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Abstract 

HL7 Fast Healthcare Interoperability Resources (FHIR) is one of the current data standards for enabling electronic 
healthcare information exchange. Previous studies have shown that FHIR is capable of modeling both structured 
and unstructured data from electronic health records (EHRs). However, the capability of FHIR in enabling clinical 
data analytics has not been well investigated. The objective of the study is to demonstrate how FHIR-based 
representation of unstructured EHR data can be ported to deep learning models for text classification in clinical 
phenotyping. We leverage and extend the NLP2FHIR clinical data normalization pipeline and conduct a case study 
with two obesity datasets. We tested several deep learning-based text classifiers such as convolutional neural 
networks, gated recurrent unit, and text graph convolutional networks on both raw text and NLP2FHIR inputs. We 
found that the combination of NLP2FHIR input and text graph convolutional networks has the highest F1 score. 
Therefore, FHIR-based deep learning methods has the potential to be leveraged in supporting EHR phenotyping, 
making the phenotyping algorithms more portable across EHR systems and institutions.  

 

Introduction  

Electronic health record (EHR) data is being increasingly used for conducting clinical and translational research. 
Large scale research networks such as the electronic Medical Records and Genomics (eMERGE) network1, 
Pharmacogenomics Research Network (PGRN)2, The National Patient-Centered Clinical Research Network 
(PCORnet)3, and the UK BioBank4 have enabled multi-institutional studies using EHR data5-8.  

However, the lack of interoperability of EHR systems is a challenge for healthcare institutions and clinical research 
centers. Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR)9 is one of the current data 
standards for representation of EHR data, and has been adopted by major EHR vendors to enhance data and system 
interoperability among different EHR implementations. The overall goal of FHIR is to facilitate available, 
discoverable and interpretable data sharing across institutions. Many research communities and medical centers are 
supporting the advancement and development of FHIR standards, including i2b210, SMART on FHIR11 and 
eMERGE12.  

Due to its advantages on implementation readiness and interoperability among different EHR systems, FHIR is 
increasingly being used for exchanging EHR data. On top of representing normalized structured data, NLP2FHIR13 
has been developed as a data normalization pipeline, which provides a reference implementation of the FHIR 
standard for modeling unstructured data. A follow-up study was done on computational phenotyping with FHIR-
based EHR representation, which demonstrated that NLP2FHIR-based representation of EHR data can effectively 
identify phenotypes using the case study on patients with obesity and multiple comorbidities from discharge 
summaries14, 15. Machine learning models such as Decision Tree, Support Vector Machine and Random Forest were 
also tested for effectively identification of obesity and multiple comorbidities using semi-structured information 
from discharge summaries.  

However, little work has been done in standards and clinical research informatics communities on adopting FHIR 
for deep learning models. In this study, we use existing deep learning methods including convolutional neural 
networks (CNN)16, Gated Recurrent Unit (GRU)17 and Text Graph Convolutional Network (GCN)18 to demonstrate 
how FHIR-based data representation can be integrated into deep learning models. We leveraged the NLP2FHIR 
pipeline and deep learning models on a case study to predict obesity and its comorbidities in two different datasets.  
We found that the combination of NLP2FHIR input, which is a graph-based input format, and the text graph 
convolutional networks has the highest F1 score. It shows promises to effectively use NLP2FHIR outputs as an 
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input standard for deep learning methods in supporting EHR phenotyping, making the phenotyping algorithms more 
portable across data systems and institutions.  

Related Work 

Standard-based phenotype algorithms and execution workflow have been studied in the clinical research informatics 
community to allow implementations of clinical logic and value sets in a modular software architecture19. Various 
machine learning algorithms have been leveraged by the Phenotype Execution and Modeling Architecture (PhEMA) 
project to identify phenotypes and sub-phenotypes for a number of conditions including acute kidney injury, heart 
failure, major depression and Alzheimer’s disease20-22. Rasmussen et al23 also proposed a framework using a 
common data model (CDM), standardized representation of the phenotype algorithms logic, and technical solutions 
to facilitate federated execution of queries. It is envisioned to help guide future research in operationalizing 
phenotype algorithm portability at scale. Hripcsak et al. described the process of transferring the phenotypes of type 
2 diabetes mellitus (T2DM) and attention deficit and hyperactivity disorder (ADHD) to the Observational Medical 
Outcomes Partnership (OMOP) CDM within the eMERGE network24.  

