
Phenoflow: A Microservice Architecture for Portable Workflow-based
Phenotype Definitions

Martin Chapman1, Luke V. Rasmussen2, Jennifer A. Pacheco2, Vasa Curcin1

1King’s College London, London, United Kingdom; 2Northwestern University, Chicago,
Illinois, USA

Abstract

Phenotyping is an effective way to identify cohorts of patients with particular characteristics within a population.
In order to enhance the portability of a phenotype definition across institutions, it is often defined abstractly, with
implementers expected to realise the phenotype computationally before executing it against a dataset. However, un-
clear definitions, with little information about how best to implement the definition in practice, hinder this process.
To address this issue, we propose a new multi-layer, workflow-based model for defining phenotypes, and a novel au-
thoring architecture, Phenoflow, that supports the development of these structured definitions and their realisation
as computable phenotypes. To evaluate our model, we determine its impact on the portability of both code-based
(COVID-19) and logic-based (diabetes) definitions, in the context of key datasets, including 26,406 patients at North-
western University. Our approach is shown to ensure the portability of phenotype definitions and thus contributes to
the transparency of resulting studies.

Introduction
Learning Health Systems require high-quality, routinely collected electronic health record (EHR) data to drive analyt-
ics and research, and translate the outputs of novel techniques such as machine learning into patient care and service
improvement. To achieve this, the data used for research need not only be of high-quality, but methods associated with
its use need be transparent and reproducible to ensure that any findings can be validated by the research community
and generalised to other populations. At the core of this challenge is the ability to reliably identify clinically equivalent
research-grade patient cohorts. These cohorts are precise enough to conduct meaningful research by identifying indi-
viduals with a particular disease, sets of comorbidities, medical histories, a demographic profile or any other relevant
patient-specific information – a process known as EHR-based phenotyping1.

The popularity of EHR data for research has increased the documentation and sharing of phenotypes derived from re-
search datasets in order to stimulate reuse, reduce variation in phenotype definitions across data sources, and ultimately
simplify and support the identification of clinically equivalent populations for research and healthcare applications.
The reuse of existing phenotype definitions necessitates the ability to discover and access curated and validated pheno-
type definitions. Pioneering efforts in building standardised phenotype repositories, such as the Phenotype Knowledge
Base (PheKB), CALIBER, Million Veterans Program (MVP) and All of Us consortium have achieved notable success
within their research programmes, with thousands of registered usages2, 3.

In an attempt to ensure the portability of a phenotype across multiple research use cases, the logic that comprises a
phenotype definition is often represented abstractly within these repositories, where it is structured as, for example,
a list of codes (e.g. Figure 1), or as a data flow diagram (e.g. Figure 2). This abstract representation is designed
to guide the development of a computable form of the phenotype, such as an executable script or a data pipeline,
for a particular use case. However, in practice, the portability of these definitions is often low: a lack of clarity in
the abstract definition, either in terms of terminology or structure, make them hard to interpret in order to produce a
computable form, and the technical skill burden on the computable phenotype author is high, as the abstract nature of
each definition means that little is communicated about the realisation of each phenotype in practice.

Methods
In order to address the difficulty of deriving computable forms from phenotype definitions, we propose a novel phe-
notype definition model, which aims to increase portability by improving clarity, and more explicitly defining the
structure of computable forms. The formulation of the proposed model was based on the experiences of initiatives
such as the UK eScience and US Cyberinfrastructure programmes4, which developed scientific workflow models for
orchestrating and coordinating their computational tasks. In addition, the functional (re-)modelling of different phe-
nomena in a number of different domains was used as a basis for the proposed model – in particular, work in hierar-
chical modelling; the representation of a phenomena at different levels of abstraction5, e.g. in bioinformatics software

142

architectures6. Finally, the authors themselves have developed a number of different models as part of prior studies,
including work on complex systems7, semantics for hierarchical composition8 and phenotyping from large scale EHR
repositories9.

