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Abstract

We recently developed a method to estimate speech-driven spectrotemporal receptive fields 

(STRFs) using fMRI. The method uses spectrotemporal modulation filtering, a form of acoustic 

distortion that renders speech sometimes intelligible and sometimes unintelligible. Using this 

method, we found significant STRF responses only in classic auditory regions throughout the 

superior temporal lobes. However, our analysis was not optimized to detect small clusters of 

STRFs as might be expected in non-auditory regions. Here, we re-analyze our data using a 

more sensitive multivariate statistical test for cross-subject alignment of STRFs, and we identify 

STRF responses in non-auditory regions including the left dorsal premotor cortex (dPM), left 

inferior frontal gyrus (IFG), and bilateral calcarine sulcus (calcS). All three regions responded 

more to intelligible than unintelligible speech, but left dPM and calcS responded significantly 

to vocal pitch and demonstrated strong functional connectivity with early auditory regions. Left 

dPM’s STRF generated the best predictions of activation on trials rated as unintelligible by 

listeners, a hallmark auditory profile. IFG, on the other hand, responded almost exclusively to 

intelligible speech and was functionally connected with classic speech-language regions in the 

superior temporal sulcus and middle temporal gyrus. IFG’s STRF was also (weakly) able to 

predict activation on unintelligible trials, suggesting the presence of a partial ‘acoustic trace’ in the 

region. We conclude that left dPM is part of the human dorsal laryngeal motor cortex, a region 

previously shown to be capable of operating in an ‘auditory mode’ to encode vocal pitch. Further, 
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given previous observations that IFG is involved in syntactic working memory and/or processing 

of linear order, we conclude that IFG is part of a higher-order speech circuit that exerts a top-down 

influence on processing of speech acoustics. Finally, because calcS is modulated by emotion, we 

speculate that changes in the quality of vocal pitch may have contributed to its response.
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1. Introduction

Two decades ago, Buchsbaum et al. (2001) used functional magnetic resonance imaging 

(fMRI) to characterize a left-hemisphere network of regions in the posterior temporal and 

inferior frontal lobes that responded reliably during both perception and covert production 

of speech. The posterior superior temporal sulcus (pSTS) and dorsal speech-premotor cortex 

(dPM) responded relatively more during perception and production, respectively, while a 

region in the posterior Sylvian fissure (Spt) and the pars opercularis of the inferior frontal 

gyrus (pOP) responded roughly equally to perception and production of speech. The results 

were interpreted largely as evidence that auditory regions (pSTS) interface with articulatory 

regions (dPM) via an intermediary auditory-motor network (Spt to pOP) in service of speech 

production. The same network was later identified using sub-vocal repetition of speech and 

tonal melodies (Hickok, Buchsbaum, Humphries, & Muftuler, 2003). Wilson et al. (2004) 

independently demonstrated that listening to speech activates Spt, pOP and dPM. In contrast 

to the earlier studies, the authors interpreted their finding as evidence for a role of the 

motor cortex in speech perception. Indeed, they showed that overlapping regions of dPM 

were activated during perception and production of speech. The studies by Buchsbaum et al. 

(2001) and Wilson et al. (2004) both noted significant activation to heard speech in dPM for 

every single subject. A later meta-analysis by Buchsbaum and colleagues (Buchsbaum et al., 

2011) found the cross-subject peak (overlap analysis) of regions activating to both speech 

perception and production was located in the dPM at Montreal Neurological Institute (MNI) 

coordinate [−51, −9, 42]. The average center of mass for perception-related activations in 

dPM noted by Wilson et al. (2004) was at MNI coordinate [−50, −6, 47] (see Figure 7, 

Discussion).

Despite the similarity of these findings, the study by Wilson et al. (2004) was cited more 

widely among studies on speech perception and became a major precipitant to years of 

renewed interest in the role of the motor cortex in speech perception (cf., D’Ausilio, 

Craighero, & Fadiga, 2012; Peelle, 2012; J. E. Peelle, I. S. Johnsrude, & M. H. Davis, 2010; 

Poeppel & Assaneo, 2020; Pulvermuller & Fadiga, 2010; Skipper, Devlin, & Lametti, 2017; 

Tremblay & Small, 2011). Overall, this more recent research has coalesced around analysis­

by-synthesis (Bever, 2010; Skipper, Nusbaum, & Small, 2005) and Bayesian inference 

(Moulin-Frier, Diard, Schwartz, & Bessière, 2015) frameworks in which heard (or seen) 

speech is, at some level, re-encoded in terms of the articulatory commands used to generate 

the speech signal in order to form perceptual hypotheses that constrain the analysis and 

interpretation of incoming speech sounds. While several researchers have dismissed the 
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notion that such mechanisms are a core component of speech perception (Hickok, 2010; 

Holt & Lotto, 2008; Rogalsky et al., 2020; Scott, McGettigan, & Eisner, 2009; Venezia & 

Hickok, 2009), it has been acknowledged that motor speech circuits likely play a small, 

modulatory role in certain listening situations (Stokes, Venezia, & Hickok, 2019).

An alternative computational account of the motor system’s involvement in speech 

perception is that some motor regions process heard speech in terms of its auditory 

features, without necessarily translating heard speech into motor commands. Specifically, 

recent studies show that pre- and primary-motor speech regions fail to discriminate 

among heard syllables in terms of their articulatory features (i.e., place of articulation; 

Arsenault & Buchsbaum, 2016; Cheung, Hamilton, Johnson, & Chang, 2016). However, 

a region within dPM discriminates among heard syllables based on features that are 

acoustically well defined (i.e. manner of articulation), shows auditory-like tuning to the 

spectrotemporal modulations in continuous speech, and tracks time-varying acoustic speech 

features including the spectral envelope, rhythmic phrasal structure, and pitch contour 

(Berezutskaya, Baratin, Freudenburg, & Ramsey, 2020; Cheung et al., 2016). Chang and 

colleagues (Breshears, Molinaro, & Chang, 2015; Dichter, Breshears, Leonard, & Chang, 

2018) have shown convincingly that this region is part of the human dorsal laryngeal 

motor cortex (dLMC; cf., Brown, Ngan, & Liotti, 2008) and has both auditory and motor 

representations of vocal pitch. Among primates, the dLMC is unique to humans and likely 

evolved to provide voluntary control of the larynx (Belyk & Brown, 2017; Dichter et al., 

2018; Simonyan, 2014). It has been suggested that the dLMC contains sulcal (BA 4) and 

gyral (BA 6) components (Brown, Yuan, & Belyk, 2020). The seminal study by Brown and 

colleagues (2008) puts the left-hemisphere peak of the gyral component at MNI coordinate 

[−54, −2, 46] (see Figure 7, Discussion).

To summarize, we and others have long recognized dPM as an important node in the 

auditory-motor “dorsal stream” that responds during both perception and production (Chen, 

Penhune, & Zatorre, 2009; Hickok & Poeppel, 2004). Initially, we dismissed dPM’s 

response to heard speech as somewhat trivial given that feedforward auditory-to-motor 

activation is expected within the dorsal stream where auditory representations serve as 

the “targets” for speech production (Venezia & Hickok, 2009). However, recent research 

suggests that speech is represented differently in dPM depending on whether speech is 

perceived or produced. This may relate to the fact that dPM is located within the dLMC, 

which some researchers have identified as playing crucial role in integrating phonation with 

other aspects of speech motor control (Belyk & Brown, 2017; Brown et al., 2020). We 

have independently suggested that dPM is part of the cortical circuit for laryngeal motor 

control (Hickok, 2017). Therefore, one hypothesis is that dPM responds to multiple aspects 

of speech motor control during production (Belyk et al., 2020; Cheung et al., 2016) but 

responds preferentially to pitch/voicing during perception (Cheung et al., 2016), which may 

owe to the presence of non-identical subpopulations of neurons coding auditory and motor 

features, respectively, as is typical of brain regions involved in sensorimotor integration 

(Sakata, Taira, Murata, & Mine, 1995).

We recently developed a method called Auditory Bubbles to estimate speech-driven 

spectrotemporal receptive fields (STRFs) using fMRI (Venezia, Thurman, Richards, & 
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Hickok, 2019b). Using this method, we detected widespread and reliable responses to 

spectrotemporal speech features in the auditory core and immediate surrounds, superior 

temporal gyrus/sulcus, and planum temporale. We did not detect such responses beyond 

these classic auditory-speech regions, e.g., in inferior frontal or speech motor regions. 

However, spectrotemporal responses were quantified at the second (group) level using 

univariate statistical methods that were not optimized to detect less robust spectrotemporal 

responses in focal brain regions such as the dPM/dLMC (cf., Cheung et al., 2016). Here, 

we develop a new multivariate analysis for Auditory Bubbles – and applicable to any 

related feature-encoding method – that maximizes sensitivity to spectrotemporal responses 

while maintaining full statistical rigor at the second level. Note, here and elsewhere we use 

‘multivariate’ to refer to statistical analysis of linear-encoding-model ‘weights’ associated 

with stimulus features in a multidimensional space, not to incorporation of information from 

multiple neighboring voxels such as in multivoxel pattern analysis. Using this technique, 

we re-analyze our original dataset with the intention of revealing STRF-like responses in 

inferior frontal speech-motor regions. To preview, we indeed find such responses in the two 

frontal regions previously identified as responding to heard speech: left dPM and left inferior 

frontal gyrus (IFG). Of note, Auditory Bubbles estimates STRFs in the spectrotemporal 

modulation domain (Figure 1). To improve the efficiency of STRF estimation, Auditory 

Bubbles introduces acoustic variation into the speech signal via spectrotemporal modulation 

filtering, rendering the filtered speech sometimes intelligible and sometimes unintelligible. 

Thus, Auditory Bubbles is uniquely positioned to answer several outstanding questions 

about the computations performed in left dPM and IFG during perception of continuous 

speech: (a) what acoustic-speech information are these regions sensitive to and how does 

this relate to information encoded at early and late stages of auditory processing in classic 

temporal lobe regions?; (b) do these patterns interact with speech intelligibility?; and (c) 

how well can spectrotemporal response properties be used to predict activation in inferior 

frontal versus temporal speech regions for speech that is (un-)intelligible?

In principle, responses to heard speech in IFG and dPM could reflect auditory, motor, 

or auditory-motor processing. We aimed to characterize these responses in the STRF 

domain using a series of follow-up analyses to disentangle fundamentally auditory responses 

from motor, auditory-motor, or other higher-level (i.e., speech-specific) responses. Our 

confidence in interpreting a response as auditory increases if the following hold true: (i) 

a significant STRF-like response is observed, given that, generally, responses to speech 

in the spectrotemporal modulation domain are more likely to reflect processing of auditory­

phonetic speech cues than processing at the articulatory-phonetic, phonological, or some 

other higher level; (ii) within the STRF, a significant response to vocal pitch is observed, 

given that vocal pitch is acoustically well defined in the spectrotemporal modulation domain 

(Figure 1); and (iii) an STRF-like response is observed within trials rated as unintelligible 

by the listener (i.e., when speech is not processed as speech per se), given that the ability 

to extract speech-motor or other speech-specific cues is greatly reduced when the presence 

of such cues in the signal is, by definition, diminished. Finally, for a given non-auditory 

region, confidence that its response is auditory-driven is further increased if that region is 

functionally connected to early auditory regions rather than higher-level auditory regions 

that respond selectively to intelligible speech.
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Briefly, we find that responses in left IFG are primarily driven by spectotemporal features 

that mediate speech intelligibility (i.e., its properties mirror a classic intelligible vs. 

unintelligible contrast; Narain et al., 2003; Okada et al., 2010), while those in left dPM are 

driven by additional spectrotemporal features including, most notably, features associated 

with vocal pitch, though both regions are better activated by intelligible than unintelligible 

speech. In addition, both regions show some level of response to surface-level acoustic 

characteristics within trials rated as unintelligible by listeners, but this response is more 

pronounced in left dPM compared to left IFG. Interestingly, sensitivity to vocal pitch 

in left dPM emerges only within unintelligible trials. Finally, though both regions show 

functional connectivity with regions in the auditory cortex, left dPM is maximally correlated 

with regions in and around Heschl’s gyrus while left IFG is maximally correlated with 

downstream speech regions in the superior temporal gyrus/sulcus and middle temporal 

gyrus. We also report evidence that the bilateral early visual cortex shows STRF-like 

responses and patterns of functional connectivity similar to left dPM. In the Discussion, 

we clarify how these response profiles differ and speculate as to the role, if any, of visual 

regions in auditory speech processing.

2. Materials and Methods

2.1 Overview

A detailed description of the materials and methods is given by Venezia et al. (2019b). 

Here, we recapitulate only those methodological details necessary to understand the study, 

but we describe in full detail the present re-analysis of the data. In this overview section, 

we describe the Auditory Bubbles method and its use in fMRI to estimate speech-driven 

spectrotemporal receptive fields (STRFs). Auditory Bubbles falls within the class of 

techniques referred to as ‘relative weights’ or ‘reverse correlation’ in the psychoacoustic 

and/or neurophysiological literatures (Klein, Depireux, Simon, & Shamma, 2000; Matiasek 

& Richards, 1999), and as ‘encoding models’ in the fMRI literature (Naselaris, Kay, 

Nishimoto, & Gallant, 2011). In the context of neurophysiological responses to complex 

natural sounds such as speech, this class of methods is used to estimate STRFs (Theunissen 

& Elie, 2014). In typical STRF estimation, natural variation in the acoustic envelope of 

individual spectral bands is mapped to a time-locked neurophysiological response (e.g., a 

spike train) using a deconvolutional linear model. The STRF comprises the model weights, 

which describe the spectrotemporal patterns that best activate a given unit of analysis 

(neuron, voxel, electrode, etc.). The STRF can be visualized as an ‘impulse-response 

spectrogram’ with a time axis (abscissa) centered on time zero (impulse onset) and 

a frequency axis (ordinate) spanning the range of frequencies present in the stimulus. 