Standardized preprocessing pipelines for machine learning25, 26 can enable fair comparisons among machine learning 
models on publicly available datasets such as MIMIC III27. To further standardize these datasets into the clinical 
interoperable standard of FHIR, one of the representative work is done by Rajkomar et al28. They represented EHR 
data using FHIR and demonstrated that FHIR is capable of medical event prediction when tested on de-identified 
structured and unstructured EHR data from two US academic medical centers. Sharma et al. have studied a 
phenotyping system to integrate both rule-based and statistical machine learning methods29. The system has 
leveraged OHDSI’s OMOP CDM with Unified Medical Language System (UMLS) Concept Unique Identifiers 
(CUIs) to represent clinical NLP concepts as input features for machine learning based classifiers in phenotype 
identification systems.  Hong et al. has demonstrated FHIR-based EHR phenotyping can be applied to semi-
structured discharge summaries for multiple comorbidities identification15. The NLP2FHIR implementation contains 
several different NLP components leveraging existing information extraction systems including cTAKES30, 
MedTagger31, MedXN32 and UMLS VTS33. On the same task, Yao et al. used word embeddings and entity 
embeddings on CNN adapted from rule-based systems34, but the system did not leverage any standards or CDMs 
and hence have limited interoperability.   

 
Materials and Methods 

Materials 

In this work, we selected two datasets for our analysis: the i2b2 2008 obesity dataset35 and MIMIC III dataset27.  

The i2b2 2008 obesity dataset is a fully de-identified dataset consisting of discharge summaries. The dataset 
contains human-curated obesity status explicitly mentioned in the texts as well as 15 comorbidities consisting of 
asthma, atherosclerotic cardiovascular disease (CAD), congestive heart failure (CHF), depression, diabetes mellitus, 
hypertension, gastroesophageal reflux disease (GERD), gallstones, hypercholesterolemia, hypertriglyceridemia, 
obstructive sleep apnea (OSA), osteoarthritis (OA), peripheral vascular disease (PVD), and venous insufficiency35. 
For each comorbidity, there are 4 labels as the prediction target: present, absent, questionable or unmentioned. Both 
textual and intuitive judgments are provided in the dataset for each patient. While the judgment of textual is based 
on explicit mentions, the intuitive judgments are based on the annotators’ judgment, and may lead to additional 
inference (e.g. the statement of weights to infer obesity).  

The MIMIC III (Medical Information Mart for Intensive Care) is a publicly available dataset containing vital signs, 
medications, lab test results, observations and clinical notes of 53,423 adult admissions of critical care units. To 
build an obesity related comorbidity prediction dataset which is similar to the i2b2 dataset, we follow the experiment 
settings of Hong et al. to validate the design of portability15. The obesity and non-obesity groups are selected based 
on body mass index (BMI) for adult patients. Adults with a BMI value larger than 30 at admission with discharge 
summaries are categorized in the obesity group, while adults with a BMI value between 18.5 to 24.9 at admission 
are categorized as the control group. A total of 2000 discharge summaries are randomly selected among all available 
discharge summary notes, with 1000 each for case and control. 70% of the notes are selected as the training set 
(n=1400), and 30% of the notes are selected as the test set (n=600).  

