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Abstract

Our knowledge of sensory processing has advanced dramatically in the last few decades, but this 

understanding remains far from complete, especially for stimuli with the large dynamic range and 

strong temporal and spatial correlations characteristic of natural visual inputs. Here we describe 

some of the issues that make understanding the encoding of natural image stimuli challenging. We 

highlight two broad strategies for approaching this problem: a stimulus-oriented framework and a 

goal-oriented one. Different contexts can call for one or the other framework. Looking forward, 

recent advances, particularly those based in machine learning, show promise in borrowing key 

strengths of both frameworks and by doing so illuminating a path to a more comprehensive 

understanding of the encoding of natural stimuli.

Introduction

The neural circuits that process sensory inputs are shaped by the properties of the stimuli 

they encounter as well as the behavioral demands of the animal. Because of this, a deep 

understanding of sensory circuits and the computations they support requires connecting 

what we know about sensory systems to properties of natural stimuli. In this review, we 

discuss some of the progress and the challenges in describing the neural encoding of 

complex stimuli such as those encountered in the real world; related issues extend to many 

areas beyond neurophysiology. We refer to the encoding of visual scenes as a paradigmatic 

example, but many of the same issues arise in other sensory modalities.

Progress in studying sensory coding has traditionally relied on parameterized, artificial 

stimuli designed to isolate and characterize specific circuit mechanisms, such as 

nonlinearities in the integration of signals across space (reviewed by (Gollisch and Meister, 

2010; Schwartz and Rieke, 2011)) or adaptation to changes in particular stimulus properties 

such as intensity, contrast, or orientation (reviewed by (Demb and Singer, 2015; Graham, 

2011; Rieke and Rudd, 2009; Solomon and Kohn, 2014)). These approaches have revealed 
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the mechanistic basis of many important circuit computations but have not led to a clear 

understanding of the encoding of natural stimuli.

Two issues make studying the encoding of natural stimuli challenging compared to typical 

artificial stimuli. First, complex stimuli, such as natural visual inputs, engage a host 

of interacting circuit mechanisms rather than individual mechanisms in isolation. This 

complexity is difficult to capture with computational models. For example, many predictive 

neurobiological models for stimulus-response transformations in the early visual system 

are based on a common architecture: linear filtering over space and time, followed by a 

(generally time-dependent) nonlinearity. These models do not generalize well to capture 

responses to inputs other than those to which they were fit (Carandini et al., 2005; Heitman 

et al., 2016). Natural images can highlight such failures of generalization (David and 

Gallant, 2005; Turner and Rieke, 2016; Turner et al., 2018). Incorporating known circuit 

features, or stacking multiple Linear-Nonlinear layers, can improve generalization in both 

retina and V1 (David and Gallant, 2005; Maheswaranathan et al., 2017; Mcintosh et al., 

2016). Stacked computations are also a central element of Deep Neural Network models 

for modeling higher cortical areas (Yamins and DiCarlo, 2016), as described in more detail 

below.

A second challenge inherent in the study of natural stimulus encoding is the complex 

statistics of natural scenes (reviewed by (Hyvärinen, 2010; Lewicki et al., 2014; Simoncelli 

and Olshausen, 2001; Zhaoping, 2014)). For example, across different visual scenes and 

even within a single scene, image statistics (e.g. mean intensity, spatial contrast, and other, 

higher-order statistics) can vary widely but (fortunately) not randomly (Coen-Cagli et al., 

2012; Frazor and Geisler, 2006; Karklin and Lewicki, 2005; Parra et al., 2001; Ruderman 

and Bialek, 1994). Within a single visual scene, different image features are often strongly 

correlated, which makes it difficult to relate a neural response to a particular feature of a 

scene (see (Sharpee et al., 2006) for a computational approach to this issue). One approach 

to managing this complexity is to develop generative models of natural images that enable 

a low dimensional representation. Parametric models exist for naturalistic textures (Portilla 

and Simoncelli, 2000) -- i.e. semi-regular, repeating patterns (see Figure 1) -- and recent 

advances in machine learning show promise in generating not only textures (Gatys et al., 

2015) but non-homogeneous naturalistic images (Arjovsky et al., 2017; Karras et al., 2018); 

for applications of these approaches see (Freeman et al., 2013; Okazawa et al., 2015; Rust 

and DiCarlo, 2010).