Vocabulary Code Term
ICD-10 U07.1 Diagnosis of COVID-19

confirmed by laboratory
testing

.
ICD-11 RA01.0 Diagnosis of COVID-19

confirmed by laboratory
testing

.
SNOMED-CT 840539006 COVID-19

.

Figure 1: Extract of code lists used for defining COVID-
19 patients in an EHR system (Source: http://covid19-
phenomics.org/).

Figure 2: Data flow for defining T2DM patients in an
EHR system (Source: https://phekb.org/phenotype/type-
2-diabetes-mellitus).

In order to evaluate how our new structured definition model impacts portability, we first collected a set of 278 existing
phenotype definitions from a number of different phenotype repositories, including PheKB (https://phekb.org) and
CALIBER (e.g. https://portal.caliberresearch.org). We then re-authored these definitions according to our model,
and used them to produce corresponding computable forms. In examining these definitions, we identified that they fall
broadly into two categories: code-based definitions that identify patient cohorts using a list of clinical codes, and logic-
based definitions that identify patients using a series of logical statements. To evaluate the impact of our model on the
portability of the phenotype definitions in each of these categories, we selected a representative phenotype from each
category, including a code-based Coronavirus disease 2019 (COVID-19) definition (Figure 1) and a logic-based Type
2 Diabetes Mellitus (T2DM) definition (Figure 2), and compared the portability of each re-authored definition with
the original, using the Knowledge conversion, clause Interpretation, and Programming (KIP) phenotype portability
scoring system10.

Figure 3: Original T2DM phenotype, implemented as the nodes of a KNIME pipeline.

Prior to applying the KIP scoring system, it was important to verify that our re-authoring approach resulted in struc-
tured definitions that still captured the required phenotype logic. To do this we executed the computable forms derived
from the original definitions of our representative phenotypes and the computable forms derived from the structured
definitions of these phenotypes against a given patient dataset, and verified that the same patients were identified by
both implementations. For example, as a part of our evaluation, the phenotype definition for COVID-19 was obtained
from CALIBER (http://covid19-phenomics.org), re-authored by one of the authors (MC), and a computable form pro-
duced from both the original definition (as one did not exist) and the structured definition. Similarly, the definition

143

for T2DM, and its corresponding Konstanz Information Miner (KNIME) pipeline implementation (Figure 3), were
obtained from PheKB (https://phekb.org/phenotype/type-2-diabetes-mellitus). This definition, like the definition for
COVID-19, was then re-authored by one of the authors (MC), and a new computable form was produced. The original
COVID-19 implementation and the new computable form were then executed against a cohort of 1468 individuals who
tested positive for COVID-19 at Guy’s and St. Thomas’ NHS Foundation Trust (GSTT), London, while the T2DM
implementations were executed against a cohort of 26,406 possible T2DM patients, taken from the Northwestern
Medicine Enterprise Data Warehouse (NMEDW), as well as against publicly available data from PheKB. In the case
of T2DM, the execution of the computable form derived from the structured definition against these datasets is possi-
ble because it uses the same data input format as the original KNIME pipeline implementation, and similarly creates
an output file in the same structure. The GSTT dataset included a subset (n = 1153 cases) of hospitalised COVID-19
patients, while the NMEDW dataset included a subset (n = 23 cases) of patients with T2DM that had previously
undergone manual chart review, both of which acted as the gold standard to validate our algorithm against. In both
cases, the results of executing the structured implementation were compared with the results of executing the original
implementations to confirm the same exact cases and controls were found across their respective datasets.

Structured Phenotype Definition

number group id description type

step

Input Output
id description id description extensionA

pathA languageA paramsA

implementationUnitA

Computational

Implementation
Units

pathB languageB paramsB

implementationUnitB

Abstract

Functional

Figure 4: Structured phenotype definition model (step) and implementation units.