Alternatively, the STRF can be transformed into rate-scale space via the two-dimensional 

Fourier transform (Theunissen & Elie, 2014), such that best responses are described in terms 

of temporal (abscissa) and spectral (ordinate) modulations.

In fMRI, rate-scale STRFs must be estimated directly in the rate-scale space because 

sampling of the neurophysiological signal is much slower than the relevant temporal 

modulation rates in natural sounds (and sampling is often temporally sparse as well; Santoro 

et al., 2014; Venezia et al., 2019b). In other words, the acoustic stimulus must first be 
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transformed to rate-scale space prior to the linear modeling phase of STRF estimation. 

This is the approach taken by Auditory Bubbles, though we take the additional step of 

introducing artificial acoustic variation into the stimulus by applying a filter in the rate-scale 

domain. This improves the efficiency of STRF estimation while introducing some acoustic 

distortion, where the latter has advantages (e.g., allows for a calibrated behavioral task) 

and disadvantages (e.g., makes the stimulus sound less natural). Here, we refer to the rate­

scale representation of sounds as the modulation power spectrum (MPS). Briefly, Auditory 

Bubbles applies a binary filter to the MPS of acoustic speech stimuli – typically sentences 

– such that contiguous segments of the MPS are either retained in the stimulus or removed. 

The shape of the filter, which determines the MPS segments that will be retained/removed, 

is determined quasi-randomly. A different filter is applied to each sentence in the stimulus 

set, and the filtered sentences are presented sequentially to a listener in the MRI scanner. 

After scanning, the filters themselves – each summarizing the spectrotemporal patterns 

retained in each sentence – are weighted by the response elicited by the corresponding 

sentence and summed to produce a STRF. Essentially, the weighted sum is a linear model 

(cf., Venezia, Hickok, & Richards, 2016; Venezia, Leek, & Lindeman, 2020; Venezia, 

Martin, Hickok, & Richards, 2019a) whose predictors are the binary filters and whose 

criterion is the sentence-by-sentence fMRI response magnitude (i.e., event-related beta time 

series). A schematic of this process is shown in Figure 1C. Notably, Auditory Bubbles 

obtains the MPS from sentence spectrograms with a linear frequency axis, which results 

in speech energy clustering in two locations of the MPS – a high-spectral-modulation-rate 

region associated with vocal pitch and a low-spectral-modulation-rate region associated with 

phonetic content (roughly formant-scale features; Figure 1A). Thus, STRFs estimated with 

Auditory bubbles also cluster in these two regions of the MPS.

2.2 Participants

There were ten participants (mean age = 26, range = 20–33, 2 females) all of whom were 

right-handed, native speakers of American English with self-reported normal hearing and 

normal or corrected-to-normal vision. The participants all gave their informed consent in 

accordance with the University of California, Irvine Institutional Review Board guidelines.

2.3 Stimuli

The stimuli were recordings of 452 sentences from the Institute of Electrical and Electronics 

Engineers (IEEE) sentence corpus (IEEE, 1969) spoken by a single female talker. Each 

sentence was stored as a separate .wav file digitized at 22050 Hz with 16-bit quantization 

and the waveforms were zero-padded to an equal duration of 3.29 s. The stimuli were 

then filtered to remove randomly selected segments of the MPS (Figure 1B). Specifically, 

a log spectrogram was obtained using Gaussian windows with a 4.75 ms-33.5 Hz time­

frequency scale and the MPS was then obtained as the modulus of the two-dimensional 

Fourier transform of the spectrogram. A binary “bubbles” filter was then multiplied with 

the MPS and the filtered waveform was obtained via inverse Fourier transform and iterative 

inversion of the resultant magnitude spectrogram (Griffin & Lim, 1984; Theunissen & Elie, 

2014). Specifically, a 2D image of the same dimensions as the MPS was created with a 

set number of randomly selected pixel locations assigned the value 1 and the remainder 

of pixels assigned the value 0. A symmetric Gaussian low-pass filter (sigma = 7 pixels) 
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was then applied to the image and all resultant values above 0.1 were set to 1 while the 

remaining values were set to 0. This produced a binary image with several contiguous 

regions with value 1. A second Gaussian low-pass filter (sigma = 1 pixel) was applied 

to smooth the edges between 0- and 1-valued regions, producing the final 2D filter. The 

number of pixels originally assigned a value of 1 corresponds to the number of “bubbles” in 

the filter. It is noteworthy that the low-pass form of the bubbles filters propagates to STRFs 

estimated from those filters (see Section 2.7.1), resulting in smoother STRFs than might be 

obtained from methods such as autocorrelation-normalized reverse correlation or boosting 

(David, Mesgarani, & Shamma, 2007; Theunissen, Sen, & Doupe, 2000). For each of the 

452 sentences, filtered versions were created using independent, randomly generated filter 

patterns. This renders some filtered items unintelligible while others remain intelligible. 

Separate sets of filtered stimuli were created using different numbers of bubbles (20–100 

in steps of five), producing a total of 7684 filtered sentences. All stimuli were generated 

offline and stored prior to the experiment. The average proportion of the MPS revealed to 

the listener is ~ 0.25 for 20 bubbles and ~ 0.7 for 100 bubbles. Examples of filtered stimuli 

with 50 bubbles are given in Supplementary Audio 1–3 (each presents a filtered sentence 

followed by the unfiltered source).

2.4 Procedure

Participants were presented with filtered sentences during sparse acquisition fMRI scanning. 

On each trial, a single filtered sentence was presented in the silent period (4 s) between 

image acquisitions (2 s). Stimulus presentation was triggered 400 ms into the silent 

period and sentence duration ranged from 1.57–3.29 s (mean = 3.02 s). At the end of 

sentence presentation, participants were visually cued to make a subjective yes-no judgment 

indicating whether the sentence was intelligible or not. The number of bubbles was adjusted 

using an up-down staircase such that participants rated sentences as intelligible on ~ 50% 

of trials. Participants performed 45 trials per run along with 5 trials of a visual baseline 

task that were quasi-randomly intermixed. We originally included the visual baseline 

task so that contrasts such as ‘speech vs. baseline’ would include a meaningful baseline 

condition rather than rest, but here the baseline condition is irrelevant to, and therefore 

not included in, all subsequent analyses. Two participants completed a total of 9 scan runs 

(405 experimental trials) and the remaining eight participants completed a total of 10 scan 

runs (450 experimental trials). Acoustic stimuli were amplified using a Dayton DTA-1 

portable amplifier and presented diotically over Sensimetrics S14 piezoelectric earphones. 

Participants adjusted the volume to a comfortable level slightly above that of conversational 

speech (~75–80 dB SPL).

2.5 Image Acquisition Parameters

Images were acquired at the University of California, Irvine Neuroscience Imaging Center 

using a Philips Achieva 3T MRI scanner with a 32-channel sensitivity encoding (SENSE) 

head. A sparse, gradient-echo EPI acquisition sequence was employed (35 axial slices, 

interleaved slice order, TR = 6 s, TA = 2 s, TE = 30 ms, flip = 90°, SENSE factor = 1.7, 

reconstructed voxel size = 1.875 × 1.875 × 3 mm, matrix = 128 × 128, no gap). Fifty-two 

EPI volumes were collected per scan run. A single high-resolution, T1-weighted anatomical 

image was collected for each participant using a magnetization prepared rapid gradient echo 
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(MPRAGE) sequence (160 axial slices, TR = 8.4 ms, TE = 3.7 ms, flip = 8°, SENSE factor 

= 2.4, 1 mm isotropic voxels, matrix = 256 × 256).

2.6 Preprocessing

Preprocessing of the functional data was performed using AFNI v17.0.05 (Cox, 2012). 

Functional images were slice-timing corrected based on slice time offsets extracted from 

the Philips PAR files, followed by motion correction and co-registration to the T1 

image. The functional data were then mapped to a merged, standard-topology surface 

mesh using Freesurfer v5.3 (Fischl, 2012), AFNI, and the “surfing” toolbox v0.6 (https://

github.com/nno/surfing; Oosterhof, Wiestler, Downing, & Diedrichsen, 2011). The surface­

space data were smoothed to a target level of 4 mm full width at half maximum and 

scaled to have a mean of 100 across time points subject to a range of 0–200. At each 

node in the cortical surface mesh, a beta time series was obtained using the least squares 

separate (LSS) technique (AFNI 3dLSS; Mumford, Turner, Ashby, & Poldrack, 2012). The 

original surface mesh was produced using linear icosahedral tessellation with 128 edge 

divides, resulting in a two-hemisphere mesh with 327684 nodes. To reduce computational 

burden, the surface mesh was subsampled for eight decimation iterations using the function 

surfing_subsample_surface in the surfing toolbox. This produced a new surface mesh with 

78812 nodes. Subsequent analyses were performed on the subsampled surface.

2.7 Analysis

2.7.1 STRF Estimation—The original dimensions of the binary bubbles filters were 

165 × 215 pixels, corresponding to 0–16 cyc/kHz and 0–50 Hz on the MPS. For analysis, 

pixels at MPS locations > 6 cyc/kHz and > 20 Hz were discarded, resulting in filters of size 

67 × 86. These were then vectorized to produce feature vectors of length 5762. To reduce 

the dimensionality of the feature space and eliminate covariance among the individual 

features, an experiment-wide feature matrix was generated by stacking the feature vectors 

across trials and participants. This feature matrix was then submitted to principal component 

analysis (PCA). It was determined that the first 104 components in the orthogonal PCA 

space explained > 95% of the variance in the original feature space. These components 

were thus retained, and the remainder discarded. The resultant, experiment-wide matrix of 

PCA scores, which represented the trial-by-trial bubbles feature vectors in the PCA-reduced 

space, was then split by participant, resulting in 10 participant-level feature matrices. For 

a given participant, this yielded a feature matrix, F, with number of rows equal to number 

of trials completed by that participant and number of columns equal to the number of the 

dimensions in the PCA-reduced feature space (104). At each cortical surface node (voxel­

like unit), the beta time series containing a single estimate of activation magnitude (percent 

signal change) for each bubbles-filtered sentence was z-scored, resulting in a criterion 

matrix, C, with number of rows equal to the number of trials and number of columns equal 

to the number of surface nodes (78812). For each participant, a STRF matrix (i.e., STRF 

brain volume) of dimensions 78812 × 252 was obtained as:

STRF = FTC (1)
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In other words, at each cortical surface node a STRF was calculated as the sum of each 

feature across trials weighted by the z-scored activation on the corresponding trial. Of note, 

STRFs can be obtained in the original, full-resolution feature space by multiplying each 

element of the PCA-reduced STRF with the length-5762 vector of principal component 

weights for the corresponding principal component. We performed this backward projection 

into the original space to generate STRF plots and summary measures (2.7.4), computed 

statistics for second-level STRF alignment in the PCA-reduced space (2.7.3).

2.7.2 STRF Decomposition by Intelligibility—A residualizing procedure was used 

to decompose STRFs into separate components reflecting the neural response to trials with 

the same (what we call “within” STRFs) versus different (what we call “between” STRFs) 

intelligibility ratings. To accomplish this, a regression model with a single effect-coded 

predictor reflecting the behavioral response on each trial (1 = rated as intelligible, −1 = 

rated as unintelligible) was fitted at each cortical surface node where the criterion variable 

was the z-scored beta time series at that node. Two output time series were obtained from 

the regression: (1) the predicted values, y, reflecting the mean activation to intelligible vs. 

unintelligible trials, respectively; and (2) the residuals, r, reflecting activation across trials 

with the main effect of intelligibility removed. Across all cortical surface nodes, this yielded 

two new criterion matrices, Cy and Cr. The matrix Cr was further divided into separate 

matrices, Cr_intel and Cr_unintel, reflecting activation across trials rated as intelligible and 

unintelligible, respectively. The feature matrix, F, was similarly decomposed into Fintel and 

Funintel. Three additional STRF matrices were then obtained as follows:

STRFbetween = FTCy (2)

STRFwitℎin_intel=Fintel
T Cr_intel (3)

STRFwitℎin_unintel=Funintel
T Cr_unintel (4)

This decomposition has the advantage that STRFs obtained from Eq. 1 must be equal to 

the sum of STRFs obtained from Eqs. 2–4. However, we cannot immediately conclude 

that “between” effects of intelligibility reflect high-level speech or linguistic processing, 

nor can we immediately conclude that such effects reflect general acoustic tuning. What is 

certain is that “between” STRFs must, by definition, reflect those MPS regions that support 

intelligibility behaviorally (Venezia et al., 2016; Venezia et al., 2019a; Venezia et al., 2019b). 

Conversely, it is likely that “within” STRFs reflect general acoustic tuning at some level, 

although such tuning may still be modulated by the experimental setting (i.e., stimuli that 

are exclusively speech and a task that requires subjective ratings of the speech according 

to intelligibility). Moreover, the “within” STRFs must, by definition, be biased away from 

those MPS regions described by the “between” STRFs.

2.7.3 Second-Level Assessment of STRF Alignment—The objective of STRF 

analysis at the second level is to determine whether the spectrotemporal response patterns 

exhibited at a given cortical surface node are reliable across subjects. Previously, we took 
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the approach of calculating a t-statistic separately for each STRF feature, applying false 

discovery rate correction across features (Benjamini & Hochberg, 1995), clustering the data 

at corrected p < 0.05, and thresholding at the cluster level by obtaining a null distribution 

of max cluster sizes after sign-flipping the individual-participant STRFs in random order 

(Venezia et al., 2019b). With 10 participants, we previously used all possible sign-flip 

orders to form a null distribution of length 1022 (2^10 – 2). This method was sufficiently 

powered to detect large clusters of voxels with STRFs in the auditory cortex and immediate 

surrounds, but not small clusters that might be expected in nonspeech or speech-motor brain 

regions.