There is a long history of studying the encoding of natural scenes in neurophysiology 

experiments (e.g. (Baddeley et al., 1997; Creutzfeldt and Nothdurft, 1978; Smyth et al., 

2003; Stanley et al., 1999; Vickers et al., 2001; Vinje and Gallant, 2000)), and recent years 

have seen this interest expand (e.g., (Sharpee et al., 2006; Theunissen and Elie, 2014; 

Zwicker et al., 2016) and references therein). Normative (“why”) models can incorporate 

knowledge about the statistical structure of natural scenes or the task goals and hence add 

an additional perspective on top of descriptive and mechanistic models (Dayan and Abbott, 

2001).
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Stimulus- and goal-oriented approaches to natural stimulus encoding

We will focus on two theoretical frameworks that are often appealed to in the study of 

natural stimulus encoding:

i. A stimulus-oriented (or efficient coding) framework, that formalizes the idea 

that a major goal of sensory processing is to encode as much information as 

possible about a stimulus using limited resources. This framework identifies 

transformations of sensory input signals that reduce statistical redundancies 

present in the natural world. These transformations often rely on general purpose 

computations that care about the information available in a stimulus and are 

blind to the specific uses of this information. Complementary approaches based 

on generative modeling seek to capture the statistical dependencies of natural 

scenes, and by doing so reveal how they can be reduced. Stimulus-oriented 

approaches are closely related to unsupervised machine learning, for which 

learning is based only on properties of the input and does not require a specific 

goal such as object recognition.

ii. A goal-oriented framework, which appeals to the computational or behavioral 

goal of the circuit or animal. Unlike stimulus-oriented approaches, goal-oriented 

approaches explicitly treat some features of the stimulus differently than others, 

and which features are encoded depends on the desired behavioral output or 

goal. These approaches include recent advances in Deep Convolutional Neural 

Networks, particularly those based on supervised, discriminative learning from 

large databases of images with identified and labeled objects.

These two frameworks may appear to be at odds. For instance, a model focused solely on 

a high-level goal like object recognition will not necessarily reduce redundancies or capture 

general statistical properties of the stimulus. Conversely, models focusing on reducing 

redundancies are not likely to explain, at least not explicitly, complex tasks such as object 

recognition. Historically, stimulus-oriented frameworks have largely been applied to early 

visual areas and goal-oriented objectives to later cortical areas. But these boundaries are 

beginning to blur. Indeed, in some cases the two approaches can be seen as complementary. 

For instance, even well-established visual computations like lateral inhibition can be seen 

through both lenses: as a mechanism to suppress responses to low spatial frequencies and 

eliminate some of the redundancies present in natural images (Atick and Redlich, 1992; 

Srinivasan et al., 1982), or as a way to facilitate the detection of specific features of a scene, 

namely edges (Marr and Hildreth, 1980). We will discuss some modern computational 

approaches that may facilitate the merger of these two frameworks, allowing one to inform 

the other and vice-versa. In particular, deep neural networks provide a promising route for 

exploring how stimulus- and goal-oriented constraints together shape sensory processing.

Stimulus-oriented approaches to natural vision

An influential hypothesis that undergirds much of the study of natural scene processing 

is the “efficient coding hypothesis,” first proposed by Barlow (Barlow, 2001, 1961) (see 
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also (Attneave, 1954)), and influenced by Shannon’s earlier work on information theory 

(Shannon, 1948).

Barlow proposed that an efficient coding scheme should reduce the redundancy of natural 

inputs, but without loss of the information that is encoded (Barlow, 1961). Redundancy as 

defined by Barlow is the fraction of the total information carrying capacity of a neuron 

or neural population that is not used to transmit information about the stimulus. Efficient 

coding has been contrasted with a “sparse” neural code, where the goal is not defined as 

redundancy reduction, but rather to produce a sparse representation of natural inputs (Field, 

1994).

Redundancy reduction predicts that a single noiseless neuron should distribute its responses 

uniformly (e.g., subject to a constraint on the maximal firing rate), such that each possible 

response occurs with equal frequency; to do otherwise would mean that the neuron is not 

making full use of its dynamic range. Examples of approximately uniformly-distributed 

sensory representations can be found in a variety of sensory systems (Bhandawat et al., 

2007; Laughlin, 1981). Consideration of neural noise can substantially alter predictions of 

efficient coding because in that case efficiency involves both using a cell’s full response 

range and mitigating the effect of noise (Brinkman et al., 2016; Gjorgjieva et al., 2014; 

Kastner et al., 2015).

Redundancy reduction in a population of neurons (i.e., multiple channels) relies on 

removing statistical dependencies among their responses (Barlow, 1961). Reducing 

redundancy for natural stimuli is particularly challenging because natural visual inputs 

contain strong (nonlinear) statistical regularities across time and space (for a review, see 

(Simoncelli and Olshausen, 2001)). We start by describing the application of these ideas in 

early sensory areas (largely the retina) and then turn to efficient coding in visual cortex.

Efficient coding and second order statistics

Second-order spatial correlations in natural scenes have been a particular focus of efficient 

coding approaches. Such correlations, on average, obey a power law scaling: the power 

spectrum of spatial frequencies falls as the inverse of the square of the spatial frequency 

(Figure 2b) (Field, 1987). This is the result of the scale invariance of natural images -- 

i.e. many statistical properties are unchanged by magnifying or demagnifying an image 

(Ruderman and Bialek, 1994). Scale invariance has been suggested to result from the fact 

that objects can appear at any distance from an observer (Ruderman, 1994).

