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Abstract

Water deficit and salinity are two major abiotic stresses that have tremendous

effect on crop yield worldwide. Timely identification of these stresses can help limit

associated yield loss. Confirmatory detection and identification of water deficit

stress can also enable proper irrigation management. Traditionally, unmanned aerial

vehicle (UAV)-based imaging and satellite-based imaging, together with visual field

observation, are used for diagnostics of such stresses. However, these approaches

can only detect salinity and water deficit stress at the symptomatic stage. Raman

spectroscopy (RS) is a noninvasive and nondestructive technique that can identify

and detect plant biotic and abiotic stress. In this study, we investigated accuracy of

Raman-based diagnostics of water deficit and salinity stresses on two greenhouse-

grown peanut accessions: tolerant and susceptible to water deficit. Plants were

grown for 76 days prior to application of the water deficit and salinity stresses.

Water deficit treatments received no irrigation for 5 days, and salinity treatments

received 1.0 L of 240-mM salt water per day for the duration of 5-day sampling.

Every day after the stress was imposed, plant leaves were collected and immediately

analyzed by a hand-held Raman spectrometer. RS and chemometrics could identify

control and stressed (either water deficit or salinity) susceptible plants with 95%

and 80% accuracy just 1 day after treatment. Water deficit and salinity stressed

plants could be differentiated from each other with 87% and 86% accuracy, respec-

tively. In the tolerant accessions at the same timepoint, the identification accuracies

were 66%, 65%, 67%, and 69% for control, combined stresses, water deficit, and

salinity stresses, respectively. The high selectivity and specificity for presymptomatic

identification of abiotic stresses in the susceptible line provide evidence for the

potential of Raman-based surveillance in commercial-scale agriculture and digital

farming.

Highlights

We show that Raman spectroscopy can be used for presymptomatic diagnosis of

water deficit and salinity stresses in two peanut accessions. We found that the
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accuracy of stress detection and identification directly depends on the plant sensitiv-

ity to the stress imposed.
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1 | INTRODUCTION

Peanut (Arachis hypogaea L.) is an allotetraploid (2n = 4x = 40) that

has been cultivated for thousands of years (Singh & Simpson, 1994).

Today, it is grown throughout the temperate and tropical parts of the

world and is an important international crop (Kochert et al., 1991;

Krapovickas & Gregory, 1994). Areas of production range from subsis-

tence farming to large-scale commercial operations on all continents

except Antarctica (ICRISAT, 2018). Total worldwide peanut produc-

tion was estimated to be 49 million metric tons (MT) in 2021

(USDA, 2021b). Leading countries in production are China (18.2 mil-

lion MT), India (6 million MT), and Nigeria (4.4 million MT)

(USDA, 2021b).

Peanuts, widely known as groundnuts are used in many ways:

over 50% of worldwide production is crushed for use as oil

(TPF, 2018). Other uses include peanut cake and meal and direct con-

sumption or as an ingredient in foods (TPF, 2018). Use varies by coun-

try: most peanuts in the United States are used in peanut butter,

confectionary products, or are exported (NPB, 2018).

In the United States, approximately 653,900 ha of peanuts were

harvested in 2020, with an average yield of 4.5 metric tons/ha

(USDA, 2021a). The estimated farm value of US production is more

than one billion US dollars, with peanut being listed as the 12th most

valuable cash crop in the United States (TPF, 2018). Peanut produc-

tion is concentrated in the Southern United States, from the eastern

seaboard to New Mexico. Georgia is the leading peanut producing

state followed by Florida, Alabama, and Texas (USDA, 2016).

Crops experience a variety biotic and abiotic stresses that can

decrease growth and productivity (Farber, Mahnke, et al., 2019).

Although plant diseases can cause up to 30% loss of the crop yield

worldwide, losses associated with abiotic stresses, such as water defi-

cit, nutrient deficiencies and salinity, may reach 70% (Pandey

et al., 2017).

