Skip to main content
. Author manuscript; available in PMC: 2021 Aug 20.
Published in final edited form as: J Appl Phys. 2019 Jun 28;125(24):243301. doi: 10.1063/1.5098306

TABLE I:

Chemical and plasma processes included in model and their associated rate coefficients.

Number Reaction Rate Coefficient, k = Units Reference
Atomic Recombination
R1 2 N + N2 → N2(B) + N2 8.27×1034exp(500Tg) cm6 s−1 20–27
Fluorescent
R2 N2(A) → N2 + 0.5 s−1 28 and 29
R3 N2(B) → N2(A) + 1.52 × 10−5 s−1 23 and 30
R4 N2(C) → N2(A) + 2.69 × 10−7 s−1 30 and 31
Energy Pooling
R5abc 2N2(A) → N2(B) + N2(v) + ϵtr 2.9×109Tg300 cm3 s−1 32–35
R6bcd 2 N2(A) → N2(C) + N2(v) 2.6×1010Tg300 cm3 s−1 29 and 35
Electron-Ion Recombination & Ionization
R7a e+N4+N2(A)+N2 2.5%×2.4×106300Te cm3 s−1 34, 36, and 37
R8a e+N4+N2(B)+N2 87%×2.4×106300Te cm3 s−1 34, 36–38
R9a e+N4+N2(C)+N2 11%×2.4×106300Te cm3 s−1 34, 36, 37, and 39
R10 2e+N4+e+2N2 7×1020(300Te)4.5 cm6 s−1 34
R11 e+N3+N+N2 2.0×107300Te cm3 s−1 23 and 37
R12b e+N2+2N+ϵtr 2.8×107300Te cm3 s−1 23 and 40
R13 e+N2+N2+hν 4×1012(300Te)0.7 cm3 s−1 41
R14 e+N2++N22N2 6×1027(300Te)1.5 cm6 s−1 23
R15 2e+N2+e+N2 1×1019(300Te)4.5 cm6 s−1 23
R16 e+N22e+N2+ 5.05×1011Te+1.10×105Te1.5exp(1.82×105Te) cm3 s−1 42 and 43
R17 e+N+N+hν 3.5×1012(300Te)0.7 cm3 s−1 41
R18 e+N++N2N+N2 6×1027(300Te)1.5 cm6 s−1 23
R19 2e+N+e+N 1×1019(300Te)4.5 cm6 s−1 23
Quenching
R20 N3++N2(A)N++2N2 6 × 10−10 cm3 s−1 44 and 45
R21 N2++N2(A)N3++N 3 × 10−10 cm3 s−1 23, 44, and 46
R22 N2++N2(A)N++N+N2 4 × 10−10 cm3 s−1 17, 44, and 46
R23a N2(A) + N2 → 2N2 2.0 × 10−17 cm3 s−1 21, 36, 41, 47–50
R24a N + N2(A) → N + N2 6.2×1011(300Tg)2/3 cm3 s−1 34, 36, 41, 47, 51–53
R25ab N2(B) + N2 → N2(A) + N2(v) 1.2×1011 cm3 s−1 23, 33, 35, 36, 46, 54–57
R26bd N2(C) + N2 → N2(B) + N2(v) 1.2×1011(300Tg)0.33 cm3 s−1 35 and 58
Ion Conversion
R27 N4++N2N2++2N2 2.1×1016exp(Tg121) cm3 s−1 36, 46, 59, and 60
R28 N4++NN++2N2 1×1011 cm3 s−1 23 and 46
R29 N4++NN3++N2 1 × 10−9 cm3 s−1 61
R30 N3++NN2++N2 6.6 × 10−11 cm3 s−1 23 and 46
R31 N3++N2N++2N2 6 × 10−11 cm3 s−1 44 and 46
R32 N2++N2N++N+N2 1.2 × 10−11 cm3 s−1 44 and 46
R33 N2++N2N3++N 5.5 × 10−12 cm3 s−1 44 and 46
R34 N2++NN++N2 7.2×1013exp(300Tg) cm3 s−1 17 and 46
R35 N2++2N2N4++N2 6.8×1029(300Tg)1.64 cm6 s−1 60
R36 N2++N+N2N3++N2 0.9×1029exp(400Tg) cm6 s−1 23 and 46
R37 N++N2N2++N 1×1013 cm3 s−1 44
R38 N++2N2N3++N2 2.0×1029(300Tg)2.0 cm6 s−1 62
R39 N++N+N2N2++N2 1×1029(300Tg) cm6 s−1 41
Electron-Neutral Collisions
R40b e+N2e+2N+ϵtr 1.2×1025NATe1.6exp(113.200Te) cm3 s−1 35, 43, 63, and 64
R41 e+N2e+N2 f(Te),e.g.,f(11 600K)8.25×108 cm3 s−1 65–68
R42 e+N2e+N2(v) f(Te),e.g.,f(11 600K)8.45×109 cm3 s−1 66–68
R43e e+N2(v)e+N2 f(Te,Tv),e.g.,f(11 600K,600K)2.69×1011 cm3 s−1 66–68
R44 e+N2e+N2(A,v=04) f(T)e.g.,f(11 600K)1.59×1012 cm3 s−1 66–68
R45e e+N2(A,v=04)e+N2 f(Te),e.g.,f(11 600K)2.67×1011 cm3 s−1 66–68
R46 e+N2e+N2(A,v=59) f(Te),e.g.,f(11 600K)5.63×1012 cm3 s−1 66–68
R47e e+N2(A,v=59)e+N2 f(Te),e.g.,f(11 600K)1.80×1010 cm3 s−1 66–68
R48 e+N2e+N2(B) f(Te),e.g.,f(11 600K)2.35×1011 cm3 s−1 66–68
R49e e+N2(B)e+N2 f(Te),e.g.,f(11 600K)9.85×1010 cm3 s−1 66–68
R50 e+N2e+N2(A,v>9) f(Te),e.g.,f(11 600K)4.06×1012 cm3 s−1 66–68
R51e e+N2(A,v>9)e+N2 f(Te),e.g.,f(11 600K)4.06×1012 cm3 s−1 66–68
R52 e+N2e+N2(C) f(Te),e.g.,f(11 600K)6.18×1012 cm3 s−1 66–68
R53e e+N2(C)e+N2 f(Te),e.g.,f(11 600K)4.06×109 cm3 s−1 66–68
Vibrational-Translational Relaxation
R54 N2(v)+N22N2 f(Tg),e.g.,f(300K)3.05×1021 cm3 s−1 69 and 70
a

Tuned value for rate coefficient. See Table IV.

b

Reaction contributes to fast gas heating. See Table III.

c

Temperature dependence derived from assumption that kv¯Tg.

d

Relatively large spread of rate coefficients reported in literature. Listed coefficient taken from cited reference. See Table IV for additional references.

e

Superelastic rate coefficient calculated from inverse cross sections. See text for details.