The prevalence of low spatial frequencies in natural images produces correlated responses in 

nearby cells, leading to a redundant population code. Receptive field surrounds of neurons 

in retina and LGN decorrelate responses of nearby neurons by suppressing responses to 

low spatial frequencies. This is sometimes referred to as “whitening” (Atick and Redlich, 

1992; Dan et al., 1996) (but see (Franke et al., 2017; Pitkow and Meister, 2012; Vincent and 

Baddeley, 2003)). Whitening, however, will increase high spatial frequency noise such as 

that in photoreceptor signals; consideration of noise predicts that the suppressive surround 

should be minimal or absent when noise is high (for a review, see (Atick, 1992; Zhaoping, 
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2006)). Similar principles of whitening without amplifying noise have also been proposed in 

other domains, such as stereo coding in cortex (Li and Atick, 1994).

These applications of efficient coding in the retina do not consider the impact of self­

generated movement on stimulus statistics. Eye movements are one example. Human eye 

movements are characterized by small fixational movements and occasional discrete and 

rapid saccades (Figure 2a,c). The spatial frequency spectrum of natural images, subject to 

fixational eye movements, is roughly flat (i.e., whitened) at low spatial frequencies (Kuang 

et al., 2012) (Figure 2b). Natural inputs that simulate fixational eye movements indeed 

appear to decorrelate responses in populations of salamander retinal ganglion cells (Segal 

et al., 2015). This whitening effect does not hold for large and rapid eye movements like 

saccades (Boi et al., 2017) (see Figure 2b). Thus, Rucci & colleagues (especially (Boi et 

al., 2017)) suggest that a single cell may use different decorrelation strategies throughout 

the course of natural stimulation: classical surround-mediated decorrelation or decorrelation 

via nonlinearities in spike generation (Pitkow and Meister, 2012) immediately following 

a saccade and eye-movement generated whitening during the later parts of the fixational 

periods between saccades. Understanding the effects of such self-generated motion on the 

encoding of natural scenes will require further experiments (e.g., manipulating the statistics 

of synthetic eye movements in experiments on primate retina).

Efficient coding beyond second order statistics

Much of the classical work on efficient coding considers only second-order statistics and 

their removal by decorrelation. There is, however, much more to natural images than their 

spatial frequency spectra. This is evident when viewing artificial stimuli with a “natural” 

distribution of energy across spatial frequencies but no other statistical constraints; such 

images look highly unnatural (e.g Figure 3). This raises a concern that coding algorithms 

focusing on decorrelation may miss essential features of what early visual neurons do.

Statistical independence provides a stronger constraint on efficient coding between channels 

(i.e. neurons or neuron-like receptive fields) than decorrelation (for a comprehensive review, 

see book by (Hyvärinen et al., 2009)). Although achieving independence in general is a 

difficult problem, it can be simplified by considering only linear transformations followed 

by a point nonlinearity (i.e. a linear-nonlinear approach). Two such approaches applied 

to natural images (Independent Component Analysis and Sparse Coding) yield filters that 

qualitatively resemble the oriented and localized structure of receptive fields in primary 

visual cortex (Bell and Sejnowski, 1997; Olshausen and Field, 1996); for a review, see 

(Simoncelli and Olshausen, 2001). More recent work shows that optimizing for a form of 

hard sparseness in which only a limited number of neurons are active can yield a better 

match to the full variety of cortical receptive fields in macaque (Rehn and Sommer, 2007).

Different channels can also exhibit nonlinear statistical dependencies that cannot be fully 

removed by linear or linear-nonlinear approaches (see (Eichhorn et al., 2009; Golden et 

al., 2016; Schwartz and Simoncelli, 2001) and references therein). This has prompted 

work on reducing statistical dependencies via nonlinear transformations. These approaches 

have led to more direct comparisons between models derived from scene statistics and 

nonlinear neural behaviors. One focus in area V1 has been on modeling nonlinear contextual 
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phenomena, whereby the responses of neurons to a target stimulus are influenced by stimuli 

that spatially surround the target, or by stimuli that have been observed in the past. Such 

effects can be modeled by reducing statistical dependencies between filter responses across 

space or time via a nonlinear computation known as divisive normalization or by other 

complementary approaches (Coen-Cagli et al., 2012; Karklin and Lewicki, 2009; Lochmann 

et al., 2012; Rao and Ballard, 1999; Schwartz and Simoncelli, 2001; Spratling, 2010; 

Zhu and Rozell, 2013). The statistical dependencies between filter responses can also 

be exploited to build models of V1 complex cells that pool together filters, resulting in 

invariances to translation and other properties (Hyvärinen and Hoyer, 2000; Karklin and 

Lewicki, 2009) (for a review see book by (Hyvärinen et al., 2009) and references therein; 

see also (Berkes and Wiskott, 2005; Cadieu and Olshausen, 2012)). V2 models have been 

derived by stacking multiple layers of linear-nonlinear transforms to achieve statistical 

independence, sparseness, or other related stimulus-driven goals (Coen-Cagli and Schwartz, 

2013; Hosoya and Hyvarinen, 2015; Lee et al., 2008; Shan and Cottrell, 2013). One can 

in principle stack many layers to model higher level visual areas, but this has been rather 

challenging from a stimulus-based scene statistics perspective.