Drought is a growing problem not only in arid and semi-arid cli-

mate zones but also in areas with continental climate (Waraich

et al., 2012). In 2012, during one of the worst droughts in recent US

history, the USDA reported that approximately $14.5 billion in federal

insurance was paid to growers for drought-associated losses, 83% of

all insurance paid out that year (Nelson, 2017). The increased fre-

quency of drought events is cause for concern because it has been

estimated that up to 80% of the peanut production in the world is

centered in areas that use no irrigation and are subject to

unpredictable droughts (Wright & Nageswara Roa, 1994). The High

Plains of Texas are an excellent example of the increasing concern

over drought and groundwater levels. Irrigation water coming from

the Ogallala aquifer is used throughout most of the region. Chaudhuri

and Ale reported estimates that 90% of the water pumped out of the

Ogallala aquifer in Texas is for the purpose of irrigation (Chaudhuri &

Ale, 2014). The United States Geological Survey has estimated that

groundwater use in the High Plains ranges from 10.7–19.9 million

liters per year (TWDB, 2012). This represents an average irrigation

rate of 213.6 to 411.5 mm/year (USGS, 2011). It has been estimated

that median water levels of the Ogallala aquifer in the Texas Panhan-

dle dropped from 25 to 67 m in the 70 years since irrigated agricul-

ture has become common (Chaudhuri & Ale, 2014).

Soil salinity is a global problem, especially in numerous developing

countries as well as Western Texas (Trostle, 2016). High osmotic pres-

sure under salinity stress in the soil prevents water and mineral uptake

by plants. This drastically reduces crop yields and, ultimately, the pro-

ductivity in the high salinity areas. Research in Egypt showed an

approximately 50% reduction in yield of peanuts (El-RheemKh, &

A. and Zaki, S.-n.S., 2015). Salinity stress is extremely difficult to treat

and is usually planned for by measuring soil salinity before planting

(Bauder et al., 2004). When such testing is not possible, identifying

salinity stress after planting could allow growers to plan out their

long-term response strategies.

Timely diagnostics of drought can be used for site- and dose-

specific administration of water to the field which allows for preserva-

tion of the crop yield (Food and Agriculture Organization of the

United Nations, 2009). Imaging methods, including thermography,

hyperspectral, and RGB, can be used to diagnose water deficit and

salinity stresses by detecting changes in the color, texture, or temper-

ature of the plant. If measured from a plane or unmanned aerial vehi-

cle (UAV), these imaging methods can survey entire fields (Baena

et al., 2017). However, none of imaging approaches achieved broad

application in agriculture due to their poor specificity, complex data

analysis, and long image processing times.

Raman spectroscopy (RS) probes the chemical structure of sam-

ples through inelastic light scattering (Farber, Mahnke, et al., 2019). In

a Raman experiment, laser light is shined on the sample. The light

interacts with the sample. Photons that change direction and energy

(inelastically scattered photons) are collected with a spectrometer and

are plotted based on their energy relative to the initial laser light. The

change, or shift, in energy (also known as the Raman shift) is depen-

dent on the identities of chemical groups in the sample, making

Raman sensitive to chemical structure.

Our group showed that RS could be used for confirmatory diag-

nostics of fungal diseases on corn, wheat, and sorghum (Egging

et al., 2018, Farber & Kurouski, 2018). We also demonstrated that RS

was capable of detection of viral diseases of wheat and rose, as well
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as the presence of bacteria that cause Huanglongbing (HLB or citrus

greening) on citrus trees (Farber, Shires, et al., 2019; Sanchez, Pant,

Irey, et al., 2019; Sanchez, Pant, Xing, et al., 2019). This approach is

based on detecting changes in the host tissue associated with the

infection. Because these changes are pathogen-specific, RS has

species-level sensitivity. Similar metabolic changes are observed upon

abiotic stresses (Altangerel et al., 2017; Gupta et al., 2020; Sanchez,

Ermolenkov, Biswas, et al., 2020). Detection and identification of

these changes in rice enabled highly accurate identification of nitro-

gen (N), phosphorus (P), and potassium (K) deficiencies with 85%

accuracy as early as 2 days after stress introduction (Sanchez,

Ermolenkov, Biswas, et al., 2020).

The hand-held nature of the spectrometer used in our previous

studies suggests that spectroscopic analysis of plants can be per-

formed directly in the field or a greenhouse (Farber, Sanchez, &

Kurouski, 2020; Farber et al., 2021; Farber, Sanchez, Rizevsky,

et al., 2020; Farber, Shires, et al., 2019; Sanchez, Ermolenkov, Biswas,

et al., 2020; Sanchez, Ermolenkov, Tang, et al., 2020). Expanding upon

these findings, we investigated the accuracy of the Raman-based

approach in the detection of water deficit and salinity stresses in two

peanut accessions: Tamrun OL11, a water deficit stress-susceptible

line, and TxL100225-05-07, a tolerant line developed in Lubbock, TX

(Baring et al., 2013). Both accessions were grown in the greenhouse,

subjected to water deficit and salinity stresses, and analyzed using RS

at daily for 5 days after introduction of the stress.