The structured phenotype definition model developed consists of a set of layers: abstract, functional and computa-
tional. A graphical overview of our model is given in Figure 4. Like traditional definitions, the abstract layer of a
structured phenotype definition holds the logic of the phenotype. However, the abstract layer in our model is defined
by two distinct features. Firstly, like the workflow models upon which our model is based, this layer consists of a
number of sequential steps, each of which defines a single operation against a target dataset. However, steps may also
be grouped, allowing for their functionality to be summarised by a single parent step. The second feature of this layer
is a multi-dimensional description of each step, which consists of an ID, designed to summarise the purpose of the step
using relevant clinical terminology; a longer description of the step, designed to offer a non-technical description of
the logic of the step; and a categorisation of the logic of the step as an entity within a given concept ontology (broadly
based on the axioms of the Phenotype Execution and Modelling Architecture (PhEMA) authoring tool (PhAT)11): load
(loading data from a datasource), logic (generic logic to identify patients), boolean (boolean logic to identify patients)
and output (the output of patients that exhibit a given phenotype to a specified location, e.g. disk). As a part of our
model, we also constrain the type of logic that a step may have, depending upon its position. For example, the first
step may only be of a load type, while the last may only be of an output type.

The functional layer of a structured phenotype definition is used to augment the information held in the abstract layer
by adding metadata information about the inputs and outputs of each step. This explicit specification is an application
of a functional programming paradigm12, and includes identifiers for both the inputs and outputs, summarising their
purpose using relevant clinical terminology; a longer description of both the inputs and output to each step, designed
to offer a non-technical insight; and syntactical commitments for step output (e.g. file type).

Finally, the modular computational layer of a structured phenotype definition is used to describe the presence of one
or more implementation units (e.g. a script, data pipeline module, etc.) for each (nested) step in the abstract (and func-
tional) layers. This description includes information about the execution environment used to run the implementation
unit, and how the unit is linked to that environment.

144

Generating computable phenotypes
In order to assist in the development of a computable phenotype from a structured phenotype definition, we develop a
microservice architecture, Phenoflow (Figure 5). Software designed as a microservice architecture provides function-
ality based on the interactions between individual services. As a specialised type of service-oriented architecture, the
microservice approach dictates that each service should only deliver one specific piece of system functionality, making
it easier to achieve quality attributes such as scalability and resilience in practice13. This paradigm has been success-
fully used to structure software in several health domains, including the representation of clinical guidelines14.

Web Portal

Generator

Visualiser

Implementation
Units

Author(s)

User
customise

workflow,
visualisation,

implementation units

author,
expand

data

workflow

workflow

visualisation

Figure 5: The microservices (web portal, generator and visualiser) that constitute the Phenoflow architecture.

Figure 6: Visually defining the abstract and functional
layers of a definition.

Figure 7: Providing an implementation unit for the third
step in the abstract and functional layers, in order to gener-
ate a step in the computational layer and store this unit.

Phenoflow first allows a researcher to graphically author a definition through a web portal service, where they express
each step of their new definition at the abstract and functional layers by selecting the type of each step, and then
by labelling, describing and, if they wish to, grouping those steps, as well as describing their inputs and outputs.
This process is represented in Figure 6, where a user is in the process of defining a new boolean expression, within
their abstract layer, having already defined an initial data read from an Observational Medical Outcomes Partnership
(OMOP) common data model (CDM) database, another piece of logic, and the fact that a CSV file is passed between
these two steps. Authors can also (indirectly) reuse the definitions produced by others in the definition of their own
phenotypes. This is common in the development of new definitions that contain the same logic, but target a different
data source. For example, two definitions that differ only in load components that separately target the OMOP CDM
and an Informatics for Integrating Biology and the Bedside (i2b2) dataset.

Following the specification of one or more steps in the abstract and functional layers, the researcher graphically
connects each step to an implementation unit (e.g., a Python script, or a KNIME module; their choice across the steps
does not have to be homogeneous), which they supply to the portal, in order to generate the computational layer. This
process is represented in Figure 7, where the author is uploading the module of KNIME pipeline as the implementation
counterpart of their priorly defined boolean expression step.

145

Figure 8: Adding additional implementation units for an
existing step.

Figure 9: Customising a computable phenotype for local
use.