Here, we take an approach similar to Das and colleagues (2020) who used the multivariate, 

one-sample Hotelling T2 test with threshold free cluster enhancement (TFCE; Smith & 

Nichols, 2009) to assess significance of an entire feature vector at the second level. In our 

case, this corresponds to a test for a reliable pattern of STRF responses across participants 

at a given cortical surface node after correcting for multiple comparisons. However, we 

will replace the Hotelling T2 with a recently developed nonparametric alternative (Wang, 

Peng, & Li, 2015) that is appropriate for cases where the dimensionality of the feature 

space is high relative to the number of observations, and where the data may not be 

normally distributed. For a data matrix with n observations of p variables, the asymptotic 

null distribution (n, p → ∞) of the test statistic is standard normal. Thus, for the present 

application, large positive values indicate the individual-participant STRFs at a given 

cortical surface node are reliably concentrated in a similar region of the unit hypersphere and 

large negative values indicate that individual-participant STRFs are uniformly distributed 

about the unit hypersphere. This test statistic, which we shall call Z, was calculated at 

each cortical surface node. A null distribution of Z images was formed by first randomly 

permuting the trial order (rows) of the bubbles feature matrix, F, and then obtaining Z 
(Eq. 1) at each surface node (Stelzer, Chen, & Turner, 2013). In all, 10,000 permutations 

resulted in a null distribution of 10,000 Z images. Figure 2 compares the empirical null 

distribution of Z to the standard normal distribution. Relative to the standard normal, the 

empirical null distribution of Z is right-skewed and highly kurtotic, which is the expected 

behavior under the null when n or p is not sufficiently large. However, this is not problematic 

given we adopted TFCE, a nonparametric approach to cluster-level statistical testing and 

multiple comparison correction. Specifically, the original Z image and the null Z images 

were submitted to TFCE using CoSMoMVPA v1.1.0 (Oosterhof, Connolly, & Haxby, 2016). 

A node-wise, uncorrected p-value image was then obtained as the proportion of null TFCE 

values exceeding the true TFCE value at each node. The resultant p-value image was then 

corrected for multiple comparisons using the false discovery rate procedure (Benjamini & 

Hochberg, 1995; Chumbley, Worsley, Flandin, & Friston, 2010; Leblanc, Dégeilh, Daneault, 

Beauchamp, & Bernier, 2017).

We chose TFCE for cluster-level analysis because: (i) TFCE obviates the requirement to 

choose an initial cluster forming threshold; (ii) TFCE maintains sensitivity to small local 

clusters with strong activation and large, spatially diffuse clusters with relatively weak 

activation, and (iii) TFCE is nonparametric (Smith & Nichols, 2009), which was important 

given the non-Gaussian form of the null distribution of the test statistic (Figure 2). A 

one-tailed test was employed because we were only interested in detecting STRFs with 
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reliably similar – as opposed to reliably dissimilar – response properties across participants. 

Our primary interest was to apply this analysis to STRFs derived from Eq. 1. However, 

uncorrected Z maps were also obtained for STRFs derived from Eqs. 3–4 (“within” STRFs). 

These maps must be interpreted with caution because “within” STRFs are necessarily 

biased, as described above. No Z map was generated for “between” STRFs because the 

values of Z would be overwhelmed by bias resulting in unreliable statistics. For “between” 

STRFs, a map of the maximum STRF amplitude was obtained after averaging the STRFs 

across participants.

2.7.4 Region of Interest Analyses—Our multivariate analysis of STRF alignment 

with TFCE revealed five significant clusters outside the auditory cortex: left dPM, left 

IFG, calcS, right ventral speech-premotor cortex (vPM) and right supplementary motor area 

(SMA). For each of these regions, we obtained the mean value of Z across all nodes in 

the region for the overall STRF (Eq. 1), STRFwithin_intel (Eq. 3), and STRFwithin_unintel 

(Eq. 4). We also obtained the mean across all nodes in the region of the peak pixel 

intensity of STRFbetween (Eq. 2). We then obtained region level averages of STRFbetween, 

STRFwithin_intel, and STRFwithin_unintel. At each pixel in these region-level average STRFs, 

we obtained an importance index by calculating the sum, pixel by pixel, of the absolute pixel 

intensity across the STRF subtypes (STRFbetween, STRFwithin_intel, and STRFwithin_unintel) 

and expressing the contribution to this sum from each subtype as a proportion, resulting in 

three “proportion images”, one for each STRF subtype. We then multiplied these proportion 

images, pixel by pixel, with the absolute value of the region-level average overall STRF 
(Eq. 1). This produced three “importance images” for the three STRF subtypes. To obtain 

an overall measure of importance, the mean across-pixel importance was obtained each 

STRF subtype, and these means were scaled to sum to one. In other words, the importance 

index expresses the relative contribution of each decomposed STRF (Eqs. 2–4) to the overall 

STRF (Eq. 1). These overall importance indices were obtained separately for each region 

of interest. Finally, for each region of interest, we obtained a leave-one-out (LOO) estimate 

of the overall STRF’s ability to predict the region’s beta time series within intelligible 

and unintelligible trials, respectively. Specifically, for each cortical surface node in a given 

region, the beta time series, y, was obtained and a LOO predicted time series, y, was 

calculated as follows. In each LOO iteration, the beta value, yLOO, and feature vector, FLOO, 

from a single trial were held out and STRFLOO was produced from the remaining data using 

Eq. 1. The held-out data point was then predicted using:

yLOO = STRFLOO
T FLOO (5)

Iterating over all trials in order, y was obtained by appending yLOO to the accumulated 

y after each iteration. A Bayesian hierarchical linear mixed model was then employed to 

determine the ability of y to predict y across participants. The form of the model was:

y = intel + yintel1 + yintel0 + intel + yintel1 + yintel0 ∣ sub (6)

where intel is a binary predictor encoding trial-by-trial intelligibility ratings (1 = intelligible, 

0 = unintelligible), yintel1 is the product of intel==1 and y, and yintel0 is the product of 
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intel==0 and y. Prior to fitting the model, y and y were z-scored within each participant. 

In Eq. 6, terms to the right of equality are fixed (non-parenthetical; group level) or random 

(parenthetical; participant level). This model is equivalent to a model with a main effect 

of intel and the two-way interaction of intel and y, but in Eq. 6 the interaction is instead 

coded as simple effects of y within intelligible and unintelligible trials, respectively. Note, 

here and in subsequent Eqs. 7–8, we use R model formula notation in which the names 

of the predictor variables in the fixed and random effects design matrices are specifically 

enumerated, but the associated regression coefficient terms (e.g., β1*intel + β2 * yintel1, etc.) 

are suppressed. The model was fitted using the BayesFactor package v0.9.12–4.2 in R v3.6.1 

(R Core Team, 2019). The prior scale was set to ‘medium’ for fixed effects and ‘nuisance’ 

for random effects. The Bayes factor was obtained for the fixed effects of yintel1 and yintel0
using a model comparison approach (Morey & Rouder, 2011). That is, separate null models 

were fitted without the fixed effects yintel1 and yintel0 , respectively, and a Bayes factor was 

obtained showing the ratio of the evidence in favor of the full model (Eq. 6) versus each null 

model. We refer to these quantities as BFintel and BFunintel, where, controlling for “between” 

effects, values above one reflect increasing evidence that y has some predictive validity 

with respect to y and values below one reflect increasing evidence that y has no predictive 

validity with respect to y. The direction of this predictive validity is ambiguous in the Bayes 

factor and must be determined from the sign of the fixed effects regression coefficients. To 

generate region-level summaries, the geometric means of BFintel and BFunintel were obtained 

across all nodes in the region. For non-auditory regions of interest, we also obtained the 

80th percentile of BFintel and BFunintel across all nodes in the region to identify cases where, 

despite a relatively low geometric mean, a nontrivial proportion (at least 20%) of nodes 

demonstrated high predictive validity.

2.7.5 Beta Time Series Functional Connectivity—For left dPM, left IFG, and 

calcS, we were interested in whether and which auditory cortical regions were functionally 

connected with these non-auditory regions of interest. Therefore, we performed a whole 

brain beta time series functional connectivity analysis for each of these three regions of 

interest. First, the mean beta time series from a given region of interest was extracted and 

z-scored within participants. A first-level linear regression model was then fitted as:

yn = intel + yseed + intel * yseed (7)

where yn is the z-scored beta time series at a given cortical surface node, intel is an 

effect-coded predictor reflecting intelligibility ratings (1 = intelligible, −1 = unintelligible), 

yseed is the z-scored beta time series from the seed region, and ‘*’ denotes the two-way 

interaction. No intercept was included in the model because yn was z-scored. The terms of 

interest in Eq. 7 were yseed and intel * yseed. The first-level regression coefficients for these 

terms were thus analyzed at the second level via one-sample t-test with false discovery rate 

correction (Benjamini & Hochberg, 1995). Second-level connectivity maps were thresholded 

at corrected p < 0.01. For intel * yseed, no significant surface nodes were detected after 

correction for multiple comparisons. Before concluding that no significant interaction of 

connectivity by intelligibility rating was present, we ran an additional Bayesian hierarchical 

model of the form:
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yn = intel + yseed + intel * yseed + intel + yseed + intel * yseed ∣ sub (8)

This model can be interpreted just as Eq. 7, except it has been extended to a hierarchical 

(i.e., first-plus-second level) framework as in Eq. 6. The model was analyzed using the 

BayesFactor package just as explained for Eq. 6. The term of interest was the fixed effect of 

intel * yseed. Therefore, at each cortical surface node we produced a Bayes factor showing 

the ratio of the evidence in favor of the full model (Eq 8) and a null model without the fixed 

effect of intel * yseed. This interaction Bayes Factor map was thresholded at |logBF| > 1.6 

(BFfull > 5 or BFnull > 5) for visualization.

For each of the three seed regions of interest – left dPM, left IFG, calcS – subregions 

of the auditory cortex were identified containing only those surface nodes that (a) were 

significantly correlated with the seed at the second level (yseed in EQ. 7; false-discovery­

rate-corrected p < 0.01) and (b) had second-level correlations with the seed more than one 

standard deviation above the mean among auditory-cortical surface nodes with significant 

STRF alignment. Further, for left dPM and left IFG, subregions of the auditory cortex 

were identified containing only those surface nodes whose second-level interaction of 

seed connectivity by intelligibility rating were significant (Eq. 8, BFfull > 5). For each of 

these auditory-cortical subregions, average STRFs were calculated using Eqs. 1–4, and all 

summary measures described in the ‘Region of Interest Analyses’ subsection were tabulated.

3. Results

3.1 Significant STRF Alignment Beyond the Auditory Cortex

The results of our primary second-level analysis, which probed for reliable cross-subject 

alignment of STRFs (see Eq. 1), are shown in Figure 3A. In the auditory cortex and 

surrounds, this analysis replicated our previous results (Venezia et al., 2019b) with 

significant STRF alignment in the bilateral supratemporal plane, planum temporale, and 

superior temporal gyrus/sulcus (STG/S). Additionally, a new cluster emerged in the right 

pSTS that was disjoint from the main cluster of significant STRF responses in the right 

auditory cortex. This suggests that our analytic method was sensitive enough to detect 

relatively small clusters with strong, selective responses to the spectrotemporal modulations 

in speech. Indeed, unlike our previous result, we also detected small clusters of significant 

STRF responses outside the auditory cortex, with notable clusters in the left dPM, left IFG, 

right SMA, right vPM, and bilateral calcS.

For those cortical surface nodes with significant cross-subject STRF alignment in Figure 

3A, Figure 3B–D plots maps of “decomposed” STRF properties – specifically the maximum 

amplitude of the “between” STRF derived from the contrast of intelligible vs. unintelligible 

speech (Eq. 2), and the strength of STRF alignment within trials rated as intelligible (Eq. 

3) and unintelligible (Eq. 4), respectively. The largest between effects (Figure 3B) were 

observed in classic auditory speech regions including the planum temporale, anterior and 

posterior STG, and dorsal STS bilaterally, as well as the left ventral pSTS and middle 

temporal gyrus. Outside the auditory cortex, the largest between effects were observed in 

the left IFG and right SMA (in fact, right SMA showed a large negative between effect as 
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will be described below). All regions were modulated at least somewhat by intelligibility. 

In general, STRF alignment was poor within trials rated as intelligible (Figure 3C), with 

notable exceptions in the posterior planum temporale and anterior STS bilaterally. Among 

non-auditory areas, modest STRF alignment within intelligible trials was observed only 

in the calcS. A different pattern was observed for unintelligible trials (Figure 3D), where 

strong alignment was observed throughout the supratemporal plane and STG bilaterally. In 

non-auditory areas, the strongest alignment within unintelligible trials was observed in the 

left dPM, and alignment increased in strength within left dPM along a gradient from anterior 

to posterior (i.e., with maximum strength nearest to the central sulcus). Alignment ranging 

in strength from modest to moderate was also observed in the calcS, but STRFs in the other 

non-auditory areas were generally poorly aligned within unintelligible trials.