2 | EXPERIMENTAL PROCEDURES

2.1 | Plant materials and set up

A replicated, imposed water deficit and salinity study was conducted

during the spring of 2020 at the greenhouses of the Texas A&M

AgriLife Research and Extension Center at Stephenville. The study

was conducted in an Ickes-Braun Glasshouses (IBG) greenhouse

operating on a Wadsworth Step-50 temperature control system.

The system operated where the heaters activate if the temperature

drops below 21�C, and the cooling system activates if the tempera-

ture exceeds 32�C.

The study contained one drought tolerant breeding line,

TxL100225-05-07 (TX225), and drought-susceptible line, Tamrun

OL11 (OL11), from the Texas A&M AgriLife Research Peanut Breed-

ing program. The lines were chosen based on 2018 field data from

Dr. Mark Burow in which breeding lines were tested for yield under

water-reduced irrigation at 25% ET replacement. Analysis revealed

that TX225 performed in the top statistical grouping with an average

yield of 2,826 kg/ha, while OL11 was the lowest performing runner

cultivar currently in commercial production with an average yield of

1425.8 kg/ha. In this present study, 25 plants were grown of each

genotype for three distinct physiological states, which were well

watered, water deficit stressed, and a salinity stressed state (240-mM

NaCl). Seeds were pregerminated in a Stults germinator beginning on

April 4, 2020 and planted on April 7, 2020. The germinator operated

on a 14-h photoperiod at a light temperature of 32�C and a dark tem-

perature of 24�C. Plants were planted in 24-cm diameter (8-L volume)

plastic pots with Windthorst fine sandy loam soil where they were

watered daily as needed until sampling. Plants were sampled with a

handheld Resolve Agilent Raman Spectrometer at the greenhouse

complex head-house. Collection of leaf tissue began at 76 days after

planting (DAP) at which time water deficit and salinity stress were

imposed for 5 days. Although the hand-held Raman spectrometer

used in our study allows for fully noninvasive and nondestructive

analysis of plants, in the reported experiments, leaves were detached

from the plants, wrapped to limit desiccation, and transported to the

portable instrument for immediate spectroscopic analysis. This was

done to minimize exposure of the personnel to extreme heat condi-

tions in the greenhouse and to ease instrument fixation at the target.

Imposed water deficit and salinity stress was started on Day 76 and

continued until Day 80. Water deficit treatments received no irriga-

tion for the duration of the sampling and salinity treatments received

1.0 L of 240-mM salt water per day for the duration of the sampling.

Main axis leaflets were sampled on five consecutive days between

8:00 a.m. and 12:00 a.m. Tissue samples were taken from the same

fully expanded tetrafoliate leaves of the mainstem of each of the bio-

logical replicates for both genotypes in each of all three physiological

states. To minimize the biochemical differences associated with loca-

tion on the plant, on each day of sampling, a different leaf on the main

axis was selected for sampling starting with the third fully expanded

leaf on D1, fourth on D2, fifth on D3, sixth on D4, and seventh on

D5. To minimize differences in diurnal plant cycles, collection of all tis-

sue occurred at the same time each day with each day’s sampling tak-

ing approximately 4 h to complete.

2.2 | Raman spectroscopy

Raman spectra were collected with a hand-held Agilent Resolve spec-

trometer equipped with an 830-nm laser source. The following experi-

mental parameters were used for all collected spectra: 1-s acquisition

time, 495-mW power, and baseline spectral subtraction by device

software. Previously reported experimental results demonstrated

absence of photodegradation of plant material at these experimental

conditions (Sanchez, Pant, Irey, et al., 2019). Fifty spectra were col-

lected from each group of plants at a given time point. Spectra shown

in the manuscript are baseline corrected by the instrument software

without smoothing.