We present dataset characteristics in Table 1.  
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Table 1. Statistics of the i2b2 and MIMIC IIIs datasets 

Dataset Train Test Average # of 
words/doc 

Vocabulary 
size 

Average # 
concepts/doc 

Extracted 
concepts 

I2b2 2008 719 496 833.4 8633 106.6 1919 
MIMIC III 1400 600 1491.1 13129 158.6 3220 

Methods 

The proposed workflow of FHIR-enabled text classification application for clinical phenotyping is illustrated in 
Figure 1. Given the original texts from the two datasets, a document is first tokenized into to a list of tokens as the 
input of the deep learning models. During the preprocessing, stop words and words appearing less than three times 
are removed for the purpose of better performance in the embedding training phase. Then, FHIR resources in JSON 
format produced by the NLP2FHIR pipeline are concatenated into token-like representations, which are categorized 
into different resources (Condition, Procedure, MedicationStatement, and FamilyMemberHistory) and grouped into 
FHIR Bundles. The NLP2FHIR representation is based on an existing system primarily validated on various data 
types36. Figure 2 shows an example of NLP2FHIR output of the sentence “Ms. [Name] is a 64-year-old female with 
nonischemic cardiomyopathy and class II-III symptoms who presented with worsening volume overload”. There are 
2 concepts (“cardiomyopathy” and “worsening volume overload”) identified by cTAKES to be normalized to 
SNOMED CT codes. To make the extracted concept objects compatible with word-based input formats, the coding 

system URL (i.e. http://snomed.info/sct), the code, and the polarity from the “abatementString” field are 
concatenated into one “word” to represent their uniqueness. As an important factor for the learning and prediction 
for many machine learning models, although word orders are not supposed to be preserved by FHIR, it is preserved 
sequentially in the NLP2FHIR output naturally as the dictionary lookup generates sequential concepts as outputs.  

After both the texts and NLP2FHIR representations are ready, the data are fed into machine learning/deep learning-
based classifiers to classify the documents. We tested three different deep learning models in this study: CNN, GRU 
and Text GCN. The details of the models in this study are described as follows.  

CNN  

Convolutional neural networks are one of the earliest and most commonly used deep learning models in text 
classification tasks16, 37. Experiments in the biomedical domain have shown that CNN can achieve good performance 
without extensive model tuning. In a typical 1-dimensional CNN for text classification tasks, it can capture local 
contexts by leveraging a convolutional kernel (or filter) acting as a sliding window among tokens.  

 

Figure 1. Workflow of text classification tasks for clinical phenotyping using NLP2FHIR 
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In this study, we use a fixed length CNN where the length is a hyperparameter. If the input document is shorter than 
the expected length, the end of the sequence was padded with zeros. If the input document was longer than the 
expected length, the input document was truncated.  

RNN/GRU 

One challenge for CNN is that it does not capture long-term information when the contexts are not close. RNNs are 
capable to handle long-term patterns in sequential inputs, because the state of previous RNN units can be passed to 
the units behind them until the end of the sequence. There are multiple variations of RNN38 which usually have 
better performance than vanilla RNN, including Long short-term memory (LSTM)39 or Gated Recurrent Unit 
(GRU)17. Experiments showed that there is no consistency on which model would perform better in general. In our 
experiments, we selected GRU due to its faster convergence time, and it should not impact our conclusion as the 
performances of these two models are usually comparable with each other17.  

Text GCN 

Kipf et al. proposed GCN 40, a graph neural network architecture for node classification. GCN is one of the methods 
to generalize neural networks to structured datasets. While CNNs or RNNs are typically good at modeling “array-
like” input data, they will face challenges to model graphs as the data connections are more challenging to capture. 
Common characteristics like depths, degrees, density, or node connectivity cannot be easily modeled without 
adapting to graph specific models.  
 
To make GCN work better for text classification tasks, Text GCN is proposed by Yao et al. as an extension of 
GCN18. Text GCN uses words and documents as nodes, and uses the trained embedding to classify document nodes 
into categories. The major differences between GCN and Text GCN is how the edges in the graph are represented.  
 