To visualize STRF responses in non-auditory regions, we obtained regional averages of 

second-level STRFs (overall and decomposed) for left dPM (Figure 4A), left IFG (Figure 

4B), calcS (Figure 4C), right SMA (Figure 4D), and right vPM (Figure 4E). The overall 

STRFs (STRF, Figure 4, left column) are annotated with regional STRF summary measures 

including strength of alignment (Z) and ability to predict activation on held out data 

separately for intelligible (BFintel) and unintelligible (BFunintel) trials. The decomposed 

STRFs (Figure 4, right three columns) are annotated with regional STRF summary 

measures including max amplitude (STRFbetween, second column), strength of alignment 

(Z; STRFwithin_intel and STRFwithin_unintel, right two columns), and relative importance 

(all decomposed STRFs, right three columns). Several patterns are noteworthy. First, all 

five non-auditory regions were strongly driven by MPS patterns associated with speech 

intelligibility (0–10 Hz, 0–2 cyc/kHz) as visible in STRF and STRFbetween. However, this 

pattern was positive (intelligible > unintelligible) in left dPM, left IFG, and calcS, and 

negative (unintelligible > intelligible) in right SMA and right vPM. A negative STRF region 

reflects increased activation when that region of the MPS was removed from the signal. 

In other words, right SMA and right vPM activated more strongly when speech was more 

distorted, indicating a top-down or difficulty-driven response profile. Since this profile was 

not of primary interest, right SMA and right vPM will not be discussed further. Second, 

among the three regions with positive STRFs, left IFG responded most prominently to 

MPS patterns associated with intelligibility, while left dPM and calcS responded to MPS 

patterns associated with intelligibility and MPS patterns associated with vocal pitch (see 

Figure 1A). Indeed, left IFG had a larger amplitude in and more relative importance ascribed 

to STRFbetween compared to left dPM and calcS. Third, left dPM and calcS showed a 

non-trivial level of cross-subject alignment in STRFwithin_unintel, while left IFG did not; this 

was driven largely by reliable responses to vocal pitch, but to a lesser extent by responses 

to low spectral modulation rates (0–2 cyc/kHz) at relatively high temporal modulation 

rates (5–15 Hz). Interestingly, calcS showed a similar response profile in STRFwithin_intel, 

but left dPM and left IFG, like most of the auditory cortex, did not demonstrate strong 

STRF responses within intelligible trials. Relative importance was spread rather evenly 

across STRFbetween, STRFwithin_intel, and STRFwithin_unintel in calcS; in left IFG relative 

importance was weighted heavily toward STRFbetween, while in left dPM relative importance 

was weighted heavily toward STRFbetween and STRFwithin_unintel. The only regions in 

which LOO-predicted activation was significantly associated with true activation within 
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unintelligible trials was left dPM (geometric mean of BFunintel = 4.1, 80th percentile = 

43.6). However, this association was also present in a nontrivial proportion of surface nodes 

in left IFG (80th percentile of BFunintel = 7.7). LOO-predicted activation was significantly 

associated with true activation within intelligible trials in calcS (geometric mean of BFIntel = 

8.4, 80th percentile = 91.0) and in a nontrivial proportion of surface nodes in left dPM (80th 

percentile of BFIntel = 13.9). However, inspection of the fixed effects regression coefficients 

in the LOO-predictive models revealed this association to be negative within intelligible 

trials. This means that STRF weights in calcS and left dPM should be sign-reversed in at 

least some subregion of the MPS to yield accurate predictions within intelligible trials.

3.2 Beta Time Series Functional Connectivity

The primary motivation behind our functional connectivity analysis was to determine for 

each of the non-auditory regions with positive-valued STRFs – left dPM, left IFG, and 

calcS – whether and which areas of the auditory cortex were significantly correlated in their 

activation patterns across the course of the experiment. Secondarily, we wanted to know 

whether such patterns of functional connectivity were modulated by intelligibility. To these 

ends, we conducted whole brain regressions at the first level with non-auditory seed time 

series, binary intelligibility judgments, and their two-way interaction as predictors. The seed 

time series and intelligibility-by-seed interaction were the predictors of interest. In fact, 

the seed was significantly correlated with activation time series in the auditory cortex for 

all three regions of interest (Figure 5A–C). For left dPM and calcS, maximal correlations 

were observed in Heschl’s gyrus/sulcus and the immediately adjacent STG. Conversely, 

for left IFG maximal correlations were observed in the lateral/ventral STG, STS, and 

middle temporal gyrus. Moreover, left dPM and calcS were correlated with widespread 

sensorimotor networks across much of the cortical surface, while left IFG was correlated 

with a more restricted network of classic peri-Sylvian and inferior frontal speech-language 

networks. Together, these findings suggest that left dPM and calcS operate at a lower 

hierarchical level of information processing than left IFG.

For the intelligibility-by-seed interaction, no significant effects were detected at the chosen 

threshold of FDR-corrected p < 0.01. Therefore, we conducted a follow-up Bayesian 

analysis on the interaction effect to determine the extent to which the evidence favored 

the null hypothesis (no interaction) versus the alternative hypothesis (presence of an 

interaction). The results of a Bayesian hierarchical regression model are plotted for left 

dPM and left IFG in Figure 5D and Figure 5E, respectively. Specifically, the whole-brain 

plots show maps of the log Bayes factor (logBF) for the fixed (group-level) effect of the 

two-way interaction, where negative values reflect evidence in favor of the null and positive 

values reflect evidence in favor of the alternative. The maps are thresholded at |logBF| > 

1.6 (BFfull > 5 or BFnull > 5). In general, evidence favored the null (negative logBF) across 

most of the cortical surface for both left dPM and left IFG. However, evidence in favor of 

the alternative was observed in some regions of the auditory cortex for both left dPM and 

left IFG. For left dPM, these effects were maximal in the left STG just lateral to Heschl’s 

gyrus. For left IFG, these effects were maximal in regions of the STG lateral and posterior 

to those observed for left dPM. In both cases, inspection of the regression coefficients 

showed that significant interactions were driven by relatively greater functional connectivity 
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with the seed on unintelligible versus intelligible trials. Similar patterns were observed for 

calcS (not shown) but without any substantial evidence in favor of the alternative within the 

auditory cortex. In general, widespread evidence in favor of the null suggests that effects 

were dominated by intrinsic connectivity with the seeds in the broader functional context of 

speech processing (regardless of intelligibility).

3.3 STRFs in Auditory Regions Identified via Functional Connectivity

To visualize the STRF properties of the auditory regions that were maximally functionally 

connected to our non-auditory regions of interest (left dPM, left IFG, and calcS), we 

obtained second level average STRFs for auditory regions that (a) were significantly 

correlated with the seed at the second level and (b) had second-level correlations with 

the seed more than one standard deviation above the mean among those auditory-cortical 

surface nodes with significant cross-subject STRF alignment. These regional average STRFs 

are plotted in Figure 6A–C, each annotated with regional summary measures as in Figure 

4. It is immediately apparent that the results pattern just as in Figure 4. Specifically, just as 

for left IFG, the auditory regions most correlated with left IFG responded primarily to MPS 

regions associated with speech intelligibility as indicated by increased relative importance/

amplitude for STRFbetween and relatively decreased (but still significant) alignment for 

STRFwithin_unintel. On the other hand, just as for left dPM and calcS, the auditory regions 

most correlated with left dPM and calcS responded to MPS regions associated with both 

intelligibility and vocal pitch. In this case, pitch responses were driven almost entirely by 

STRFwithin_unintel, which mirrors the pattern in left dPM but not calcS which also responded 

to pitch in STRFwithin_intel. In other words, auditory regions that responded strongly to 

pitch (Figure 6A–B) only did so within trials rated as unintelligible by the listeners. The 

strength of this response was much greater in auditory regions than in left dPM and calcS 

(Z ~= 10 vs. Z ~= 2). Auditory regions that did not respond strongly to pitch (Figure 6C) 

were similar to left dPM in terms of the strength of cross-subject STRF alignment within 

unintelligible trials (Figure 4A; Z = 2.6 vs. Z = 2.4). For all these auditory regions (Figure 

6A–C), there was a strong effect of speech intelligibility (large amplitude for STRFbetween) 

yet negligible STRF responses within intelligible trials (STRFwithin_intel). Correspondingly, 

LOO predictions for all auditory regions were significant within unintelligible (all BFunintel 

> 1e3) but not intelligible trials (all BFintel <= 1). In general, BFunintel was orders of 

magnitude larger in these auditory regions than in their corresponding non-auditory regions, 

though this effect was more pronounced for the early auditory regions connected to left dPM 

and calcS than for the downstream auditory regions connected to left IFG. This suggests 

BFunintel is a good proxy of the extent to which a given region has auditory-like properties 

(i.e., acoustically driven STRF responses that explain a relatively large proportion of signal 

variance).

We also obtained regional average STRFs for those auditory regions whose functional 

connectivity with the seed region (in this case, left dPM and left IFG) was significantly 

modulated by speech intelligibility (Figure 6D–E). These regions, located in more dorsal 

versus more ventral regions of the STG lateral to Heschl’s gyrus for left dPM and left 

IFG, respectively, showed a very similar response profile to the auditory regions that were 

maximally correlated with left dPM (Figure 6A). Specifically, STRFs exhibited responses 
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to MPS regions associated with both intelligibility and vocal pitch, strong responses were 

observed for STRFwithin_unintel but not STRFwithin_intel, and strong effects of intelligibility 

(large amplitude for STRFbetween) were counterbalanced by a large relative importance for 

STRFwithin_unintel. As with the auditory areas defined by the main effect of connectivity, 

LOO predictions were significant for unintelligible trials (both BFunintel > 5e7) but not 

intelligible trials (both BFintel <= 0.9). These effects are unsurprising given that the 

interaction of functional connectivity with intelligibility was driven by relatively stronger 

connectivity within unintelligible trials. In other words, we would expect such effects to 

localize to relatively early auditory regions whose STRF responses are more acoustically 

driven. However, pitch responses and strength of alignment in STRFwithin_unintel were both 

relatively larger in auditory regions for which this interaction was present with left dPM 

(Figure 6D) than with left IFG (Figure 6E), which suggests that while both left dPM and 

left IFG receive input from acoustically driven regions of auditory cortex, left dPM receives 

such input from earlier and more strongly acoustically driven auditory regions. However, 

BFunintel was extremely large for both interaction-defined auditory regions, suggesting a 

predominantly acoustically driven response in both cases.

4. Discussion

In the present study, we re-analyzed fMRI data from which speech-driven spectrotemporal 

receptive fields (STRFs) could be estimated in young, normal-hearing listeners (Venezia et 

al., 2019b). Specifically, we developed a multivariate analysis combined with threshold free 

cluster enhancement to increase sensitivity to cross-subject STRF alignment at the second 

level, with the intention of revealing STRF responses beyond classical auditory-speech 

regions in the superior temporal lobe. Indeed, our primary analysis replicated our earlier 

findings in superior temporal regions (Venezia et al., 2019b) while identifying five non­

auditory regions with reliable STRF alignment at the second level (Figure 3): left dorsal 

speech-premotor cortex (dPM), left inferior frontal gyrus (IFG), bilateral calcarine sulcus 

(calcS), right supplementary motor area (SMA), and right ventral speech-premotor cortex 

(vPM). Of these, right SMA and right vPM were shown to have a negative response to 

MPS regions associated with intelligible speech (Figure 4), suggesting a top-down profile in 

which these regions activate with increasing distortion of the acoustic speech signal and thus 

with increasing difficulty of speech recognition. Though such a response profile is surely of 

interest in the context of speech recognition in background noise (cf., Binder, Liebenthal, 

Possing, Medler, & Ward, 2004), it does not reflect canonical, auditory-like STRF responses 

which were of primary interest here. Therefore, these regions will not be discussed further. 

However, it is notable that this finding dovetails with a growing body of evidence suggesting 

that motor speech areas play a role in the processing of degraded speech (D’Ausilio et al., 

2012; Du, Buchsbaum, Grady, & Alain, 2014, 2016; Erb & Obleser, 2013; Evans & Davis, 

2015; J. E. Peelle, I. Johnsrude, & M. H. Davis, 2010; Szenkovits, Peelle, Norris, & Davis, 

2012; Wild et al., 2012). The remaining three non-auditory regions – left dPM, left IFG, 

and calcS – showed auditory-like STRF profiles though with several important differences 

between them.

In our previous publication of this data set (Venezia et al., 2019b), we found that a 

defining characteristic of early auditory areas in the supratemporal plane was sensitivity 
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to MPS regions associated with vocal pitch in addition to MPS regions associated with 

speech intelligibility, whereas intelligible speech much more selectively drove responses 

in downstream regions of the STG/S. Here, we observed similar patterns in non-auditory 

regions, with left dPM and calcS responding well to vocal pitch and intelligible speech while 

left IFG responded more selectively to intelligible speech (Figure 4). Interestingly, calcS 

responded to vocal pitch within both intelligible and unintelligible trials, while left dPM 

responded to vocal pitch only within unintelligible trials (Figure 4, compare STRFwithin_intel 

to STRFwithin_unintel). However, the STRFs estimated within calcS were not able to generate 

good leave-one-out (LOO) predictions of activation within unintelligible trials, a hallmark 

auditory profile. On the other hand, the STRFs estimated within left dPM were able to 

generate good LOO predictions within unintelligible trials (geometric mean of BFunintel = 

4.1, 80th percentile = 43.6), and the STRFs estimated within left IFG were able to generate 

marginally good LOO predictions within unintelligible trials (geometric mean of BFunintel = 

1.4, 80th percentile = 7.7).

In our beta time series functional connectivity analysis, left dPM and calcS were maximally 

connected with early auditory regions in the supratemporal plane, while left IFG was 

maximally correlated with downstream regions in the STG/S and middle temporal gyrus 

(Figure 5, A–C). As expected, and consistent with our prior publication (Venezia et 

al., 2019b), the STRFs in these auditory regions mirrored those in their non-auditory 

counterparts: sensitivity to vocal pitch and intelligible speech in the auditory regions 

maximally connected with left dPM and calcS, and more selective responses to intelligible 

speech in the auditory regions maximally connected with left IFG (Figure 6, A–C). All 

of these auditory regions showed strong STRF responses within unintelligible but not 

intelligible trials, and their STRFs generated good LOO predictions within unintelligible 

but not intelligible trials. However, these effects were stronger in the early auditory regions 

connected with left dPM and calcS than in the STG/S regions connected with left IFG. 