Generative models that capture image statistics can complement efficient coding approaches 

(Dayan et al., 2003; Hinton and Ghahramani, 1997). Efficient coding approaches seek to 

transform and manipulate inputs so as to maximize the transfer of information, which can 

result in statistical independence of the transformed inputs. But learning to generate the 

statistical dependencies prevalent in natural scenes also shows how to reduce them. To 

make this more concrete, consider an example in which efficient coding and generative 

models are complementary. Multiplicative generative models for the nonlinear dependencies 

in filter responses to images lead immediately to approaches to reduce such dependencies 

via division (Wainwright and Simoncelli, 2000). Furthermore, these approaches lead to 

richer models of divisive normalization, predicting that normalization in V1 neurons (e.g., to 

reduce statistical dependencies) is absent unless center and surround are deemed statistically 

homogeneous or dependent for a given image (Coen-Cagli et al., 2012) (see also (Li, 

1999)). Cagli et al. (Coen-Cagli et al., 2015) used predictions about statistical dependencies 

in images to fit V1 neural data for large natural image patches that extend beyond the 

classical receptive field. This resulted in better generalization than some descriptive models 

of divisive normalization, demonstrating the value of incorporating understanding about 

statistical dependencies in images.

Goal-oriented approaches to natural vision

Efficient coding predicts that neural processing will maximize the information transmitted 

about a stimulus without explicitly considering behavioral demands such as the specific 

tasks required for survival. These behavioral considerations are central to goal-oriented 

approaches, which view the importance of stimulus structure and circuit mechanisms on 

coding through the lens of specific behavioral demands. Because many behaviorally-relevant 

tasks require rich stimuli, goal-oriented approaches are often used to investigate the coding 

of natural inputs. We first illustrate these issues from studies of the retina and insect 

behavior, and then turn to their application in cortex.
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Retinal ganglion cells support specific behavioral goals

A common observation that supports goal-oriented approaches is high neural selectivity to 

specific stimulus features to the exclusion of other (equally probable) stimulus features. 

In an early study of retinal feature selectivity, Lettvin and colleagues interpreted retinal 

ganglion cell (RGC) types in explicitly ethological terms, famously going so far as to 

speculate that one class of ganglion cell in the frog retina may be a “bug perceiver” (Lettvin 

et al., 1959). But the idea that the earliest neurons in the visual system are tuned to 

highly specific features of the visual world was ahead of its time. Instead, the dominant 

view of retinal processing for several decades thereafter focused on basic processing, 

including lateral inhibition (via a center-surround spatial receptive field) and simple forms 

of luminance adaptation (Masland and Martin, 2007). In this view, the computational heavy 

lifting to support specific behavioral goals is done in visual areas downstream of the retina 

and LGN.

A great deal of evidence has now accumulated that retinal computation is more complex 

(for a review see (Gollisch and Meister, 2010)). A wide variety of “non-standard” RGC 

computations have been discovered and often explained at the circuit and synaptic level. 

These include: direction-selectivity, orientation selectivity (Nath and Schwartz, 2016), 

an omitted stimulus response (Schwartz et al., 2007), and image recurrence sensitivity 

(Krishnamoorthy et al., 2017). Of specific relevance here, recent work emphasizes intricate 

specializations of direction-selective circuits for extracting information about the direction 

of motion, often to the detriment of encoding other visual features (Franke et al., 2016; 

Zylberberg et al., 2016).

The degree to which retinal neurons are specialized to guide a particular behavior or 

to perform general-purpose computations predicted by efficient coding may depend on 

species and on location within the retina. The “complex” computations discussed above 

(like direction selectivity) have not been observed in primate retina, although many primate 

RGC types remain unexplored. Further, the fovea and peripheral retina differ dramatically 

in circuitry (reviewed by (Rodieck, 1998)) and in functional properties (Hecht and Verrijp, 

1933; Sinha et al., 2017; Solomon et al., 2002); these differences could indicate a difference 

in the division of computational labor between retinal and cortical circuits across retinal 

eccentricity.

Differences like these - across cell types, species, or retinal eccentricity - suggest one way to 

reconcile stimulus- and goal-oriented frameworks in the retina. Retinal neurons that support 

a variety of behavioral goals or project to image-forming downstream thalamocortical 

circuits may show more general purpose computational features in line with efficient 

coding - these cells act as a common front-end for many downstream feature extractions. 

To transmit enough information to support a variety of downstream feature extractions, 

computation in these neurons resembles predictions from efficient coding. Other retinal 

neurons may violate predictions from efficient coding because they project to areas of the 

brain that underlie more specialized visually-guided behaviors -- for example, direction 

selective neurons (Oyster and Barlow, 1967) that project to superior colliculus or the 

accessory optic system to guide eye movements, or RGCs that control circadian rhythms 

(for review see (Hughes et al., 2016)).
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Lessons from insect vision: behavioral goals shape and constrain visual processing

Goal-oriented approaches have yielded particularly satisfying explanations for complex 

visual processing in insects. The fly vision community has a long history of examining 

visual processing as it relates to behaviors like flying (Hausen and Egelhaaf, 1989). Motion 

processing pathways in several different insects appear tuned to each species’ particular 

flight behaviors (O’Carroll et al., 1996). Some visual neurons in the fly encode visual 

features directly relevant for flight control, such as optic flow elicited by rotations or 

translations around and along specific body axes (Krapp and Hengstenberg, 1996; Longden 

et al., 2017) (see Figure 4). These neurons act as “matched filters” for specific types of optic 

flow (Franz and Krapp, 2000; Kohn et al., 2018). Optic flow encoding may seem obvious in 

hindsight, but the local motion receptive fields of these cells would appear quite mysterious 

if not for the careful consideration of the impact of the fly’s own motion on visual inputs.