There are 2 types of nodes in Text GCN: document nodes and token nodes. When a word appears in a document, an 
edge between the document node and the token node will be generated. Each element of adjacent matrix A which 
keeps the edge weights between two nodes (m and n) are defined as follows:  

 
Figure 2. NLP2FHIR JSON representation of a sample clinical text to concept-based representation for deep learning models 
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𝑨𝒎,𝒏 = #

PMI(𝒎,𝒏),				𝒎, 𝒏	are	nodes	(concept/word)
TF-IDF𝒎,𝒏,				𝒎	is	document,	𝒏		is	node	(concept/word)

𝟏,																	𝐦 = 𝐧
𝟎,									Otherwise

 

 

The PMI (point-wise mutual information) given a word pair m, n can be calculated by:  

𝑷𝑴𝑰(𝒎,𝒏) = 𝐥𝐨𝐠
𝒑(𝒎,𝒏)
𝒑(𝒎)𝒑(𝒏) 

𝒑(𝒎,𝒏) =
#𝑪(𝒎,𝒏)

#𝑪  

𝒑(𝒎) =
#𝑪(𝒎)
#𝑪  

where #C(m) is the count of the sliding windows with the token m from the whole corpus, #C(m, n) is the count of 
sliding windows containing both m and n, and #C is the count of windows in the corpus. Only the positive PMI 
edges are added, since a negative PMI means there is little to no correlation of the words within the corpus. The  
constructed graph is then fed into a 2-layer GCN for training as proposed in Yao el al.18 and Kipf and Welling40, 
which allows messages passing among different nodes and layers.  

The illustration of how the Text GCN graph can be adapted to the token and NLP2FHIR representations is shown in 
Figure 3. As a comparison, the phrase “acute renal failure” is normalized to a Condition concept with a SNOMED 
CT code 14669001.  

 

Results 

In this section, we compare the performances of original tokens with the NLP2FHIR representations, used in 
different deep learning methods (CNN, GRU and Text GCN) in clinical text classification tasks. In the i2b2 obesity 
dataset, we use the official training and test set for evaluation, while the training and testing set of the MIMIC III 
dataset in this study is split by a ratio of 70% and 30% from the randomly selected notes described in the Materials 
section. All discharge summaries are flattened as lists of lower-case tokens with all the line-breaks removed before 
entering into the deep learning models.  
 
The Text GCN implementation is adopted from Yao et al41 and is implemented  by scikit-learn42 and TensorFlow43. 
The CNN and GRU implementations are based on Keras44 using a TensorFlow backend. All the embedding layers 
are trained on the training set, and no pre-trained word embedding models are used in the experiments. The 
hyperparameters are tuned for different datasets separately. For the CNN model, we used 1 convolutional layer 

  
Figure 3. Token-based (left) and FHIR-concept-based  (right) graphs for Text GCN text classification. The nodes denoted 
by circles are document nodes with document IDs, and the nodes denoted by round rectangles are token (left) or concept 

(right).  
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before 1 fully connected layer with the number of filters as 200, maximum input length as 600, the embedding 
dimension as 50, and the convolution kernel size as 3. For GRU, the hidden dimension is set to 128. The number of 
epochs for both the CNN and GRU are 40, with an early stopping patience of 5 monitoring the validation loss. The 
validation set consists of 10% of the training data. The source code of the implementation can be found at 
https://github.com/BD2KOnFHIR/nlp2fhir-deep-learning.  
 
For Text GCN, only text data is used, and for FHIR, the concepts consist of code and polarity (positive, negative). It 
is transformed to a multi-class document classification problem. The graph statistics of the i2b2 and MIMIC datasets 
are shown in Table 2. We used the default settings of 2 GCN layers as it shows better performance than the 1-layer 
model, and it is more likely to converge compared to 3 or more layer models in our early experiments.  
 