Interestingly, connectivity with auditory regions was modulated by intelligibility for left 

dPM and left IFG but not calcS. Regions of the STG just lateral to Heschl’s gyrus were more 

strongly connected with left dPM and left IFG within unintelligible trials (Figure 5, D–E). 

These effects localized to slightly more dorsal STG regions for left dPM relative to left IFG. 

In general, these STG regions responded similarly to the early auditory regions connected 

with left dPM and calcS, though the response to vocal pitch was larger in STG regions 

showing an intelligibility-by-connectivity interaction with left dPM relative to those showing 

such an interaction with left IFG (Figure 6, D–E). The STRFs in these regions generated 

very good LOO predictions of activation but only within unintelligible trials.

Taken together, these results suggest that only left dPM demonstrated a clear “auditory­

like” response profile. Like early auditory regions, left dPM responded to both vocal 

pitch and intelligible speech, responded to vocal pitch primarily within unintelligible trials, 

demonstrated strong cross-subject STRF alignment within unintelligible but not intelligible 

trials, and generated good LOO predictions within unintelligible trials. Moreover, left 

dPM was maximally connected with early auditory regions and showed an increase in 

connectivity with certain early auditory regions on unintelligible trials during which vocal 

pitch more strongly activated those auditory regions. On the other hand, left IFG did not 

respond strongly to vocal pitch, generated only marginally good LOO predictions within 
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unintelligible trials, and was maximally connected with downstream auditory regions that 

did not strongly encode vocal pitch. Finally, calcS responded to vocal pitch and was 

maximally connected with early auditory areas that strongly responded to pitch, but unlike 

in auditory regions this pitch response was not restricted to unintelligible trials. Moreover, 

calcS generated poor LOO predictions within unintelligible trials, which suggests that while 

activation in calcS was modulated by the relative presence or absence of vocal pitch, this 

modulation accounted for a trivial proportion of the overall signal variance. Like their 

auditory counterparts, all three non-auditory regions were strongly modulated by speech 

intelligibility (Figures 4/6, STRFbetween). Below, we explore what these patterns suggest 

about the computational roles played by these non-auditory regions during perception of 

continuous speech.

4.1 Left dPM: Sensitivity to Vocal Pitch in the Dorsal Laryngeal Motor Cortex

In the Introduction, we identified two prominent fMRI studies showing that a region of the 

left dorsal premotor cortex activates during speech perception and production (Buchsbaum 

et al., 2001; Wilson et al., 2004). We also noted subsequent work showing that the same 

region is part of a precentral/central complex that forms the human dorsal laryngeal motor 

cortex or ‘dLMC’ (Brown et al., 2008). In the present study, we found that left dPM exhibits 

auditory-like STRF properties including a substantial response to vocal pitch. In Figure 

7, we reproduce the lateral left hemisphere plot from Figure 3A showing regions with 

significant cross-subject STRF alignment, here overlaid with 2mm spheres at the peak dorsal 

premotor coordinates from Buchsbaum et al. (2001), Wilson et al. (2004), and Brown et al. 

(2008). Considering the different samples and methods employed in these studies together 

with the fact that second level analysis introduces a degree of anatomical uncertainty, the 

proximity of activations across studies is, in our view, compelling support for a common 

underlying mechanism. Indeed, we suggest that left dPM, as identified in the present study, 

is the gyral component of the left dLMC.

Recent work suggests there is a dual representation of the larynx in human motor cortex, 

with a more ventral, premotor representation in the posterior frontal operculum (vLMC), 

and a more dorsal, primary motor representation in the central sulcus (dLMC) with close 

proximity to the primary motor representation of the lips (Bouchard, Mesgarani, Johnson, & 

Chang, 2013; Breshears et al., 2015; Chang, Niziolek, Knight, Nagarajan, & Houde, 2013; 

Dichter et al., 2018; Eichert, Papp, Mars, & Watkins, 2020; Galgano & Froud, 2008; Grabski 

et al., 2012; Olthoff, Baudewig, Kruse, & Dechent, 2008; Terumitsu, Fujii, Suzuki, Kwee, 

& Nakada, 2006). Current theory (Belyk & Brown, 2017; Brown et al., 2020; Eichert et 

al., 2020) poses that human vLMC is evolutionarily homologous with the laryngeal motor 

cortex in nonhuman primates, which lack the sophisticated vocal learning and voluntary 

laryngeal motor control abilities of humans, and whose laryngeal motor cortex is entirely 

confined to the premotor vLMC. The dLMC is thus uniquely human, which implies an 

evolutionary ‘duplication-and-migration’ (Belyk & Brown, 2017) allowing for voluntary 

laryngeal control. Further, it has been suggested that dLMC preferentially controls the 

extrinsic muscles of the larynx, which move the entire larynx vertically within the airway 

and play a key role in complex pitch modulations of the sort common in human speech and 

singing; conversely, the vLMC preferentially controls the intrinsic muscles of the larynx, 

Venezia et al. Page 19

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which perform rapid tensioning and relaxation of the vocal folds at the onset and offset 

of vocalizations (i.e., serve as a coarse ‘on-off’ switch for phonation; Eichert et al., 2020; 

but see Belyk et al., 2020; Belyk & Brown, 2014). Interestingly, stimulation of vLMC 

produces speech arrest (Chang et al., 2017) while stimulation of dLMC produces involuntary 

vocalization and disruption of fluent speech (Belkhir et al., 2021; Dichter et al., 2018), and 

dLMC appears to be selectively involved in producing fast pitch changes of the sort that 

generate stress patterns within a sentence (Dichter et al., 2018).

While dLMC localizes most prominently to BA 4 deep in the central sulcus (Simonyan, 

2014), numerous studies have now shown that it extends into BA 6 in a neighboring 

region of the dPM (cf., Brown et al., 2020). This gyral component of dLMC seems to 

be preferentially engaged during perception. As noted early on by Wilson et al. (2004), 

although sensory speech activations overlap with motor speech activations in BA 4, peak 

sensory activation occurs about 5 mm anterior to peak motor activations (i.e, in BA 6). 

Intracranial studies have consistently implicated this gyral component of dLMC in speech 

perception and production (Belkhir et al., 2021; Berezutskaya et al., 2020; Bouchard et 

al., 2013; Breshears et al., 2015; Chang et al., 2017; Chang et al., 2013), particularly with 

respect to encoding and production of vocal pitch (Cheung et al., 2016; Dichter et al., 2018). 

This work dovetails with the present study in which we have identified a region of left 

dPM that: (a) co-locates with gyral dLMC (Figure 7); (b) responds vigorously to vocal pitch 

(Figure 4); (c) shows maximum functional connectivity with core regions of the auditory 

cortex that also respond vigorously to vocal pitch; and (d) shows strong acoustically driven 

responses within speech trials rated as unintelligible.

One curious aspect of the present results is that left dPM responded to pitch selectively 

within unintelligible trials (Figure 4). While it is tempting to attribute this to acoustic biases 

introduced by separating the trials according to intelligibility judgments (i.e., we should, 

by definition, expect lower variance and therefore lower within-category STRF weights for 

acoustic features that contributed strongly to intelligibility judgments), such biases could 

not have affected estimation of the response to vocal pitch because vocal pitch did not 

contribute strongly to intelligibility judgments (CITE Venezia et al 2019). Moreover, it 

is notable that auditory regions responding to vocal pitch also did so selectively within 

unintelligible trials (Figure 6). In that sense, the broader issue is to determine why general 

auditory sensitivity to vocal pitch occurred selectively within trials rated as unintelligible. 

We suggest this pattern was driven by the intelligibility judgment task itself. Specifically, 

listeners were asked to make a binary, yes/no rating of intelligibility on each trial. Therefore, 

within trials rated as intelligible, the brain was able to tune in selectively to those acoustic 

features that are relevant to perception of intelligible speech (Figures 4/6, the “bulls-eye” 

in STRFbetween). Those features were adequately, or perhaps even completely, characterized 

by STRFbetween and so little to no signal was present in STRFwithin_intel (i.e., the brain 

responded rather uniformly within intelligible trials, at least with respect to the acoustic 

features that support intelligibility). On unintelligible trials, when those features were, by 

definition, less available, or unavailable in the signal, the brain keyed into other acoustic 

features of interest, for example vocal pitch or faster temporal modulations (> 10 Hz). 

Indeed, we suggest that regions responding to vocal pitch within unintelligible trials – 

including left dPM and core auditory regions – are the same regions that would respond 
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to vocal pitch on intelligible trials if vocal pitch were relevant to the task (e.g., speech 

recognition with two co-located, simultaneous talkers).

Left dPM deviated from core auditory regions in that its STRF-derived LOO predictions 

of activation were correlated with true activation within both intelligible and unintelligible 

trials (Figure 4, first column). However, as noted in the Results, for intelligible trials this 

association was driven by LOO predictions that were significantly negatively correlated with 

true activation. In other words, STRF responses in left dPM shifted from a bottom-up profile 

(positive STRF weights) to a top-down profile (negative STRF weights) within intelligible 

trials, such that left dPM responded more to intelligible speech when that speech was 

partially distorted. It is unlikely that this top-down response was related to vocal pitch 

given that STRF weights on vocal pitch were positive overall for STRFwithin_intel in left 

dPM (Figure 4, third column). Like the entirety of auditory cortex, it appears that left 

dPM ‘re-tuned’ on intelligible trials to respond selectively to MPS regions associated with 

intelligibility, except that left dPM responded more strongly when those MPS regions were 

only partially represented in the stimulus. This suggests that responses in left dPM are 

highly dynamic, which reinforces our claim that left dPM is, in fact, the gyral component 

of dLMC, where response properties have been shown to shift adaptively depending on 

whether speech is perceived or produced (Cheung et al., 2016). Consistent with a top-down 

role and a role in perceptual processing of vocal pitch, it has been suggested that the left 

dPM contributes to speech comprehension by generating temporal predictions on the phrasal 

scale (Keitel, Gross, & Kayser, 2018). However, disruption or damage to left dPM appears to 

have very small effects on comprehension (Hickok et al., 2008; Krieger-Redwood, Gaskell, 

Lindsay, & Jefferies, 2013; Rogalsky et al., 2020; Rogalsky, Love, Driscoll, Anderson, & 

Hickok, 2011), which calls into question a core role for such a predictive mechanism in 

comprehension.

4.2 Left IFG: Response to Structured Speech Input

Significant cross-subject STRF alignment in the left IFG was observed with a peak response 

at the boundary between the pars opercularis and pars triangularis (BA 44/45), MNI 

coordinate [−50, 19, 3]. At the time of this writing, maximal associations with the coordinate 

nearest this peak in NeuroSynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) 

were ‘inferior frontal,’ ‘language,’ ‘syntactic,’ ‘semantic,’ ‘nouns,’ ‘word,’ and ‘verb’ 

(retrieved from https://neurosynth.org/locations/−48_20_2_6/ on 02/03/2021). It is therefore 

unsurprising that left IFG responded primarily to intelligible versus unintelligible speech 

(Figure 4, STRFbetween) – proportionally more so than left dPM, calcS, or classic auditory 

speech regions (Figures 4/6) – and was functionally connected with a classic peri-Sylvian 

speech-language network (Figure 5). However, two findings suggest the presence of at least 

a weak ‘acoustic trace’ of the input speech signal in left IFG. First, LOO predicted activation 

was accurate within unintelligible trials in a nontrivial proportion of IFG surface nodes 

(80th percentile of BFunintel = 7.7), though much less accurate than left dPM or classic 

auditory speech regions (Figures 4/6). Second, functional connectivity between left IFG and 

the lateral STG was significantly increased on unintelligible trials (Figure 5E), mirroring 

the pattern shown by left dPM, though left IFG showed this pattern with STG regions that 
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were relatively more lateral (and presumably downstream) compared to those STG regions 

showing the same effect with left dPM (Figure 6D–E).

Matchin and Hickok (2020) suggest that left IFG at the BA 44/45 boundary is involved 

primarily in the computation of linear order at the morphemic level during speech 

production. Matchin et al. (2017) further suggest that left IFG plays a role in speech 

comprehension by computing top-down predictions of phrasal nodes or using linearization 

as a form of syntactic working memory. If these suggestions are correct, one potential 

hypothesis is that left IFG retains some association with regions of auditory cortex that 

extract and represent linear sequences of speech sounds (i.e., STG). Under this hypothesis, 

left IFG would be primarily activated by intelligible speech, though also for a small 

subset of unintelligible trials on which speech is semi-intelligible and for which phrase 

level predictions or working memory traces have immediate consequences for parsing the 

degraded acoustic speech signal (Keitel et al., 2018; Poeppel & Assaneo, 2020). In other 

words, this morphosyntactic sequencing-based account could explain why left IFG appears 

to have an STRF-like response (primarily driven by the intelligible versus unintelligible 

contrast) and why its STRF is able to predict some, but only relatively little, of the variance 

in left IFG activation on unintelligible trials.

4.3 calcS: Modulation of Visual Cortex by Voice

Though we neither strongly expected nor were primarily interested in cross-modal responses 

to heard speech, we nonetheless observed significant cross-subject STRF alignment in the 

bilateral calcS with a peak response localized to the left calcS at MNI coordinate [−9, 

−88, 10] in BA 17/area V1. Like left dPM, calcS responded significantly to vocal pitch 

within unintelligible trials, showed maximal functional connectivity with core auditory 

regions in the supratemporal plane, and responded more to intelligible versus unintelligible 

speech. However, unlike left dPM, calcS responded to vocal pitch within intelligible trials 

and did not show increased connectivity with early auditory regions during unintelligible 

trials. Moreover, STRF-derived LOO predictions of activation in calcS were poor within 

unintelligible trials. Overall, these results suggest that activation in calcS was modulated 

weakly and nonspecifically by vocal pitch. They further suggest a mechanism unrelated to 

speech processing per se.