Recent work on mouse directionally-selective RGCs has similarly recast their function in 

terms of self-generated motion while navigating the environment (Sabbah et al., 2017) 

(see Figure 4). A long-standing view of directionally-selective RGCs held that they consist 

of four subtypes, each preferring a cardinal axis of motion (up, down, left, right, each 

separated by ~90 degrees) and in alignment with the axes of eye movements produced 

by the four rectus muscles of the eye (Oyster and Barlow, 1967). These RGCs project to 

the superior colliculus (Gauvain and Murphy, 2015), which further suggests that they are 

involved in controlling eye movements. While this distribution of preferred directions holds 

in the mouse central retina, in other regions of the retina the preferred axes of directionally­

selective RGCs are not perpendicular and thus do not neatly align with the rectus muscles 

of the eye. Sabbah & colleagues mapped retinotopic differences in direction-selectivity in 

relation to extrapersonal visual space and motion by the animal (Figure 4). They found 

that directionally-selective cells are in fact better thought of as encoding the animal’s own 

“advance/retreat” and “rise/fall” movements than the movement of some external object.

Goal-directed Approaches in Cortex

Goal-directed approaches have also been applied to visual cortex. Geisler and colleagues 

have promoted the importance of understanding how particular tasks may exploit different 

properties of natural scenes (Burge and Jaini, 2017; Geisler et al., 2009). They have 

focused on the representations learned by tasks such as patch identification, foreground 

identification, retinal speed estimation and binocular disparity. For instance, filters learned 

for a foreground identification task were oriented either parallel or perpendicular to surface 

boundaries (Geisler et al., 2009), while filters from an image patch identification task 

had less discrete orientation preferences and more closely resembled V1 filters. Thus, the 

representations learned can depend on the visual processing goals imposed on the system.

Deep Neural Networks

Recent years have seen tremendous advances in an area of machine learning known 

as deep neural networks (DNNs; (Krizhevsky et al., 2012; Lecun et al., 2015)); these 

advances have driven progress in computer vision and a host of other fields. In deep 

neural networks, stimuli such as natural images are represented and processed hierarchically, 
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loosely matched to the hierarchical structure of the brain. These networks come in many 

different flavors, including those that are trained in an unsupervised manner -- i.e. training in 

which the network learns to identify and encode statistical structure in the inputs without a 

specific goal. Here we focus on supervised discriminative networks, which learn to perform 

specific tasks using labeled training data sets. DNNs have many potential applications; 

we emphasize their potential to help understand and make predictions about the neural 

processing of natural images, particularly how the nervous system could achieve invariant 

object recognition (e.g. to pose, background clutter, and other within class variations).

Architecture and neural circuitry

Deep neural networks consist of a series of connected layers, each of which implements 

a set of basic computations (Figure 5). The computations in a single layer include linear 

filtering (convolution), rectification, pooling, and sometimes local response normalization. 

DNNs can be considered as a hierarchical extension of the linear-nonlinear models often 

used to empirically describe visual responses. The dimensionality (number of elements) is 

reduced between successive layers; as a result, effective receptive fields become larger as 

one progresses along the hierarchy. Thus, individual layers implement computations like 

those found in descriptive models of neural circuits, and the hierarchical arrangement of 

layers resembles the organization of visual (and other sensory) pathways.

The parameters governing DNN behavior are not determined by specific low-level 

computational principles (e.g. reducing statistical dependencies as in efficient coding), but 

instead emerge by learning to minimize the difference between the DNN output and a 

desired response corresponding to the DNN goal. For example, DNNs are often trained to 

categorize a large collection of images into discrete classes based on objects they contain 

(boats, cars, faces, chairs, etc.). DNNs can also be used in a descriptive (and therefore 

not goal-oriented) manner by fitting them directly to neural data, rather than training 

them on a high-level task. One such model, when fit to retinal ganglion cell responses 

to natural movies, reproduced several of the “complex” retinal computations discussed 

above. The model did not reproduce these behaviors when fit to white noise stimulation 

(Maheswaranathan et al., 2018). While neural networks have been around for decades, 

recent years have seen dramatic improvements in performance due to increases in computer 

speed and the availability of large data sets (e.g. images with labeled objects) that together 

make it possible to efficiently train networks with many layers.