Table 2. Statistics of the Text GCN graph for i2b2 and MIMIC datasets 

Dataset # of nodes # of edges Density 

I2b2 2008 6134 79598 4.23 * 10e-3 

MIMIC III 9204 168143 3.97 * 10e-3 

 
The reported performances are the accuracy (equivalent to micro-precision, recall and F1-score), macro-averaged 
precision, recall and F1-score of the obesity and its 15 comorbidities and its 95% confidence intervals (95% CI) 
among different comorbidities. Table 3 and 4 show the mean macro-averaged precision, recall and F1-scores among 
obesity and different comorbidities. For the i2b2 dataset, we used textual gold labels instead of intuitive, which is 
more relevant to show how models understand the contexts without additional inferences by human experts. 
 
Table 3. Performances of different experiment settings on the i2b2 dataset by accuracy, macro averaged precision, 

recall and F1-score with the 95% CI. The highest scores are on bold 

Dataset CNN CNN- FHIR LSTM LSTM-FHIR Text GCN Text GCN - FHIR 

Accuracy 0.737 ± 0.068  0.748 ± 0.068 0.652 ± 0.075 0.697 ± 0.075 0.707 ± 0.055 0.795 ± 0.044 

Precision 0.489 ± 0.080 0.493 ± 0.058 0.400 ± 0.074 0.520 ± 0.064 0.347 ± 0.057 0.525 ± 0.049 

Recall 0.504 ± 0.055 0.519 ± 0.055 0.457 ± 0.055 0.478 ± 0.056 0.500 ± 0.056 0.523 ± 0.045 

F1-score 0.495 ± 0.060 0.505 ± 0.056 0.415 ± 0.059 0.495 ± 0.061 0.410 ± 0.057 0.524 ± 0.048 

 
Table 4. Performances of different experiment settings the MIMIC III dataset by accuracy, macro averaged 

precision, recall and F1-score with the 95% CI. The highest scores are on bold 

Dataset CNN CNN-FHIR LSTM LSTM-FHIR Text GCN Text GCN - FHIR 

Accuracy 0.859 ± 0.080  0.857 ± 0.083  0.824 ± 0.083 0.873 ± 0.079 0.746 ± 0.077 0.914 ± 0.070 

Precision 0.628 ± 0.052 0.607 ± 0.036 0.587 ± 0.041 0.614 ± 0.069 0.388 ± 0.076 0.616 ± 0.044 

Recall 0.645 ± 0.053 0.638 ± 0.021 0.596 ± 0.001 0.643 ± 0.057 0.623 ± 0.037 0.721 ± 0.058 

F1-score 0.625 ± 0.052 0.616 ± 0.036 0.590 ± 0.025 0.622 ± 0.057 0.478 ± 0.047 0.664 ± 0.050 

 
From the experiments, we observe that NLP2FHIR representations provide better performances when used as input 
compared to the original texts. In most cases the use of FHIR representation have positive impacts on classification 
performance, with the CNN vs CNN-FHIR on MIMIC III dataset the exception in our experiments. CNN models are 
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one of the strong baseline models for text classification on raw texts, with little to none preprocessing needed, in 
many studies. Therefore, applying information extraction pipeline (dictionary lookup) on texts may not lead to 
favorable performances on CNN models.   
 
Text GCN, which is a graph-based algorithm, also outperforms other deep learning models. The main reason is that 
the data we tested are very sparse. Unlike other text classification tasks presented in the Text GCN experiments, 
such as movie reviews or abstracts, only a few tokens are related to the classification results. That results in 
difference in density of the graphs.  
 
We also experimented with multiple settings with different portions of training data. The impacts of accuracy in one 
of the comorbidities (CHF) on the deep learning models are shown in Figure 4. We can observe increasing trends in 
general from left (fewer training samples) to right (more training samples), meaning increasing the amount of data 
into training while reducing the amount of data into testing. However, the trend is not obvious when the proportion 
is larger than 0.5, indicating the amount of training data can be considered sufficient to learn the hidden patterns in a 
fully annotated dataset. After the amount of data reaching the threshold, the model may at risk of overfitting that 
may have negative impact on the generalizability of the trained models due to the lack of generalizable test samples.  
 