2.3 | Multivariate data analysis

PLS Toolbox (Eigenvector Research Inc.) was used for statistical ana-

lyses of the collected Raman spectra. First, multiplicative signal cor-

rection based on the mean was applied to all data. Next, the second

derivative was taken of the Raman spectra with a filter width of

51 and polynomial order 3. Finally, the spectra were smoothed with a

15-point window then area normalized. Partial least squares
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discriminant analysis (PLS-DA) was performed to differentiate

between the experimental classes and identify spectral regions that

best explained separation between the classes. Our own experimental

results, as well as findings reported by other groups, show that PLS-

DA performs equally well or better than other chemometric methods,

such as linear discriminant analysis (LDA) or soft independent model-

ing by class analogy (SIMCA) (Farber et al., 2021; Lee et al., 2018;

Sanchez, Pant, Irey, et al., 2019; Sanchez, Pant, Mandadi, &

Kurouski, 2020; Shashilov & Lednev, 2010). Therefore, we have

selected PLS-DA for statistical analysis of spectra collected in this

study. All Raman shifts in the original spectra (350–2,000 cm�1) were

used to build the reported models.

2.4 | Hierarchical models

A two-tier hierarchical modeling approach was employed to differenti-

ate the three treatments. The first model (Hierarchical Model 1) differ-

entiated the healthy (control, C) spectra from the sick (water deficit or

salinity stressed, S) spectra. The second model (Hierarchical Model 2)

then differentiated the water deficit (DR) spectra from the salinity

stressed (Sal). The models were cross-validated using the original

dataset with the venetian blinds method using 10 data splits and one

sample per blind. The results of model cross validation are reported in

Tables 2 and 3. The accuracy reported in this study is the true positive

rate, which is (for a given group) the number of spectra correctly

assigned to the group divided by the total of spectra in that group.

3 | RESULTS

Spectra collected from leaves of peanuts exhibited vibrational bands

assigned to pectin (747 cm�1), cellulose (480, 520, 917, 1,048, and

1,080 cm�1), xylan (1,185 cm�1), carotenoids (1,000, 1,155, and 1,525-

cm�1), phenylpropanoids (1,605 cm�1), protein (1,654 cm�1), and ali-

phatic vibrations (1,218, 1,285, 1,327, 1,339, 1,387, and 1,442 cm�1)

(Figure 1 and Table 1). These assignments were made based on the

previous studies reported by our and other research groups

(Altangerel et al., 2017; Farber et al., 2021; Farber & Kurouski, 2018;

Farber, Sanchez, & Kurouski, 2020; Farber, Sanchez, Rizevsky,

et al., 2020; Gupta et al., 2020; Mandrile et al., 2019; Payne &

Kurouski, 2021; Sanchez, Ermolenkov, Tang, et al., 2020; Sanchez,

Pant, Xing, et al., 2019). We found that spectra collected from

stressed (symptomatic, D5) TX225 plants exhibited lower intensities

of vibrational bands that originated from pectin, cellulose, xylan, ali-

phatic vibrations, and carotenoids compared to those of control plants

(Figure 1). In contrast, only small spectral changes were observed in

the susceptible line. We found that water deficit and salinity stresses

have different spectroscopic fingerprints in both TX225 and OL11. In

TX225, water deficit stress can be characterized by the small increase

F I GU R E 1 Raman spectra collected from leaves of control (“C”, green) and stressed (average of both drought and salinity stress, “S”, red)
peanut lines (top panels). Spectroscopic signatures of water deficit stressed (“Dr”, orange) and salinity stressed (“Sal”, blue) plants (bottom panel).
Spectra normalized on CH2 vibrations (1,442 cm�1) present in nearly all classes in biological molecules (marked by asterisks [*])
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in the intensities of 849 and 1,442 cm�1, which could be assigned to

pectin and aliphatic vibrations. The susceptible OL11 variety exhibited

much stronger spectroscopic changes associated with water deficit,

including strong decreases in carotenoid (1,155, 1,185, and

1,526 cm�1), phenylpropanoid (1,605 cm�1), and aliphatic vibration

intensities (1,301, 1,387 and 1,442 cm�1).