If another researcher wishes to later supply an alternative implementation unit for any of the existing units, thus
introducing an additional module in the computational layer, they can do so, and this process is represented in Figure
8. Here, another author has accessed a previously authored definition, and is in the process of adding an alternative
implementation for the third step in the computational layer; previously implemented as a KNIME module, the second
author is now uploading a Python realisation of the same abstract boolean expression.

Given the potential for multiple permutations of the computational layer, and associated implementation units, when
accessing the definitions authored by others, a user is able to pick the permutation they wish to use in order to generate
a computable phenotype for local use. This process is represented in Figure 9, where a user is selecting, from the
stored implementation units, the exact structure of the computable phenotype; they have chosen a permutation that
mixes KNIME and Python implementation units.

Once a phenotype has been defined, and a user has customised the implementation units connected to this definition,
the information elicited by the web portal is sent to the generation service in the Phenoflow architecture, which, backed
by python-cwlgen (https://github.com/common-workflow-language/python-cwlgen), instantiates the definition as a
text-based Common Workflow Language (CWL) document, and sends it back. This document is then combined with
the stored implementation units, and packaged as a download for the user to execute locally as a computable pheno-
type, using one of CWL’s execution engines (e.g., cwl-tool, https://github.com/common-workflow-language/cwltool).
As these engines typically integrate with container technology, we have developed several custom images to support
the execution environments specified in the computational layer, including a custom KNIME Docker image.

Once it has received the CWL document back from the generator service, the web portal also sends this document
to the visualisation service in the Phenoflow architecture, which, backed by cwlviewer (https://github.com/common-
workflow-language/cwlviewer), sends back a visualisation of the abstract and functional layers expressed in the sup-
plied workflow. This ensures that the text-based CWL instantiation of the definition is complemented by a visualisation
that presents the definition in a format more commonly seen (e.g. as seen in Figure 2).

Results
Knowledge Clause Programming Total

COVID-19: Traditional Code 0 2 2 4
COVID-19: Structured Code 0 0 0 0
T2DM: Traditional Logic 1 1 2 4
T2DM: Structured Logic 0 1 0 1

Table 1: KIP scores indicating the portability of traditional code-based (COVID-19; GSTT) and logic-based (Type 2
Diabetes (T2DM); NMEDW) phenotype definitions and their structured counterparts.

Table 1 presents the KIP portability scores for traditional code-based and logic-based phenotype definitions, and

146

their structured counterparts. These scores were discussed and agreed upon by all of the authors, a subset of whom
have extensive experience both applying and validating KIP scores. The KIP assigns a score between 0 and 2 to
phenotype definitions under a number of different portability aspects, with higher scores indicating that a definition
is less portable. To understand these scores better, the following sections present the impact of our model on our
representative phenotype definitions for COVID-19 and T2DM, under each aspect of the KIP. Recall that we are able
to directly compare the portability of the traditional and structured forms of a definition, as we have already verified
that converting from one form to the other does not affect the logic of a phenotype.

Knowledge conversion
The first aspect of the KIP scoring system relates to the clinical knowledge required to develop a computable phenotype
from its definition. For example, the original COVID-19 phenotype definition is based on common vocabularies, and is
thus awarded a knowledge conversion score of 0. However, in the original T2DM phenotype definition, we note the use
of some more complex medical concepts (e.g., T2DM Rx precedes T1DM Rx, Figure 2). Supplementary information
about the meaning of this terminology is provided, but not within the definition itself, and in a different form (as an
additional written document). As a result, we assign a score of 1 for knowledge conversion for the original T2DM
definition.

2 - icd10 A case is identified in the presence of
patients associated with the stated icd10
COVID-19 codes.

logic

step

Input Output
covid19_cohort Potential covid19

cases.
covid19_cases_icd10 covid19 cases, as

identified by icd10
coding.

csv

icd10.py python -

...

1 f o r row in c s v _ r e a d e r :
2 newRow = row . copy ()
3 f o r c e l l in row :
4 i f [v a l u e f o r v a l u e in row [c e l l] .

s p l i t (" , ") i f v a l u e in codes] :
5 newRow [" cov id19 "] = "CASE"

...