Discussion 

In this paper, we designed and experimented with token-based and NLP2FHIR representations for text classification 
models. The tested models represent three different type of information for classification: CNN primarily classifies 
texts based on collections (max pooling) of local contexts, RNN on the actual sequences and Text GCN on graph 
structures of the tokens or concepts. The experimental results show that the sequence of normalized concept models 
from FHIR representation is better than the input data from the raw texts, or sequence of tokens, when applied to 
vanilla deep learning models without feature extraction and feature engineering. One potential reason for that is the 
contribution of the normalized representations that may be more informative comparing with sequences of tokens. 
With normalized concepts, the input sequence of the model is more condensed and standardized with potentially 
more edges in the graph. Another advantage of migrating data into the FHIR representation is the implementations 
and toolkits available through open-source FHIR development efforts. For the standardized implementation with 
improved portability and interoperability, deep learning applications can be deployable with minimal efforts across 
different datasets and systems.     

One usage of the proposed standard-based design is to allow de-identified data sharing regarding protected health 
information (PHI). The FHIR elements will only contain higher-level concepts from clinical ontologies and 
knowledge bases. As general concepts (separated from any specific patient), they are intrinsically free of PHI as 
defined by Health Insurance Portability and Accountability Act (HIPAA)45 that may make the data identifiable. The 
NLP2FHIR representation includes the annotated clinical mentions with normalized entities that are expected to be 

 
Figure 4. The impact of proportions of data into training on one of the comorbidity classifications (Congestive 
Heart Failure, CHF). The x-axis is the ratio of training data used from the all labeled data (training + testing), 

and the y-axis is the accuracy of CHF as an example of the comorbidities.  
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PHI-free. This can further inspire more pilot studies on distributing NLP2FHIR representations without the original 
texts as a standard format to facilitate standard-based phenotype identification algorithms without sharing PHI or de-
identification efforts.  

There are also several limitations in this study. First, for the text classification problems, we only demonstrate a few 
models as a case study, and it is not an exhaustive evaluation to determine the best performing ML methods. As 
comparisons, our overall macro F1 score of 0.524 in the i2b2 dataset is higher than the decision tree on CUI 
performances (0.5121)29 but lower than 0.6578 when a decision tree classifier is used including section information 
in Hong et al15. Likewise, other studies have demonstrated better performance than that in our experiments, although 
we note they were conducted based on different pre-processing steps and experimental settings. For instance, many 
top systems from the i2b2 challenge filtered the discharge summaries that are not relevant to the patients and 
developed keyword-based approaches to identify comorbidities46-48, which contain hand-crafted rules and regular 
expressions that are not portable. However, our major goal in this study was to demonstrate the portability of deep 
learning models when applied to NLP2FHIR representations. Therefore, we did not work towards building corpus-
specific dictionaries or rules, as such efforts and models tend to overfit to a specific task or corpus.   
 
Second, the implementation and evaluation did not utilize any document or textual structures. The current structure 
represents the document structure such as sections or sentences, but in the experiments, we did not weigh in the 
structure due to the lack of sentence-level and section-level gold standard labels.  
 
Third, the semantic based representations may not fully utilize syntax-based features that may be helpful for 
phenotype classification49-51, because the sentence structural information is omitted by the concepts and thus are not 
retained in the FHIR based representations. This makes it challenging to apply NLP2FHIR outputs for contextual 
pre-trained language models such as BERT (Bidirectional Encoder Representations from Transformers)52 and 
RoBERTa53, which are intended to handle natural languages as neural language models rather than coded 
phenotypic representations. This can cause some contextual information eliminated before feeding into the neural 
models for the classification task.   
 

Conclusion 

NLP2FHIR outputs can be ported and integrated into deep learning methods. We found that the classification results 
of NLP2FHIR based methods outperformed the methods with original texts. We demonstrated that FHIR-based deep 
learning methods could be leveraged in supporting EHR phenotyping, making the phenotyping algorithms more 
portable across data systems and institutions. In the future, we will work on improving the performance by adding 
document structure such as sentences and sections into the document modeling.  
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