of human carbonic anhydrase II upon binding of different types of ligands with different 

affinities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ESI mass spectra of human carbonic anhydrase II in (A) 100 mM ammonium acetate 

(native) and (B) supercharged.
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Figure 2. 
Backbone cleavage propensity maps that correspond to fragment ions produced upon UVPD 

(1 pulse, 2 mJ) of hCAII for the 10, 11, and 12+ charge states and respective sequence 

coverage maps. C-terminal ions are depicted in orange and N-terminal ions are depicted 

in blue. Highlighted are the hydrophobic pocket (pink), the hydrophilic pocket (light blue), 

and the residues that coordinate zinc (gray). The x-axis shows 1 out of every 6 residues. 

β-strands and α-helices are labeled underneath the x-axis using colors corresponding to 

Figure S1.
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Figure 3. 
Summed abundance of product ion type observed as a function of precursor ion charge state 

for human carbonic anhydrase II.
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Figure 4. 
Backbone cleavage propensity maps (including both apo and holo ions) produced upon 

UVPD (1 pulse, 2 mJ) of (A) hCAII and (B) hCAII bound to ethoxzolamide and respective 

sequence coverage maps (left). Backbone cleavages producing C-terminal ions are depicted 

in orange, and those producing N-terminal ions are depicted in blue. Highlighted are 

the hydrophobic pocket (pink), the hydrophilic pocket (light blue), and the residues that 

coordinate zinc (gray). The x-axis shows 1 out of every 6 residues. Shaded regions in the 

sequence maps highlight decreased sequence coverage for the hCAII complex. β-strands and 

α-helices are labeled underneath the x-axis using colors corresponding to Figure S1.
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Figure 5. 
Plots of the differences in abundances of fragment ions (both apo and holo ions) obtained 

from hCAII complexed with (A) furosemide, (B) chlorothiazide, and (C) ethoxzolamide. 

Highlighted are the hydrophobic pocket/loop 1 (pink), the hydrophilic pocket (light blue), 

the residues that coordinate zinc (gray), and loop 2 (peach). Highlighted in gold are the 

residues where the most meaningful differences in backbone fragmentation occurred. The 

crystal structure of hCAII shows the suppression (blue-shaded residues) or enhancement 

(red-shaded residues) of backbone cleavages upon UVPD for the complexes containing 

(D) furosemide (PDB 1Z9Y), (E) chlorothiazide (PDB 2ILI), and (F) ethoxzolamide (PDB 

3CAJ). For the structures, the sulfonamide ligand is depicted in green. There is no reported 

crystal structure of hCAII–chlorothiazide, so the structure is shown for hCAII. Regions 

shaded in a pink circle (residues 197–206) indicate loop 1, and those shaded in a peach 

circle (residues 230–240) indicate loop 2. The residues corresponding to the hydrophobic 

pocket (V121, V143, L198, T199, H200, W209) are represented as spheres.
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Table 1.

Human Carbonic Anhydrase II–Ligand Complexes, Their Binding Affinities, and Ligand Structures

Complex MW (Da) Kd(uM) Ligand structure

Ethoxzolamide 258.01 0.004

Chlorothiazide 295.72 0.4

Furosemide 330.01 3.1
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