Next, we constructed PLS-DA models to differentiate control,

water deficit, and salinity stresses on OL11 and TX225 based on the

spectra of their leaves. We built two models for each plant accession

at each time point. The first determined whether the plant was

stressed (control vs. combined stressed), while the second determined

which stress it was (water deficit vs. salinity). Our results demon-

strated that in OL11 at the first time point, the control and combined

stress groups can be differentiated from each other with 95.6% and

80.8% accuracy, respectively, while water deficit and salinity can be

differentiated with 87.5% and 86.3% accuracy, respectively (Table 2

and Figure 1). No visual signs of stress such as loss of turgor, leaf curl-

ing, or leaf yellowing were observed at this timepoint. We also found

that as the experiment progressed, the accuracy of classification typi-

cally increased. Specifically, at D4, water deficit and salinity stress can

be distinguished from each other with 89.1% and 91.8% accuracy,

whereas at D5, the accuracy reaches 94.0% and 91.5%. In both

T AB L E 1 Vibrational bands and their assignments for spectra collected from control peanuts, as well as plants exposed to water deficit and
salinity stresses

Band (cm�1) Vibrational mode Assignment

480 C-C-O and C-C-C deformations; related to glycosidic ring

skeletal deformations

δ(C-C-C)+τ(C-O) scissoring of C-C-C and out-of-plane bending

of C-O

Carbohydrates (Almeida et al., 2010)

520 ν(C-O-C) Glycosidic Carbohydrates (Edwards et al., 1997, Pan et al., 2017)

747 γ(C–O-H) of COOH Pectin (Synytsya et al., 2003)

849–853 (C6–C5–O5–C1–O1) Pectin (Engelsen & Nørgaard, 1996)

917 ν(C-O-C) in-plane, symmetric Cellulose and phenylpropanoids (Edwards et al., 1997)

964–969 δ (CH2) Aliphatics (Cabrales et al., 2014, Yu et al., 2007)

1,000–1,005 In-plane CH3 rocking of polyene

Aromatic ring of phenylalanine

Carotenoids (Schulz et al., 2005) and protein

1,048 ν(C-O) + ν(C-C) + δ(C-O-H) Cellulose and phenylpropanoids (Edwards et al., 1997)

1,080 ν(C-O) + ν(C-C) + δ(C-O-H) Carbohydrates (Almeida et al., 2010)

1,115–1,119 Sym ν(C-O-C), C-O-H bending Cellulose (Edwards et al., 1997)

1,155 C-C stretching; v(C-O-C), v(C-C) in glycosidic linkages,

asymmetric ring breathing

Carotenoids (Schulz et al., 2005) and carbohydrates

(Wiercigroch et al., 2017)

1,185 ν(C-O-H) next to aromatic ring+σ (CH) Carotenoids (Schulz et al., 2005)

1,218 δ(C-C-H) Carotenoids (Schulz et al., 2005) and xylan

(Agarwal, 2014)

1,265 Guaiacyl ring breathing, C-O stretching (aromatic); -C=C- Phenylpropanoids (Cao et al., 2006) and unsaturated

fatty acids (Jamieson et al., 2018)

1,286 δ(C-C-H) Aliphatics (Yu et al., 2007)

1,301 δ(C-C-H) + δ(O-C-H) + δ(C-O-H) Carbohydrates (Almeida et al., 2010, Cael et al., 1975)

1,327 δCH2 bending Aliphatics, cellulose, and phenylpropanoids (Edwards

et al., 1997)

1,339 ν(C-O); δ(C-O-H) Carbohydrates (Almeida et al., 2010)

1,387 δCH2 bending Aliphatics (Yu et al., 2007)

1,442 δ (CH2) Aliphatics (Yu et al., 2007)

1,515–1,535 -C=C- (in-plane) Carotenoids (Adar, 2017, Devitt et al., 2018, Rys

et al., 2014)

1,606–1,632 ν(C-C) aromatic ring+σ (CH) Phenylpropanoids (Agarwal, 2006, Kang et al., 2016)

1,654–1,660 -C=C-, C=O stretching, amide I Unsaturated fatty acids (Jamieson et al., 2018) and

proteins (Devitt et al., 2018)

1,682 COOH Carboxylic acids (Sanchez, Filter, Baltensperger, &

Kurouski, 2020)

1,748 C=O stretching Esters, aldehydes, carboxylic acids, and ketones

(Colthup et al., 1990)
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tolerant and susceptible plants, visual signs of stress appeared on

Days 2 and 3 for drought and salinity, respectively. This may be

because stress occurs more quickly under greenhouse conditions than

in the field.