Learning from successes and failures of DNNs

DNNs trained on object classification show an intriguing ability to predict the responses of 

cortical neurons to natural images (for recent reviews, see (Kriegeskorte, 2015; Yamins and 

DiCarlo, 2016); for other recent work, see (Cadena et al., 2017; Cichy et al., 2016; Pospisil 

et al., 2016)). This approach has been applied with particular success to processing in the 

ventral visual pathway, which culminates in neurons in inferotemporal (IT) cortex. Many 

IT neurons exhibit high feature selectivity -- responding to specific objects and (famously) 

faces (Young and Yamane, 1992).
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The flow of signals from the retina to IT is characterized by the loss of a veridical 

representation of the retinal image: receptive fields become progressively larger and more 

complex, invariances to properties like object size and position emerge, and the appropriate 

space to specify inputs (e.g. inputs that produce similar responses of a given neuron) 

becomes increasingly difficult to identify. These transformations are challenging to learn 

using stimulus-based models. DNNs, however, have been more successful. Interrogation of 

the architecture of DNNs trained on object classification suggests that invariances may arise 

from the pooling stages of the networks (Fukushima, 1980; Riesenhuber and Poggio, 1999). 

DNNs show an ability to generalize in two important ways: (1) they are able to classify 

images of objects not in the original training set, including adjusting their representation 

of inputs for different tasks through transfer learning (Razavian et al., 2014); and, (2) 

they capture several aspects of neural responses even though neural data is not used in 

training. But DNNs are, of course, imperfect. For example, current DNN models fail to 

capture some aspects of human perception such as insensitivity to perturbations to an image 

(Szegedy et al., 2013; Ullman et al., 2016). One suggestion is that current DNN architectures 

operating in rather linear regimes lead to this behavior (Goodfellow et al., 2014), and that 

more biologically realistic saturating nonlinearities may improve performance (Nayebi and 

Ganguli, 2017) (although see (Brendel and Bethge, 2017)). DNNs capture some but not all 

aspects of responses of neurons in mid-cortical layers (Pospisil et al., 2016). In addition, 

interpreting DNNs can be difficult. Unlike more principled efficient coding approaches in 

which the form of the computation itself (e.g., divisive normalization or gain control) can be 

motivated by the computational goal, it is often not clear what feature of the DNN leads to a 

given level of performance.

Any insights that DNNs trained on high-level tasks like classification provide about how the 

visual system computes comes from identifying, through learning, key statistical structure in 

the inputs that is important for performing the specific task used in training. Motivation for 

such an approach comes from convergent evolution of computations like motion detection in 

insect and vertebrate visual systems (see above). Given that DNNs are only loosely modeled 

after visual circuits, a realistic expectation is that they identify the computational capabilities 

and limitations of specific architectures rather than provide a literal model of how the visual 

system works. If statistical structure of the inputs, rather than specific hardware constraints, 

dominates which computational strategies are effective for a given task, we might expect 

DNNs and neural systems to converge on similar computational algorithms even if the 

implementations of these algorithms differ due to differences in hardware.

Future directions

Understanding neural computation and coding in the context of naturalistic visual stimuli is 

a difficult problem. But the wealth of neurophysiological data about the visual system and 

the emergence of new computational tools for building and fitting models put us in a good 

position to make progress. Below we highlight a few emerging directions that we believe 

will help advance understanding. Many of these approaches merge techniques and ideas 

from the stimulus- and goal-oriented frameworks discussed above.

Turner et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identify key circuit mechanisms and integrate into models

A complete understanding of natural visual encoding entails building models that can 

accurately predict neural responses to natural scenes. We believe that a major reason for 

the shortcomings of current models is that they lack key architectural and computational 

features present in biological circuits, and that these features substantially shape neural 

responses. Certain model abstractions (for example, linearity of the receptive field) may 

be appropriate under some stimulus conditions but not others. At the same time, simply 

building models using realistic components is not likely to explain complex computations 

such as object recognition. Merging DNN techniques with more realistic biological circuitry 

offers one path forward.

DNNs components and connectivity are typically chosen largely based on the computational 

efficiency of learning using current optimization tools (e.g. gradient descent). This can lead 

to architectures that lack key components of neural circuits. Identifying and incorporating 

biologically-inspired computational motifs will help identify which motifs are important for 

specific computations -- e.g. computations at different stages of the visual hierarchy. This in 

turn could lead to direct predictions about the mechanisms operating in the relevant neural 

circuits.

One indication of the potential benefits of such an approach comes from comparing 

physiologically-based models of early visual areas (linear-nonlinear models with two 

forms of local normalization) and layers of the VGG network (which lack normalization): 

physiological models captured human sensitivity to image perturbations considerably better 

than DNNs (Berardino et al., 2017). A challenge is our current inability to identify 

which biological mechanisms are essential for specific computations and which can be 

abstracted as in linear-nonlinear models. Progress will also require probing the interactions 

between coactive mechanisms that are likely engaged strongly for complex stimuli such 

as natural images. A partial list of computational features prominent in neural circuits 

but under-represented in DNNs includes more sophisticated forms of normalization by 

stimulus context (for recent work in this direction, see (Giraldo and Schwartz, 2017; Han 

and Vasconcelos, 2014; Ren et al., 2017)), recurrent connections and adaptation (Mcintosh 

et al., 2016; Spoerer et al., 2017), and architectures for pooling across neurons (see recent 

work with descriptive models: (Eickenberg et al., 2012; Pagan et al., 2016; Rowekamp and 

Sharpee, 2017; Sharpee et al., 2013; Vintch et al., 2015)).