Previous studies have observed acoustically driven activation in early visual areas for both 

speech (Calvert, Hansen, Iversen, & Brammer, 2001) and nonspeech (Brewer, Barton, 

Venezia, Saberi, & Hickok, 2013; Hertz & Amedi, 2010; Watkins, Shams, Tanaka, Haynes, 

& Rees, 2006) sounds (and see Frostig, Chen-Bee, Johnson, & Jacobs, 2017). In the 

speech domain, unimodal auditory and cross-modally enhanced activation in calcS has been 

observed when subjects make judgments about gender and person identity from face-voice 

stimuli (Joassin, Maurage, & Campanella, 2011a; Joassin et al., 2011b), suggesting that 

calcS plays a role in processing of voice. Interestingly, regions of the auditory cortex that are 

modulated by vocal emotion appear to be both structurally and functionally connected with 

early visual areas (Ethofer et al., 2012). Cross-modal enhancement of early visual evoked 

responses by vocal emotion has also been observed (Brosch, Grandjean, Sander, & Scherer, 

2009). When emotion is conveyed by music, functional connectivity between calcS and 
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auditory cortex is modulated by emotional valence (Koelsch, Skouras, & Lohmann, 2018). 

Moreover, background acoustic noise has been shown to interact with neural responses to 

different musically conveyed emotions in calcS (Skouras, Gray, Critchley, & Koelsch, 2013). 

These music-based studies show that calcS is preferentially modulated by joyful compared 

to fearful musical excerpts (Koelsch & Skouras, 2014; Koelsch et al., 2018; Skouras et al., 

2013). Anecdotally, we can report that bubbles-filtered speech, as employed in the present 

study, can sound ominous and unpleasant when MPS regions encoding vocal pitch are 

removed from the signal. However, removal of vocal pitch does not affect intelligibility, 

which may explain why calcS responded to vocal pitch within intelligible and unintelligible 

trails. We therefore speculate that vocal emotion is driving STRF responses in calcS, which, 

given the fact that vocal emotion was not relevant to the task, could explain why calcS was 

only weakly modulated by vocal pitch.

Just as with acoustically conveyed emotion, it has long been known that calcS and 

surrounding early visual regions respond selectively to visually conveyed emotions (Pessoa, 

McKenna, Gutierrez, & Ungerleider, 2002; Vuilleumier, Richardson, Armony, Driver, & 

Dolan, 2004). More recent work suggests that emotional arousal is signaled using a multi­

sensory code and that neural representations of emotionally significant stimuli in early 

auditory and visual cortices take a common form (Sievers, Lee, Haslett, & Wheatley, 2019; 

Sievers et al., 2018). Indeed, early auditory and visual cortices are anatomically connected 

to one another (Smiley et al., 2007) and to the amygdala (Amaral, Behniea, & Kelly, 2003; 

Hackett, 2011). In the visual domain, a recent model suggests that emotion influences visual 

encoding in calcS primarily by modulating attention (Zhang, Japee, Safiullah, Mlynaryk, & 

Ungerleider, 2016). Therefore, in the context of our auditory bubbles task, we predict a more 

substantial STRF response to vocal pitch in calcS when the task demands attention to the 

voice (e.g., with competing talkers) or when the task explicitly involves extraction of vocal 

emotion (or both).

4.4 Caveats

A potential weakness of the Auditory Bubbles technique is that it introduces extrinisic 

distortion into the speech signal, thus rendering speech sometimes intelligible and other 

times unintelligible, or sometimes natural sounding and other times unnatural sounding. In 

the present study, we have attempted to harness this potential weakness as a strength by 

decomposing STRFs according to intelligibility judgments and showing that the functional 

properties of neural speech circuits change depending on the mode of speech processing. 

However, this effect is likely to be dependent on the task and the ratio of intelligible 

to unintelligible trials (Wu, Stangl, Zhang, Perkins, & Eilers, 2016). Moreover, we 

cannot ascertain with certainty whether STRF responses to MPS regions correlated with 

intelligibility is driven by categorical effects of intellibility or a faithful representation of the 

underlying acoustic patterns associated with intelligibility. In other words, we would expect 

to measure a significant STRF-like response using Auditory Bubbles at any brain location 

for which the computation performed by that region is strongly correlated with speech 

intelligibility (from acoustics on up to syntax and domain general processing). Therefore, 

in terms of STRF responses in non-auditory regions, we have attempted to buttress our 

measurements of the STRFs themselves by examining patterns of functional connectivity of 
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non-auditory regions with classic auditory-speech regions for which computational accounts 

are more readily available in the published literature (Hackett, 2011; Hickok & Poeppel, 

2007; Rauschecker & Scott, 2009). This approach has been informative, but ultimately 

we cannot with certainty discount even the most extreme alternative explanation which 

is that STRF responses in non-auditory regions are entirely epiphenomenal, driven, for 

example, by obligatory feedforward connections between auditory and non-auditory regions 

or increased engagement of the listener on intelligible versus unintelligible trials or natural­

sounding versus unnatural-sounding trials. Future work should examine how STRFs change 

at different average performance levels and with stimuli that are acoustically comparable to 

speech but intrinsically unintelligible (e.g., foreign language speech).

Another point that deserves some discussion is our use of subjective, yes-no ratings to 

determine whether trials were intelligible versus unintelligible. Indeed, this forced listeners 

to label partially intelligible sentences as entirely (un-)intelligible. To the extent that such 

partially intelligible sentences were present in the stimulus set, we should expect that 

neural responses within categories labeled as (un-)intelligible were not entirely uniform 

with respect to intelligibility. As noted above, the presence of partially intelligible sentences 

within the subset of items labeled as intelligible by the listeners likely explains why STRF­

derived LOO predicted activation was anti-correlated with true activation for intelligible 

trials in dPM and calcS. We also noted that the presence of partially intelligible sentences 

within the subset of items labeled as unintelligible by the listeners could explain why 

STRF-derived LOO predicted activation was positively, though weakly, correlated with 

true activation for unintelligible trials in IFG. However, we believe the total influence of 

these partially intelligible sentences on our results was minimal. Specifically, we showed 

in a previous behavioral study (Venezia et al., 2016) using the exact same stimulus 

set as the present study, but with objective rather than subjective intelligibility scores 

(keywords correctly reported for each sentence), that the most common responses (> 50% of 

trials) produced by bubbles-filtered sentences were either entirely intelligible (all keywords 

correct) or entirely unintelligible (no keywords correct). Like the present study, that study 

also used an adaptive procedure to maintain overall intelligibility at 50% (keywords correct, 

in that case). The mean number of bubbles to reach equilibrium in the keyword task was 

53.7 (SD = 8.5, N = 10), and the mean number of bubbles to reach equilibrium in the present 

study, which used subjective yes/no intelligibility ratings, was 51.2 (SD = 10.9, N = 10). 

This suggests that both tasks produced very similar perceptual experiences of the stimuli, 

insofar as similar numbers of bubbles indicate similar amounts of acoustic distortion, so 

we can infer that the majority of trials rated as (un-)intelligible in the present study were 

objectively (un-)intelligible.

5. Conclusions

Using Auditory Bubbles and a multivariate analysis of speech-driven STRFs at the second 

level, we have identified significant cross-subject STRF alignment in left dPM, left IFG, 

and calcS. We posit that, among these, left dPM is the most ‘auditory-like,’ with a STRF 

that robustly encodes vocal pitch and predicts a significant amount of the variance in neural 

activation within unintelligible trials. Indeed, we suggest that left dPM is located within 

the human dorsal laryngeal motor cortex. Future work is required to examine the relation 
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between sensory- and motor-speech-related activations in this region within the same group 

of subjects. The left IFG, on the other hand, is the least ‘auditory-like,’ with STRF responses 

driven primarily by the difference in activation on intelligible versus unintelligible trials, 

though left IFG remains weakly responsive to speech acoustics and functionally connected 

with some early auditory areas. We therefore suggest that left IFG plays a top-down role in 

speech comprehension based on computation of linear order or syntactic working memory 

that can influence bottom-up sensory processing. Finally, calcS is somewhat ‘auditory-like,’ 

showing a significant response to vocal pitch and functional connectivity with early auditory 

areas, but its pitch response is nonspecific and its STRF explains very little variance in 

neural activation. We therefore conclude that calcS is weakly modulated by vocal pitch, 

perhaps related to a role in cross-modal processing of emotional cues from sensory signals 

including speech.
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Abbreviations:

AC auditory cortex

BA Brodmann area

BF Bayes factor

calcS calcarine sulcus

dLMC dorsal laryngeal motor cortex

dPM dorsal premotor cortex

EPI echo planar imaging

FDR false discovery rate

IFG inferior frontal gyrus

LOO leave one out
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LSS least squares separate

MNI Montreal Neurological Institute

MPS modulation power spectrum

pOP pars opercularis

SENSE sensitivity encoding

SMA supplementary motor area

STG superior temporal gyrus

STRF spectrotemporal receptive field

STS superior temporal sulcus

TA acquisition time

TE echo time

TFCE threshold free cluster enhancement

TR repetition time

vPM ventral premotor

References

Amaral DG, Behniea H, & Kelly JL (2003). Topographic organization of projections from the 
amygdala to the visual cortex in the macaque monkey. Neuroscience, 118(4), 1099–1120. [PubMed: 
12732254] 

Arsenault JS, & Buchsbaum BR (2016). No evidence of somatotopic place of articulation feature 
mapping in motor cortex during passive speech perception. Psychonomic Bulletin & Review, 23(4), 
1231–1240. [PubMed: 26715582] 

Belkhir JR, Fitch WT, Garcea FE, Chernoff BL, Sims MH, Navarrete E, … Pilcher WH (2021). Direct 
electrical stimulation evidence for a dorsal motor area with control of the larynx. Brain Stimulation: 
Basic, Translational, and Clinical Research in Neuromodulation, 14(1), 110–112.

Belyk M, Brown R, Beal DS, Roebroeck A, McGettigan C, Guldner S, & Kotz SA (2020). Human 
specific neurophenotype integrates laryngeal and respiratory components of voice motor control.

Belyk M, & Brown S (2014). Somatotopy of the extrinsic laryngeal muscles in the human 
sensorimotor cortex. Behavioural Brain Research, 270, 364–371. [PubMed: 24886776] 

Belyk M, & Brown S (2017). The origins of the vocal brain in humans. Neuroscience and 
Biobehavioral Reviews, 77, 177–193. [PubMed: 28351755] 

Benjamini Y, & Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 
289–300.

Berezutskaya J, Baratin C, Freudenburg ZV, & Ramsey NF (2020). High-density intracranial 
recordings reveal a distinct site in anterior dorsal precentral cortex that tracks perceived speech. 
Human Brain Mapping, 41(16), 4587–4609. [PubMed: 32744403] 

Bever TGP, D. (2010). Analysis by synthesis: A (re-) emerging program of research for language and 
vision. Biolinguistics, 4(2–3), 174–200.

Venezia et al. Page 26

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Binder JR, Liebenthal E, Possing ET, Medler DA, & Ward BD (2004). Neural correlates of sensory 
and decision processes in auditory object identification. Nature Neuroscience, 7(3), 295–301. 
[PubMed: 14966525] 

Bouchard KE, Mesgarani N, Johnson K, & Chang EF (2013). Functional organization of human 
sensorimotor cortex for speech articulation. Nature, 495(7441), 327–332. [PubMed: 23426266] 

Breshears JD, Molinaro AM, & Chang EF (2015). A probabilistic map of the human ventral 
sensorimotor cortex using electrical stimulation. Journal of Neurosurgery, 123(2), 340–349. 
[PubMed: 25978714] 

Brewer AA, Barton B, Venezia JH, Saberi K, & Hickok G (2013). Cross sensory activation of ‘clover 
leaf’ clusters in human auditory and visual cortex. Annual Meeting of the Cognitive Neuroscience 
Society, San Francisco, CA.

Brosch T, Grandjean D, Sander D, & Scherer KR (2009). Cross-modal emotional attention: emotional 
voices modulate early stages of visual processing. Journal of Cognitive Neuroscience, 21(9), 
1670–1679. [PubMed: 18767920] 

Brown S, Ngan E, & Liotti M (2008). A larynx area in the human motor cortex. Cerebral Cortex, 
18(4), 837–845. [PubMed: 17652461] 

Brown S, Yuan Y, & Belyk M (2020). Evolution of the speech-ready brain: The voice/jaw connection 
in the human motor cortex. Journal of Comparative Neurology.

Buchsbaum BR, Baldo J, Okada K, Berman KF, Dronkers N, D’Esposito M, & Hickok G (2011). 
Conduction aphasia, sensory-motor integration, and phonological short-term memory - An 
aggregate analysis of lesion and fMRI data. Brain and Language, 119(3), 119–128. doi:10.1016/
j.bandl.2010.12.001 [PubMed: 21256582] 

Buchsbaum BR, Hickok G, & Humphries C (2001). Role of left posterior superior temporal gyrus in 
phonological processing for speech perception and production. Cognitive Science, 25(5), 663–678. 
doi:10.1207/s15516709cog2505_2

Calvert GA, Hansen PC, Iversen SD, & Brammer MJ (2001). Detection of audio-visual integration 
sites in humans by application of electrophysiological criteria to the BOLD effect. Neuroimage, 
14(2), 427–438. doi:10.1006/nimg.2001.0812 [PubMed: 11467916] 

Chang EF, Breshears JD, Raygor KP, Lau D, Molinaro AM, & Berger MS (2017). Stereotactic 
probability and variability of speech arrest and anomia sites during stimulation mapping of the 
language dominant hemisphere. Journal of Neurosurgery, 126(1), 114–121. [PubMed: 26894457] 

Chang EF, Niziolek CA, Knight RT, Nagarajan SS, & Houde JF (2013). Human cortical sensorimotor 
network underlying feedback control of vocal pitch. Proceedings of the National Academy of 
Sciences, 110(7), 2653–2658.