Prior to visual signs of stress, the accuracy classification by stress

status was substantially lower for TX225. At D1, the accuracy of dif-

ferentiating the control and combined stress groups was 66.7% and

65.6%, respectively. Water deficit and salinity identification rates

were 67.4% and 69.6%, respectively (Table 3 and Figure 2). As

observed with OL11, the prediction accuracy generally improved over

the course of the experiment. However, at D4, control/combined

stress differentiation showed a great decrease in performance with

accuracies of 87.5% and 58.9%, respectively. The water deficit/salin-

ity continued to perform well, in contrast, showing 87% and 81.8%

accuracy, respectively. At D5, accuracy of water deficit stress identifi-

cation for TX225 was 100%, whereas salinity stress could be correctly

predicted with 97.8% accuracy.

Our results demonstrate that in the late stages (symptomatic

plants), water deficit, and salinity stresses can be correctly identified

with �90% accuracy in both tolerant and susceptible plants. However,

in early stages, the model performed poorly with the tolerant dataset.

This complicates the differentiation of stressed and unstressed plants

in these lines. Because these varieties demonstrate such drastic differ-

ences in response, development of a universal chemometric model for

identification of stress without regard to genetic background is not

possible. When the data from each line were combined to make a sin-

gle model to classify by stress, the accuracy was low. Although this

high sensitivity of RS substantially complicates identification of

stresses, it can be used to identify accessions. This identification is

based on detection of differences in biochemical profiles of different

peanut varieties (Farber, Sanchez, Rizevsky, et al., 2020). We found

that on average, OL11 and TX225 could be identified with 81.4%

accuracy. We previously demonstrated that such Raman-based

phenotyping can be used not only for identification of different pea-

nut accessions but also for digital breeding and selection of plants

(Farber, Sanchez, Rizevsky, et al., 2020). We also demonstrated that in

potatoes, the performance of models for identifying biotic stress

(zebra chip disease, ZC) in tubers was dependent on the variety: a

model calibrated with one variety of potatoes could not accurately

identify ZC-associated changes in potatoes of another variety (Farber

et al., 2021).

4 | DISCUSSION

This study demonstrated the power of RS for label-free, noninvasive,

and nondestructive detection and identification of water deficit and

salinity stresses in peanuts. Stress in greenhouses occurs more quickly

than under field conditions. Our results showed that in early stages

(D1), these stresses could be predicted with high accuracy only on

T AB L E 3 PLS-DA based accuracy of prediction of the two model
types for the TX225 (tolerant) peanut line

Hierarchical model 1 Hierarchical model 2

Day Control Stressed Water deficit Salinity

1 66.7 65.6 67.4 69.6

2 76.0 73.9 72.9 72.0

3 84.5 89.3 64.6 72.0

4 87.5 58.9 87.0 81.8

5 79.6 80.2 100 97.8

Abbreviation: PLS-DA, partial least squares discriminant analysis.

T AB L E 2 PLS-DA based accuracy of prediction of the two model
types for the OL11 (susceptible) peanut line

Hierarchical model 1 Hierarchical model 2

Day Control Stressed Water deficit Salinity

1 95.6 80.8 87.5 86.3

2 91.5 85.8 72.9 79.2

3 97.9 86.8 86.0 89.8

4 91.3 81.0 89.1 91.8

5 80.0 72.8 94.0 91.5

Abbreviation: PLS-DA, partial least squares discriminant analysis.

F I GU R E 2 Accuracy of prediction of control (green), water deficit (blue) and salinity (yellow) stresses on susceptible (OL11) and tolerant
(TX225) peanut lines
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susceptible plants, whereas in the later stages (D5), Figure 3, accurate

identification of water deficit and salinity can be achieved on both

susceptible and tolerant peanut accessions. These results are not

totally unexpected since the water deficit tolerant germplasm used in

this study was specifically developed to withstand water deficit stress

better than the commercial check which was specifically bred to be

produced under full irrigation. These results suggest that the tolerant

breeding line was able to maintain normal plant functions for a longer

time as the water deficit and salinity stress were applied. As the two

accessions were subjected to the stressors for longer periods of time,

RS was able to detect the changes occurring in both the tolerant and

susceptible germplasm. In previous studies, it has been suggested that

increasing the sample size can improve model accuracy. Although

drought tolerant cultivars are preferred, RS has the potential to detect

early plant stress on a specific cultivar by incorporating enough cali-

bration scans into the model. For example, when our group attempted

to classify peanut leaves by genotype, we found moderate success

when acquiring 70 spectra per genotype (Farber, Sanchez, Rizevsky,

et al., 2020). Different analysis methods could also improve the result.