Combine the merits of stimulus- and goal-oriented approaches

DNNs are designed to perform well on the discriminative recognition task at the top level 

of the network, but this constraint does not uniquely specify the architecture of the other 

layers. On the other hand, stimulus-oriented approaches provide a principled approach to 

capture more detailed computations and nonlinearities in early stages of visual processing, 

including retina and primary visual cortex. But it is not clear if such approaches could 

capture computations in later stages of the cortical hierarchy.

An important future task is therefore finding better ways to reconcile and integrate the merits 

of both approaches. For instance, most of the early stages of processing that take place 
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before primary visual cortex are neglected in current DNNs (an exception is (Mcintosh et 

al., 2016)). Incorporating these early stages into networks could become a merger point 

between goal-directed objectives shaping the top levels of the network and stimulus-driven 

constraints shaping the initial stages of the architecture. Another direction is to incorporate 

computational motifs derived from stimulus-driven normative approaches (such as the 

normalization discussed above) into DNNs.

New theoretical and practical approaches that balance stimulus- and goal-oriented 

approaches provide promising directions. For instance, an approach known as the 

information bottleneck formalizes the idea of capturing relevant information rather than 

all information (for recent application to deep learning, see (Shwartz-Ziv and Tishby, 2017)). 

Another recent approach unifies several definitions of efficient coding and considers the 

impact of incorporating only stimuli that are predictive about the future on coding (Chalk 

et al., 2018). Other recent work connects generative (stimulus-oriented) and discriminative 

(goal-oriented) components in a single model through a shared representation (Kuleshov and 

Ermon, 2017). This combination has been exploited in ‘semi-supervised’ machine learning, 

which makes use of scarce labeled data along with unlabeled data, and therefore is a hybrid 

between supervised and unsupervised approaches. However, this combined stimulus and 

goal-oriented representation has not been applied to neuroscience and understanding natural 

vision. Recent theoretical work has also expanded the notion of efficient coding by recasting 

it as a specific case of Bayesian inference (Park and Pillow, 2017). By using a broader 

definition of optimality, Bayesian efficient coding allows one to evaluate the efficiency of 

neural representations in terms of encoding goals beyond simple information maximization.

There is also a need for progress with stimulus-oriented unsupervised learning approaches 

that exploit the power of DNNs without specialization for a specific goal. Unsupervised 

learning is considered by many the “holy grail” of learning (for recent examples, see (Ballé 

et al., 2016) which incorporates multiple levels of divisive normalization; and (Hirayama et 

al., 2017) which incorporates pooling). It is still unclear whether deep network architectures 

with unsupervised learning can predict responses of neurons to natural scenes or capture the 

invariances that characterize higher visual processing.

Train DNNs using multiple, behaviorally-inspired tasks

A DNN trained to perform a particular task can recapitulate some aspects of sensory 

circuits; for example, the middle layers of an image classification DNN resemble in some 

respects neurons in intermediate stages of the ventral stream (reviewed by (Yamins and 

DiCarlo, 2016); (Pospisil et al., 2016)). Presumably these correspondences arise from 

similarities in both network architecture and task. A real sensory system, however, supports 

a wide array of tasks or behavioral goals simultaneously. The result is that, especially 

in early sensory areas, neurons have to process sensory input in a way that supports 

multiple parallel feature extractions or behavioral goals. Neurons that make up this common 

biological front end (e.g. photoreceptors or some types of retinal ganglion cells) may 

therefore align their encoding strategies with efficient coding to support a wide variety 

of downstream goals. Downstream circuits performing more specialized computations, on 

the other hand, may not behave according to classical efficient coding principles. This agrees 
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with our intuition that efficient coding somehow applies more neatly to peripheral sensory 

systems. Formalizing this intuition requires grappling with several difficult questions: Are 

there general rules that govern when a stimulus- or goal-oriented perspective is more 

appropriate? At what point does a sensory pathway stop simply efficiently packaging 

information and start “doing” something with that information?

Multi-task DNNs offer one approach for exploring how shared circuitry could support 

multiple tasks (Scholte et al., 2017). Indeed, such networks trained for speech and music 

classification naturally divide into separate pathways, and the level at which that split 

occurs can affect the performance of the network on these two tasks (Kell et al., 2018). 