Chen J, Penhune V, & Zatorre R (2009). The role of auditory and premotor cortex in sensorimotor 
transformations. Annals of the New York Academy of Sciences, 1169(1), 15–34. [PubMed: 
19673752] 

Cheung C, Hamilton LS, Johnson K, & Chang EF (2016). The auditory representation of speech 
sounds in human motor cortex. Elife, 5, e12577. [PubMed: 26943778] 

Chumbley J, Worsley K, Flandin G, & Friston K (2010). Topological FDR for neuroimaging. 
Neuroimage, 49(4), 3057–3064. [PubMed: 19944173] 

Cox RW (2012). AFNI: what a long strange trip it’s been. Neuroimage, 62(2), 743–747. [PubMed: 
21889996] 

D’Ausilio A, Craighero L, & Fadiga L (2012). The contribution of the frontal lobe to the perception of 
speech. Journal of Neurolinguistics, 25(5), 328–335.

Das P, Brodbeck C, Simon JZ, & Babadi B (2020). Neuro-current response functions: A unified 
approach to MEG source analysis under the continuous stimuli paradigm. Neuroimage, 211, 
116528. [PubMed: 31945510] 

David SV, Mesgarani N, & Shamma SA (2007). Estimating sparse spectro-temporal receptive fields 
with natural stimuli. Network: Computation in Neural Systems, 18(3), 191–212.

Dichter BK, Breshears JD, Leonard MK, & Chang EF (2018). The control of vocal pitch in human 
laryngeal motor cortex. Cell, 174(1), 21–31. e29. [PubMed: 29958109] 

Venezia et al. Page 27

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Du Y, Buchsbaum BR, Grady CL, & Alain C (2014). Noise differentially impacts phoneme 
representations in the auditory and speech motor systems. Proceedings of the National Academy of 
Sciences, 111(19), 7126–7131.

Du Y, Buchsbaum BR, Grady CL, & Alain C (2016). Increased activity in frontal motor cortex 
compensates impaired speech perception in older adults. Nature Communications, 7(1), 1–12.

Eichert N, Papp D, Mars RB, & Watkins KE (2020). Mapping human laryngeal motor cortex during 
vocalization. Cerebral Cortex, 30(12), 6254–6269. [PubMed: 32728706] 

Erb J, & Obleser J (2013). Upregulation of cognitive control networks in older adults’ speech 
comprehension. Frontiers in Systems Neuroscience, 7, 116. [PubMed: 24399939] 

Ethofer T, Bretscher J, Gschwind M, Kreifelts B, Wildgruber D, & Vuilleumier P (2012). Emotional 
voice areas: anatomic location, functional properties, and structural connections revealed by 
combined fMRI/DTI. Cerebral Cortex, 22(1), 191–200. [PubMed: 21625012] 

Evans S, & Davis MH (2015). Hierarchical organization of auditory and motor representations in 
speech perception: evidence from searchlight similarity analysis. Cerebral Cortex, 25(12), 4772–
4788. [PubMed: 26157026] 

Fischl B (2012). FreeSurfer. Neuroimage, 62(2), 774–781. [PubMed: 22248573] 

Frostig RD, Chen-Bee CH, Johnson BA, & Jacobs NS (2017). Imaging Cajal’s neuronal avalanche: 
how wide-field optical imaging of the point-spread advanced the understanding of neocortical 
structure–function relationship. Neurophotonics, 4(3), 031217. [PubMed: 28630879] 

Galgano J, & Froud K (2008). Evidence of the voice-related cortical potential: An 
electroencephalographic study. Neuroimage, 41(4), 1313–1323. [PubMed: 18495493] 

Grabski K, Lamalle L, Vilain C, Schwartz JL, Vallée N, Tropres I, … Sato M (2012). Functional MRI 
assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements. 
Human Brain Mapping, 33(10), 2306–2321. [PubMed: 21826760] 

Griffin DW, & Lim JS (1984). Signal estimation from modified short-time Fourier transform. 
Acoustics, Speech and Signal Processing, IEEE Transactions on, 32(2), 236–243.

Hackett TA (2011). Information flow in the auditory cortical network. Hearing Research, 271(1), 133–
146. [PubMed: 20116421] 

Hertz U, & Amedi A (2010). Disentangling unisensory and multisensory components in audiovisual 
integration using a novel multifrequency fMRI spectral analysis. Neuroimage, 52(2), 617–632. 
[PubMed: 20412861] 

Hickok G (2010). The role of mirror neurons in speech perception and action word semantics. 
Language and Cognitive Processes, 25(6), 749–776.

Hickok G (2017). A cortical circuit for voluntary laryngeal control: Implications for the evolution 
language. Psychonomic Bulletin & Review, 24(1), 56–63.

Hickok G, Buchsbaum B, Humphries C, & Muftuler T (2003). Auditory–Motor Interaction Revealed 
by fMRI: Speech, Music, and Working Memory in Area Spt. Journal of Cognitive Neuroscience, 
15(5), 673–682. doi:10.1162/jocn.2003.15.5.673 [PubMed: 12965041] 

Hickok G, Okada K, Barr W, Pa J, Rogalsky C, Donnelly K, … Grant A (2008). Bilateral capacity for 
speech sound processing in auditory comprehension: evidence from Wada procedures. Brain and 
Language, 107(3), 179–184. [PubMed: 18976806] 

Hickok G, & Poeppel D (2004). Dorsal and ventral streams: a framework for understanding 
aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99. doi:10.1016/
j.cognition.2003.10.011 [PubMed: 15037127] 

Hickok G, & Poeppel D (2007). The cortical organization of speech processing. Nature Reviews 
Neuroscience, 8(5), 393–402. [PubMed: 17431404] 

Holt LL, & Lotto AJ (2008). Speech perception within an auditory cognitive science framework. 
Current Directions in Psychological Science, 17(1), 42–46. [PubMed: 19060961] 

Joassin F, Maurage P, & Campanella S (2011a). The neural network sustaining the crossmodal 
processing of human gender from faces and voices: An fMRI study. Neuroimage, 54(2), 1654–
1661. [PubMed: 20832486] 

Joassin F, Pesenti M, Maurage P, Verreckt E, Bruyer R, & Campanella S (2011b). Cross-modal 
interactions between human faces and voices involved in person recognition. Cortex, 47(3), 367–
376. [PubMed: 20444445] 

Venezia et al. Page 28

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keitel A, Gross J, & Kayser C (2018). Perceptually relevant speech tracking in auditory and motor 
cortex reflects distinct linguistic features. PLoS Biology, 16(3), e2004473. [PubMed: 29529019] 

Klein DJ, Depireux DA, Simon JZ, & Shamma SA (2000). Robust spectrotemporal reverse correlation 
for the auditory system: optimizing stimulus design. Journal of Computational Neuroscience, 9(1), 
85–111. [PubMed: 10946994] 

Koelsch S, & Skouras S (2014). Functional centrality of amygdala, striatum and hypothalamus in a 
“small-world” network underlying joy: An fMRI study with music. Human Brain Mapping, 35(7), 
3485–3498. [PubMed: 25050430] 

Koelsch S, Skouras S, & Lohmann G (2018). The auditory cortex hosts network nodes influential for 
emotion processing: An fMRI study on music-evoked fear and joy. PloS One, 13(1), e0190057. 
[PubMed: 29385142] 

Krieger-Redwood K, Gaskell MG, Lindsay S, & Jefferies E (2013). The selective role of premotor 
cortex in speech perception: a contribution to phoneme judgements but not speech comprehension. 
Journal of Cognitive Neuroscience, 25(12), 2179–2188. [PubMed: 23937689] 

Leblanc É, Dégeilh F, Daneault V, Beauchamp MH, & Bernier A (2017). Attachment security 
in infancy: A preliminary study of prospective links to brain morphometry in late childhood. 
Frontiers in Psychology, 8, 2141. [PubMed: 29312029] 

Matchin W, Hammerly C, & Lau E (2017). The role of the IFG and pSTS in syntactic prediction: 
Evidence from a parametric study of hierarchical structure in fMRI. Cortex, 88, 106–123. 
[PubMed: 28088041] 

Matchin W, & Hickok G (2020). The cortical organization of syntax. Cerebral Cortex, 30(3), 1481–
1498. [PubMed: 31670779] 

Matiasek MR, & Richards VM (1999). Relative weights for three different psychophysical tasks. The 
Journal of the Acoustical Society of America, 106(4), 2209–2210.

Measurements, I. S. o. S. (1969). IEEE Recommended Practices for Speech Quality Measurements. 
IEEE Transactions on Audio and Electroacoustics, 17, 227–246.

Morey RD, & Rouder JN (2011). Bayes factor approaches for testing interval null hypotheses. 
Psychological Methods, 16(4), 406. [PubMed: 21787084] 

Moulin-Frier C, Diard J, Schwartz J-L, & Bessière P (2015). COSMO (“Communicating about 
Objects using Sensory–Motor Operations”): A Bayesian modeling framework for studying speech 
communication and the emergence of phonological systems. Journal of Phonetics, 53, 5–41.

Mumford JA, Turner BO, Ashby FG, & Poldrack RA (2012). Deconvolving BOLD activation in event­
related designs for multivoxel pattern classification analyses. Neuroimage, 59(3), 2636–2643. 
[PubMed: 21924359] 

Narain C, Scott SK, Wise RJ, Rosen S, Leff A, Iversen S, & Matthews P (2003). Defining a 
left-lateralized response specific to intelligible speech using fMRI. Cerebral Cortex, 13(12), 1362–
1368. [PubMed: 14615301] 

Naselaris T, Kay KN, Nishimoto S, & Gallant JL (2011). Encoding and decoding in fMRI. 
Neuroimage, 56(2), 400–410. [PubMed: 20691790] 

Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, … Hickok G (2010). Hierarchical 
organization of human auditory cortex: evidence from acoustic invariance in the response to 
intelligible speech. Cerebral Cortex, 20(10), 2486–2495. doi:10.1093/cercor/bhp318 [PubMed: 
20100898] 

Olthoff A, Baudewig J, Kruse E, & Dechent P (2008). Cortical sensorimotor control in vocalization: a 
functional magnetic resonance imaging study. The Laryngoscope, 118(11), 2091–2096. [PubMed: 
18758379] 

Oosterhof NN, Connolly AC, & Haxby JV (2016). CoSMoMVPA: multi-modal multivariate pattern 
analysis of neuroimaging data in Matlab/GNU Octave. Frontiers in Neuroinformatics, 10, 27. 
[PubMed: 27499741] 

Oosterhof NN, Wiestler T, Downing PE, & Diedrichsen J (2011). A comparison of volume-based and 
surface-based multi-voxel pattern analysis. Neuroimage, 56(2), 593–600. [PubMed: 20621701] 

Peelle JE (2012). The hemispheric lateralization of speech processing depends on what “speech” is: a 
hierarchical perspective. Frontiers in Human Neuroscience, 6, 309. [PubMed: 23162455] 

Venezia et al. Page 29

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Peelle JE, Johnsrude I, & Davis MH (2010). Hierarchical processing for speech in human auditory 
cortex and beyond. Frontiers in Human Neuroscience, 4, 51. [PubMed: 20661456] 

Peelle JE, Johnsrude IS, & Davis MH (2010). Hierarchical processing for speech in human auditory 
cortex and beyond. Frontiers in Human Neuroscience, 4.

Pessoa L, McKenna M, Gutierrez E, & Ungerleider LG (2002). Neural processing of emotional faces 
requires attention. Proceedings of the National Academy of Sciences, 99(17), 11458–11463.

Poeppel D, & Assaneo MF (2020). Speech rhythms and their neural foundations. Nature Reviews 
Neuroscience, 1–13. [PubMed: 31796912] 

Pulvermuller F, & Fadiga L (2010). Active perception: sensorimotor circuits as a cortical basis 
for language. Nature Reviews: Neuroscience, 11(5), 351–360. doi:10.1038/nrn2811 [PubMed: 
20383203] 

Rauschecker JP, & Scott SK (2009). Maps and streams in the auditory cortex: nonhuman primates 
illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. [PubMed: 19471271] 

Rogalsky C, Basilakos A, Rorden C, Pillay S, LaCroix AN, Keator L, … Fridriksson J (2020). The 
Neuroanatomy of Speech Processing: A Large-Scale Lesion Study. bioRxiv.

Rogalsky C, Love T, Driscoll D, Anderson SW, & Hickok G (2011). Are mirror neurons the basis of 
speech perception? Evidence from five cases with damage to the purported human mirror system. 
Neurocase, 17(2), 178–187. [PubMed: 21207313] 

Sakata H, Taira M, Murata A, & Mine S (1995). Neural mechanisms of visual guidance of hand action 
in the parietal cortex of the monkey. Cerebral Cortex, 5(5), 429–438. [PubMed: 8547789] 

Santoro R, Moerel M, De Martino F, Goebel R, Ugurbil K, Yacoub E, & Formisano E (2014). 
Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory 
cortex. PLoS Computational Biology, 10(1), e1003412. [PubMed: 24391486] 

Scott SK, McGettigan C, & Eisner F (2009). A little more conversation, a little less action—candidate 
roles for the motor cortex in speech perception. Nature Reviews Neuroscience, 10(4), 295–302. 
[PubMed: 19277052] 

Sievers B, Lee C, Haslett W, & Wheatley T (2019). A multi-sensory code for emotional arousal. 
Proceedings of the Royal Society B, 286(1906), 20190513. [PubMed: 31288695] 

Sievers B, Parkinson C, Kohler PJ, Hughes J, Fogelson SV, & Wheatley T (2018). Visual and auditory 
brain areas share a neural code for perceived emotion. BioRxiv, 254961.