Liu and colleagues found that convolutional neural networks, which

are more computational intensive than PLS-DA, could classify spectra

of over 1,600 different minerals with a few as 1–40 spectra per group

(Liu et al., 2017).

The ability to detect the initial signs of stress could play a very

important role is the management of a crop in the field. Once plants

exhibit visual signs of water deficit or salinity stress, the potential

yield has already decreased. Early detection of these stresses is there-

fore desirable. Precise management of irrigation on a commercial scale

can also lead to increased yields and savings on irrigation costs. Incor-

poration of RS into a UAV platform with real-time or rapid turnaround

of results could potentially be part of an integrated, automated irriga-

tion management system.

The observed decrease in carotenoid-associated band intensity

in water deficit TX225 leaves may be physiologically relevant

(Havaux, 2013). Biotic and abiotic stresses activate enzymatic oxida-

tion of neoxanthin that yields abscisic acid, a hormone that

enhances plant resistance to such stresses (Nambara & Marion-

Poll, 2005). β-Carotene oxidation and cleavage by reactive oxygen

species (ROS) lead to formation of β-lonone, β-cyclocitrals that can

protect the plant against insects (Havaux, 2013; Nambara &

Marion-Poll, 2005). Thus, decreases in carotenoid concentration

may be associated with increases in ROS concentration

(Yu et al., 2007). The observed decrease in intensity of Raman

bands associated with phenylpropanoids may be partially explained

by a decrease in the concentration of p-coumaryl and

coniferyl alcohols, the precursors of H- and G-lignins (Chishaki &

Horiguchi, 1997). Alternatively, this may be due to a decreased

concentration of kaempferol, quercetin, or isorhamnetin (Stewart

et al., 2001). Spectroscopic analysis of these compounds reported

by Jurasekova and co-authors indicates that quercetin’s phenolic

vibrational band was at 1,610 cm�1, whereas kaempferol’s phenolic

vibrational band was at 1,604 cm�1 (Jurasekova et al., 2006). Based

on this experimental evidence, the observed intensity decrease may

be associated with a decrease in concentration of kaempferol in

peanut leaves.

Having a tool to rapidly identify when plants are responding to

stress could enable faster selection of drought and salinity tolerant

cultivars. For example, RS could be used to rapidly survey F2 or F3

plants for those with the most favorable stress responses bring to

field trials. Considering the high sensitivity of RS for the diagnostics of

biotic and abiotic stresses in plants (Egging et al., 2018, Farber &

Kurouski, 2018, Farber, Mahnke, et al., 2019, Farber et al., 2019b,

Sanchez, Pant, Irey, et al., 2019, Sanchez, Pant, Xing, et al., 2019,

Sanchez, Ermolenkov, Tang, et al., 2020), one can expect that as more

scans are added to the libraries, this spectroscopic approach will have

far-reaching implications in various disciplines, from basic plant biol-

ogy and pathology to agriculture and horticulture.

The Raman-based diagnostics approach could be performed

directly by farmers or implemented as a service. This would involve

development of portable spectrometers and integrated spectral librar-

ies. If the farmer chose to purchase the device and libraries them-

selves, they may need to calibrate the device for their crop varieties

depending on whether the crop is included in the prebuilt library.

Alternatively, as a service, a technician would come with a device and

perform the calibration. Because Raman is sensitive to both stress

and time, it may be possible that an initial calibration is required the

F I GU R E 3 A picture showing plants exhibiting severe water deficit (left) and salinity stress (right) including leaf curing, loss of turgor, and leaf
yellowing on Day 5 of sampling
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season before the device can begin accurately classifying. This would

be based on how Raman spectra of plants can change over their

lifespans. In either case, once the instrument is initially calibrated, it

should be ready for prediction in the following seasons.

With the calibrated instrument, whether handheld or mounted

on a UAV, the farmer would be able to conduct the stress analysis

themselves. The device would scan individual plants and send the

results to a local laptop that would indicate the probability that dif-

ferent stresses were present on the plant. The system could alter-

natively be operated by a technician who would prepare a report

indicating locations of stress throughout the field, their probabilities

of having certain stresses, and suggested treatments. Either sce-

nario would enable the farmer to respond to shifting environmental

conditions in different parts of their field, applying differential

treatments to areas in need. Although the description of Raman-

based stress diagnostics may look futuristic, our group is currently

working on all technical aspects of this approach to make it a

reality.
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