An interesting question is whether constraining networks by multiple mid-level tasks (as 

in (Chengxu Zhuang, 2018)) can provide a more general-purpose representation resembling 

that predicted by efficient encoding. A major impediment to developing multi-task DNNs is 

the limited availability of datasets that could be used to train such networks (e.g. ImageNet, 

which consists of a collection of labeled objects, is the dominant dataset used for vision­

related applications).
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Figure 1: Texture Synthesis based on Deep Convolutional Neural Networks.
The activations of different layers of a DNN trained for object recognition can be employed 

to capture statistics of textures beyond second order (Gatys et al., 2015). Texture synthesis 

is accomplished by numerical optimization of the pixel values of an image that matches the 

statistics of a reference image (Original Image enclosed in black). Statistics can be obtained 

from activation values at different stages of the deep DNN. Images enclosed in red are 

synthesized by considering only activations from the first and second pooling stages of the 

DNN, whereas images enclosed in blue include the third and fourth pooling stages in their 

statistics. In the case of the inhomogeneous images (bottom row) the texture generation tiles 

local features in scrambled places that will match the activation statistics that have been 

averaged over space.
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Figure 2: Efficient coding strategies rely on self-generated movement.
(a) A natural image and measured human eye movement trajectory from (Van Der Linde 

et al., 2009). An observer will explore a scene using large, ballistic changes in fixation 

called saccades. In the time between saccades, observers make much smaller, involuntary 

eye movements called fixational eye movements (for review, see (Rucci and Victor, 2015)). 

(b) Using these eye movement data, we can reconstruct the time-varying image on the retina 

into a naturalistic movie stimulus. We summed the Fourier spatial power spectra of each 

frame of this movie, resulting in a roughly 1/f2 power law scaling, which is characteristic 

of static natural images (black trace). Following the analysis in (Kuang et al., 2012), we 

then measured spatial power spectra for the dynamic component of the natural movie. To 

produce these spatial power spectra, we computed the spatiotemporal power spectrum of 

a movie and summed over all non-zero temporal frequencies. Fixational eye movements 

simply shift much of the power, except that at the lowest spatial frequencies, to higher 
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temporal frequencies. The removal of the temporal DC component of the movie thus 

selectively removes low spatial frequency content, and the result is a whitened spatial power 

spectrum (Fig. 2b, blue trace). Importantly, this result relies on fixational eye movements 

and not saccades. When saccades are included in the natural movie stimulus, considerable 

low spatial frequency content is still present at nonzero temporal frequencies, so whitening 

does not occur (Fig. 2b, red trace). (c) The position (in one dimension) of the eye as a 

function of time is shown by the green trace. Examining the eye position at a finer time 

scale (dashed inset) reveals smaller fixational eye movements. Boi et al. (Boi et al., 2017) 

suggested that during a saccade, the dynamic spatial frequency content of natural images 

follows the familiar 1/f2 power law scaling (left inset, red trace). As the fixation proceeds, 

the retinal input is whitened (right inset, blue trace). Between saccades (when the image is 

relatively stable), any low spatial frequency content is present mostly in the temporal DC 

component of the input. In other words, the large-scale spatial structure isn’t changing very 

much within a single fixation. The whitening effect of fixational eye movements will depend 

on how completely (and how quickly) a visual neuron adapts to the (mostly static) low 

spatial frequency content imposed by each new fixation.

Turner et al. Page 22

Nat Neurosci. Author manuscript; available in PMC 2021 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Beyond-pairwise statistics contribute to complex structure in natural images.
Top row: Two grayscale natural images. Middle row: The natural images above with 

randomized phase spectra. Both of these images have the roughly 1/f2 spatial power 

spectrum characteristic of natural images, yet appear quite unnatural. Bottom row: The 

natural images with their phase spectra swapped, such that the image on the left now has 

the phase spectrum of the original image on the right, and vice-versa. See (Simoncelli and 

Olshausen, 2001; Thomsom, 1999).
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Figure 4: Motion sensitive neurons encode self-movement across the animal kingdom.
(a) Schematic showing a fly in flight. (b) Local motion receptive field of the VS8 neuron in 

the blowfly Calliphora. The direction of each arrow indicates the local preferred direction, 

and the length of each arrow indicates the cell’s motion sensitivity. This local motion 

receptive field corresponds to the optic flow pattern that would result from a rotation of the 

animal. The rotation axis around which the fly would need to turn to maximally activate 

this neuron is indicated in (a). Data & schematic provided by Holger Krapp. (c) Schematic 

showing a mouse ambulating in a forward direction. The resulting visual input is an optic 

flow pattern emanating from a singularity directly ahead of the animal (blue lines). (d) 

Direction preferences of a population of DS RGCs in mouse retina are overlaid on the retinal 

surface. Forward motion optic flow moves outward from a point in the retina (blue lines). 

The direction preferences of this cell type roughly align with the optic flow lines that result 

from forward motion. Other DS RGC types similarly respond to optic flow resulting from 

other directions of motion of the animal. Data redrawn from (Sabbah et al., 2017).
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Figure 5: Deep neural networks reflect some, but not all, architectural and computational motifs 
found in neural circuits.
Top: Deep neural networks are composed of multiple, connected layers. Several basic 

computations are performed within each layer. Bottom: examples of common circuit motifs 

and computations observed in neural circuits. Some of these examples are well-represented 

by many DNNs (e.g. pooling / filtering), others can be included in DNNs but their precise 

nature & location are not necessarily well reflected (e.g. rectification or normalization), and 

still others are excluded from most DNNs (e.g. time-dependent nonlinearities).
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