Computational

Implementation
Units

icd10.js javascript -

...

1 f o r (row of csvDa ta) {
2 newRow = row . s l i c e () ;
3 f o r (c e l l o f row) {
4 i f (c e l l . s p l i t (" , ") . f i l t e r (code=>
5 codes . indexOf (code) >−1) . l e n g t h) {
6 newRow . push ("CASE") ;

...

Abstract

Functional

Figure 10: Individual step of COVID-19 structured phenotype definition and new implementation units.

1 case assignment rx_t2dm_med-
abnormal_lab

A case is identified in the presence of
an abnormal lab value (defined as one of
three different exacerbations in blood sugar
level) AND if medication for this type of
diabetes has been prescribed.

boolean

step

Input Output
dm_cohort-
abnormal_lab

Potential t2dm cases,
with abnormal lab re-
sults identified

dm_cases-
case_assignment_1

t2dm cases, as iden-
tified by first case as-
signment rule

csv

rx_t2dm_med-abnormal_lab.knwf knime -File= Computational

Implementation
Units

rx_t2dm_med-abnormal_lab.py python -

...

1 i f row [" t1dm_dx_cnt "] == " 0 "
2 and row [" t2dm_dx_cnt "] == " 0 "
3 and " t 2 d m _ r x _ d t s " in c s v _ r e a d e r .

f i e l d n a m e s
4 and " a b n o r m a l _ l a b " in c s v _ r e a d e r .

f i e l d n a m e s
5 and row [" a b n o r m a l _ l a b "] == " 1 " :
6 row [" t2dm "] = "CASE" ;

...

Abstract

Functional

Figure 11: Individual step of T2DM structured phenotype definition and new implementation units.

147

In its structured form (Figure 10), the COVID-19 definition retains its portability level for knowledge transfer, and
while the T2DM phenotype (Figure 11) retains the terminology found in the original definition (e.g. rx_t2dm_med-
abnormal_lab), the impact this has on portability is lessened in two key ways. Firstly, additional information about
the meaning of the terminology is provided within the abstract layer itself, in the description field of each step, en-
suring that any medical terminology is supplemented by a longer, more accessible, description (e.g. an explanation
of abnormal lab values). Secondly, the classification of each step as a type of operation from a pre-defined ontology
ensures that even in the presence of medical terms, basic understanding about the logic of a step can still be extracted.
For example, the classification of a step containing a case assignment rule as a boolean expression ensures that the use
of medical terminology does not obscure its logic. Based upon these factors, the KIP system assigns a value of 0 for
this aspect.

Clause interpretation
The second aspect of the KIP scoring system aims to identify any ambiguity in the logical clauses found in a pheno-
type definition, which may result in inconsistencies when realising this logic computationally. The existing T2DM
phenotype definition (Figure 2) uses long conditional clauses (represented graphically), however the logic still has a
clear interpretation. This leads to the attribution of a further KIP score of 1. In contrast, the COVID-19 definition,
existing as a set of code lists, has a much less clear interpretation, omitting key information, such as the order in which
the codes are to be applied, and how the lists are logically connected (e.g. conjunctive vs. disjunctive). This results in
the awarding of a KIP score of 2 for this aspect.

emis

read-potential-cases-diskcovid19_cohort

covid19_casessnomeduk snomedintl

icd11 ctv3icd10

loinc output-casesvision

Figure 12: Visualisation of COVID-19 structured phenotype definition

case-assignment

read-potential-cases-OMOPdm_cohort

dm_casesoutput-cases

abnormal-lab

dx_t2dm-rx_tdm_med-prec

rx_t2dm_med-abnormal-lababnormal-lab

case-assignmentdx_t2dm-rx_t1dm_med-dx2

dx_t2dm-abnormal-lab dx_t2dm-rx_t2dm_med

Figure 13: Visualisation of T2DM structured phenotype definition.