Simonyan K (2014). The laryngeal motor cortex: its organization and connectivity. Current Opinion in 
Neurobiology, 28, 15–21. [PubMed: 24929930] 

Skipper JI, Devlin JT, & Lametti DR (2017). The hearing ear is always found close to the speaking 
tongue: Review of the role of the motor system in speech perception. Brain and Language, 164, 
77–105. doi:10.1016/j.bandl.2016.10.004 [PubMed: 27821280] 

Skipper JI, Nusbaum HC, & Small SL (2005). Listening to talking faces: motor cortical activation 
during speech perception. Neuroimage, 25(1), 76–89. doi:10.1016/j.neuroimage.2004.11.006 
[PubMed: 15734345] 

Skouras S, Gray M, Critchley H, & Koelsch S (2013). fMRI scanner noise interaction with affective 
neural processes. PloS One, 8(11), e80564. [PubMed: 24260420] 

Smiley JF, Hackett TA, Ulbert I, Karmas G, Lakatos P, Javitt DC, & Schroeder CE (2007). 
Multisensory convergence in auditory cortex, I. Cortical connections of the caudal superior 
temporal plane in macaque monkeys. Journal of Comparative Neurology, 502(6), 894–923.

Smith SM, & Nichols TE (2009). Threshold-free cluster enhancement: addressing problems of 
smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 83–98. 
[PubMed: 18501637] 

Stelzer J, Chen Y, & Turner R (2013). Statistical inference and multiple testing correction in 
classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size 
control. Neuroimage, 65, 69–82. [PubMed: 23041526] 

Stokes RC, Venezia JH, & Hickok G (2019). The motor system’s [modest] contribution to speech 
perception. Psychonomic Bulletin & Review, 26(4), 1354–1366. doi:10.3758/s13423-019-01580-2 
[PubMed: 30945170] 

Szenkovits G, Peelle JE, Norris D, & Davis MH (2012). Individual differences in premotor and motor 
recruitment during speech perception. Neuropsychologia, 50(7), 1380–1392. [PubMed: 22521874] 

Venezia et al. Page 30

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Team, R. C. (Producer). (2019). R: A Language and Environment for Statistical Computing. R. 
Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Terumitsu M, Fujii Y, Suzuki K, Kwee IL, & Nakada T (2006). Human primary motor cortex shows 
hemispheric specialization for speech. Neuroreport, 17(11), 1091–1095. [PubMed: 16837833] 

Theunissen FE, & Elie JE (2014). Neural processing of natural sounds. Nature Reviews Neuroscience, 
15(6), 355–366. [PubMed: 24840800] 

Theunissen FE, Sen K, & Doupe AJ (2000). Spectral-temporal receptive fields of nonlinear auditory 
neurons obtained using natural sounds. Journal of Neuroscience, 20(6), 2315–2331. [PubMed: 
10704507] 

Tremblay P, & Small SL (2011). On the context-dependent nature of the contribution of the ventral 
premotor cortex to speech perception. Neuroimage, 57(4), 1561–1571. [PubMed: 21664275] 

Venezia JH, & Hickok G (2009). Mirror Neurons, the Motor System and Language: From the Motor 
Theory to Embodied Cognition and Beyond. Language and Linguistics Compass, 3(6), 1403–
1416. doi:10.1111/j.1749-818X.2009.00169.x

Venezia JH, Hickok G, & Richards VM (2016). Auditory “bubbles”: Efficient classification of the 
spectrotemporal modulations essential for speech intelligibility. Journal of the Acoustical Society 
of America, 140(2), 1072. doi:10.1121/1.4960544

Venezia JH, Leek MR, & Lindeman MP (2020). Suprathreshold Differences in Competing Speech 
Perception in Older Listeners With Normal and Impaired Hearing. Journal of Speech, Language, 
and Hearing Research, 63(7), 2141–2161.

Venezia JH, Martin A-G, Hickok G, & Richards VM (2019a). Identification of the Spectrotemporal 
Modulations That Support Speech Intelligibility in Hearing-Impaired and Normal-Hearing 
Listeners. Journal of Speech, Language, and Hearing Research, 62(4), 1051–1067.

Venezia JH, Thurman SM, Richards VM, & Hickok G (2019b). Hierarchy of speech-driven 
spectrotemporal receptive fields in human auditory cortex. Neuroimage, 186, 647–666. 
doi:10.1016/j.neuroimage.2018.11.049 [PubMed: 30500424] 

Vuilleumier P, Richardson MP, Armony JL, Driver J, & Dolan RJ (2004). Distant influences 
of amygdala lesion on visual cortical activation during emotional face processing. Nature 
Neuroscience, 7(11), 1271–1278. [PubMed: 15494727] 

Wang L, Peng B, & Li R (2015). A High-Dimensional Nonparametric Multivariate Test for Mean 
Vector. J Am Stat Assoc, 110(512), 1658–1669. doi:10.1080/01621459.2014.988215 [PubMed: 
26848205] 

Watkins S, Shams L, Tanaka S, Haynes J-D, & Rees G (2006). Sound alters activity in human V1 in 
association with illusory visual perception. Neuroimage, 31(3), 1247–1256. [PubMed: 16556505] 

Wild CJ, Yusuf A, Wilson DE, Peelle JE, Davis MH, & Johnsrude IS (2012). Effortful listening: the 
processing of degraded speech depends critically on attention. Journal of Neuroscience, 32(40), 
14010–14021. [PubMed: 23035108] 

Wilson SM, Saygin AP, Sereno MI, & Iacoboni M (2004). Listening to speech activates motor 
areas involved in speech production. Nature Neuroscience, 7(7), 701–702. doi:10.1038/nn1263 
[PubMed: 15184903] 

Wu Y-H, Stangl E, Zhang X, Perkins J, & Eilers E (2016). Psychometric functions of dual-task 
paradigms for measuring listening effort. Ear and Hearing, 37(6), 660. [PubMed: 27438866] 

Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, & Wager TD (2011). Large-scale automated 
synthesis of human functional neuroimaging data. Nature methods, 8(8), 665–670. [PubMed: 
21706013] 

Zhang X, Japee S, Safiullah Z, Mlynaryk N, & Ungerleider LG (2016). A normalization framework for 
emotional attention. PLoS Biology, 14(11), e1002578. [PubMed: 27870851] 

Venezia et al. Page 31

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.R-project.org/


Highlights

• Speech-driven spectrotemporal receptive fields (STRFs) are estimated using 

fMRI with spectrotemporal modulation filtering of continuous speech 

(“Auditory Bubbles”)

• A multivariate analysis of cross-subject STRF alignment is developed to 

maintain sensitivity to small clusters of STRFs

• Significant STRF alignment is observed outside traditional auditory cortex

• Left dorsal speech-premotor cortex (dPM) and bilateral calcarine sulcus 

(calcS) respond to acoustic speech features associated with speech 

intelligibility and vocal pitch

• Left inferior frontal gyrus (IFG) responds only to features associated with 

intelligibility

• dPM and calcS are maximally functionally connected with early auditory 

cortex; IFG is maximally connected with superior temporal gyrus/sulcus and 

middle temporal gyrus

• STRFs in dPM predict activation on trials for which speech is rated as 

unintelligible by listeners, a hallmark auditory profile

• We posit that dPM is part of the laryngeal motor cortex capable of processing 

speech in an ‘auditory mode’

Venezia et al. Page 32

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
(A) Average MPS of 452 IEEE sentences spoken by a female talker. The MPS describes 

the speech spectrogram as a weighted sum of spectrotemporal ripples containing energy at a 

unique combination of temporal (abscissa, Hz) and spectral (ordinate, cyc/kHz) modulation 

rate. An example of a downward-sweeping ripple (2Hz, 4 cyc/kHz) is shown at right. In 

this figure and throughout, energy at a given pixel location in the MPS reflects the average 

of downward- and upward-sweeping ripples at that location. Modulation energy clusters 

into two discrete regions: a high-spectral-modulation-rate region corresponding to vocal 

pitch (F0 Harmonics) and a low-spectral-modulation-rate region corresponding the resonant 

frequencies of the vocal tract (formants/phonetic content). Color scale = dB (arb. ref). 

(B) Flow-chart schematic of the signal processing steps involved in Bubbles filtering. (C) 

Flow-chart schematic of the Bubbles fMRI analysis (see also Eq. 1).
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Figure 2. 
For six samples of 100 cortical surface nodes selected at random from across the whole 

brain (panels), the empirical null distribution of Z (10,000 draws after random permutation 

of the trial order of bubbles feature vectors) is plotted as a relative frequency histogram 

(blue) overlayed with a kernel density estimate of the continuous probability density 

function of Z (red) and the standard normal probability density function (green). Above each 

panel is shown the mean, standard deviation (SD), and kurtosis (kurt) of the null distribution 

of Z for the corresponding sample. The empirical null is right-skewed and more kurtotic 

compared to the standard normal, which has a kurtosis of 3.
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Figure 3. 
(A) Maps show the strength of cross-subject STRF alignment at the second level as 

quantified with multivariate test statistic, Z (see Materials and Methods; only significant 

values shown, TFCE-FDR-corrected p < 0.01). (B) Maps show the second level mean of 

the maximum amplitude of STRFbetween, restricted to surface nodes identified as significant 

in A. (C) Maps show the strength of cross-subject STRF alignment within trials rated as 

intelligible by the listeners, restricted to surface nodes identified as significant in A. (D) 

Maps show the strength of cross-subject STRF alignment within trials rated as unintelligible 

by the listeners, restricted to surface nodes identified as significant in A. All plots use a 

standard topology inflated surface derived from the Colin N27 template in MNI space.

Venezia et al. Page 35

Hear Res. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Speech-driven STRFs in non-auditory regions. A row (A-E) is dedicated to each region 

(right insets: zoomed versions of Figure 3A on semi-inflated or inflated standard topology 

surfaces). Overall responses (STRF) are shown in the first column, while effects of 

intelligibility (STRFbetween) and responses within intelligible (STRFintel) and unintelligible 

(STRFunintel) trials are shown in the second through fourth columns, respectively. For each 

region (A-E), the color scale is based on the overall STRF min/max and applied to each 

of the decomposed STRFs at right to allow a visualization of the relative contribution of 

each component STRF to the overall STRF. The overall STRFs are annotated with second­

level alignment strength (Z) and Bayes Factors (geometric mean across surface nodes, 80th 

percentile given parenthetically) indicating quality of LOO predictions within intelligible 

(BFI = BFintel) and unintelligible (BFUI = BFunintel) trials. The decomposed STRFs are 
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annotated with the max amplitude (Amp; STRFbetween) or second-level alignment strength 

(Z; STRFintel and STRFunintel) and the proportional relative importance (Imp).
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Figure 5. 
(A-C) Maps show the average regression coefficient (β) for the main effect of seed 

connectivity (two-way, FDR-corrected p < 0.01). Note the color scale: nearly all (>99%) 

significant effects were positive; the color scale was selected to allow visualization of 

the full range of these positive effects across brain regions. That is, both cool and warm 

colors denote positive functional connectivity. (D-E) Maps show the log Bayes Factor for 

the intelligibility-by-seed-connectivity interaction (thresholded at |logBF| > 1.6). Negative 

values (cool colors) indicate support for the null hypothesis (no interaction) and positive 

values indicate support for the alternative hypothesis (interaction present). Plots zoomed on 

the auditory cortex are shown beneath the lateral surface plots. All plots use a standard 

topology inflated surface derived from the Colin N27 template in MNI space.
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Figure 6. 
Speech-driven STRFs in auditory regions defined by functional connectivity with non­

auditory regions. A row (A-E) is dedicated to each auditory region (right insets: region 

mask displayed on inflated standard topology surfaces and labeled with the corresponding 

seed region). Regions defined by the main effect of seed connectivity (A-C) are labeled as 

‘AC’ and regions defined by the interaction of seed connectivity with speech intelligibility 

(D-E) are labeled as ‘AC-Int.’ Overall responses (STRF) are shown in the first column, 

while effects of intelligibility (STRFbetween) and responses within intelligible (STRFintel) 

and unintelligible (STRFunintel) trials are shown in the second through fourth columns, 

respectively. For each region (A-E), the color scale is based on the overall STRF min/max 

and applied to each of the decomposed STRFs at right to allow a visualization of the relative 

contribution of each component STRF to the overall STRF. The overall STRFs are annotated 
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with second-level alignment strength (Z) and Bayes Factors (geometric mean across 

surface nodes) indicating quality of LOO predictions within intelligible (BFI = BFintel) 

and unintelligible (BFUI = BFunintel) trials. The decomposed STRFs are annotated with the 

max amplitude (Amp; STRFbetween) or second-level alignment strength (Z; STRFintel and 

STRFunintel) and the proportional relative importance (Imp).
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Figure 7. 
Heatmap is a replication of Figure 4A. Spheres show peak dorsal premotor coordinates from 

previous studies showing activation during sensory and motor speech tasks (Buchsbaum 

et al., 2001, green; Wilson et al., 2004, blue) and during laryngeal motor tasks (Brown et 

al, 2008, red). Plots are overlaid on the standard topology white-matter-boundary surface 

derived from the Colin27 template in MNI space.
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