The translation of the code-based COVID-19 definition to the structured form enables much of this key information
to be expressed explicitly. For example, as can be seen from Figure 12 where a visualisation of the re-authored
COVID-19 definition is shown, the order in which each set of codes is to be applied is now clear, and their incremental
application confirms a disjunctive connection. For this reason, a new portability score of 0 is assigned. The impact of
the structured form on the T2DM definition is less marked. An additional visualisation containing the abstract layer of
the re-authored T2DM definition is shown in Figure 13, where the second box shows a grouping of case assignment
rules as a set of nested steps, referenced by the parent step shown in orange in the first. Each of the steps in this group,
which are evaluated in sequence, contains an individual boolean expression, such as the one defined in Figure 11. This
aims to increase the clarity of the interpretation further, by breaking down the long clauses seen in the original abstract
layer (Figure 2). Moreover, the use of a group (nested steps) itself, furthers this clarity by allowing for the overall role
of these steps to be more easily identified within the abstract layer. However, while there is a simpler overall structure,
at the same time the longer descriptions within each step introduce different complexity. For these reasons, the same
KIP score of 1 is assigned to this aspect under the structured definition.

148

Programming
The final aspect of the KIP scoring system relates to the programmatic complexity of implementation. The structure
of the original COVID-19 definition suggests a low level of programming expertise required to produce a computable
form (e.g. the requirement to produce a Python script to identify the stated codes within a dataset), while the T2DM
definition suggests a moderate level of programming expertise (e.g. the requirement for a data pipeline to be produced
to realise the stated logical conditions). However, the fact that little instruction can be extracted from each definition on
how to develop a computable form in practice increases the complexity of implementation, and results in a disconnect
between the two, which reduces the intelligibility of the implementation. This is particularly marked in T2DM, where
the case assignment logic seen in Figure 2, while defined as separate operations in the definition, is obscured in a single
node in the computable form (assign case status, Figure 3), making the correspondence between the two unclear. This
reduced intelligibility makes it harder to reuse, or modify, the provided implementation in a new use case. As a result
of this complexity, and the implications, a KIP score of 2 is awarded for both original definitions accordingly.

In contrast, the requirement for a distinct (set of) implementation unit(s) for each step in the abstract layer, introduced
by the computational layer of a structured definition, each of which responds to the inputs, and produces the outputs,
specified in the functional layer, provides a clear template for development. This lessens the implementation burden,
in the case of both the COVID-19 and T2DM definitions, by either structuring new development, or allowing existing
implementation units, which may have been developed locally, to be reused in order to produce the computable form
of a definition.

In addition, a computable phenotype produced on the basis of a structured definition is inherently more intelligible,
as the implementation holds a greater correspondence with the abstract layers. For example, in the case of T2DM,
because each step in the abstract layers must be connected to an individual implementation unit, the case assignment
logic is no longer obscured (as seen in Figure 11), as it was in the original computable form. As a result of this increased
intelligibility, these computable phenotypes are more transparent, and thus reusable and more easy to modify, lessening
the implementation burden on future developers. Moreover, assuming multiple implementation units exist for the same
abstract step (previously written by other authors), which can be easily swapped in and out owing to the modularity
brought by the computational layer, a user is more likely to find a unit written in a technology they are comfortable
with, and can thus edit, again reducing the implementation burden. For example, our structured COVID-19 and T2DM
definitions reference a mix of Python, Javascript and KNIME implementation units.

The ability to modify existing computable phenotypes structured according to our model is only increased by their
delivery as executable CWL documents by the Phenoflow architecture. As CWL documents, modifications to these
phenotypes can be rapidly tested against execution engines that leverage container technology to avoid having to
manually install execution environments. All of these factors result in the attribution of a score of 0 for the KIP
programming aspect, for both the COVID-19 and T2DM structured definitions.

Discussion and Conclusion
In this paper, we introduce a workflow-based, multi-layer model for the definition of a phenotype, and an associ-
ated microservice architecture, Phenoflow, which is used to define phenotypes under this model, and export them as
workflows, which can later be executed against a dataset along with associated implementation units.

Overall, we note a number of improvements to portability when a phenotype definition is structured using our rep-
resentation model, under the KIP scoring system. For code-based definitions, benefits are best seen in terms of a
clarity of structure, brought by the requirements of our model, while fewer improvements in portability are seen in
terms of terminology. For logic-based definitions, benefits are best seen in terms of clarity of terminology, brought by
supplementary information in the abstract layer, while fewer improvements are seen in terms of clause interpretation,
where the fact that long clauses are (necessarily) replaced with individual steps, introduces different complexity with
equivalent effect. For both code and logic definitions, significant portability improvements can be seen in terms of pro-
grammatic complexity of implementation, where a structured definition both closely guides the implementation via the
additional (functional and computational) layer information, and promotes the development of intelligible computable
forms that can later be reused and modified by other authors. Portability is improved even further by the presence of
the Phenoflow architecture, which facilitates the collation of implementation units, and facilitates the generation of
computable phenotypes from structured definitions. Ultimately, the improved phenotype portability brought about by

149

our approach not only helps researchers reuse existing definitions in new studies, but also assists in determining the
reproducibility of the methods found in published studies.

While the issue of translating an abstract phenotype definition into a computable form is well recognised within the
research community, this work offers several key advancements to complement previously developed methods.

The electronic Medical Records and Genomics (eMERGE) Network has a significant record of representing pheno-
types for dissemination and publication. This process was originally done by each institution within the eMERGE
Network taking a narrative description of the phenotype pseudocode and an accompanying data flow diagram, and
translating this into executable code that would run against their local data warehouse. This approach has now pro-
gressed to the use of pipeline-based executable representations, such as those using the KNIME analytics platform,
which allows the definition of the computable form in a graphical manner. In addition, the eMERGE Network has
adopted a common data model – the OMOP CDM – to facilitate the representation and dissemination of phenotype
algorithms15. This has allowed the graphical authoring of phenotypes using the ATLAS authoring tool. This provides
a human-readable representation of the logic, with the benefit of being stored in a format that may be automatically
converted to an executable format across multiple database systems at different organisations. While this approach ad-
dresses the issues associated with translating an abstract definition into a compatible form and has facilitated the rapid
sharing and execution of phenotypes, the OMOP CDM is not globally adopted (although it has seen wide growth and
adoption in recent years), the representations are therefore not fully portable to other CDMs or local data models16.
In contrast, phenotypes developed under our model are not tightly coupled to a single CDM; OMOP CDM is just one
data source that can be referenced in a definition (as are standards such as i2b2 and Fast Healthcare Interoperability
Resources (FHIR)).

The PhEMA project has also attempted to address the issue of translating an abstract definition to a computable form
by proposing the use of a graphical authoring environment that can be used to generate a higher-level, standardised
representation of the phenotype logic17. Initial work utilised the Quality Data Model (QDM), with more recent devel-
opment adopting the Clinical Quality Language (CQL). A key aspect of PhEMA’s approach is the use of translators
to take the higher-level representation (QDM or CQL), and convert it into an executable format that may run against
a particular CDM. For example, the approach of converting QDM into an executable KNIME pipeline allowed that
KNIME representation to still be customised for local execution18, 19. However, while this also aims to solve the issue
of developing a computable phenotype based on an abstract representation, the translators available are often specific
to an implementation format, such as KNIME. In contrast, phenotypes developed under our model are not coupled to
a single implementation format.

Future work will explore the impact that Phenoflow has on the portability of additional types of phenotype defini-
tions, including probabilistic definitions, the development of which is likely to leverage data processing tools such as
the Flexible Data-Driven Pipeline (FIDDLE) framework20. In addition, future work will investigate how the multi-
dimension annotations of the structured definition model can be leveraged in order to introduce new search and dis-
covery capabilities into phenotype repositories. For example, the ability to use a wider range of search criteria, or to
understand when existing definitions intersect with those currently in a repository, to assist in finding partial pheno-
type matches for a user’s requirements, which can then be adapted to suit their needs. Future work will also focus on
developing libraries of both abstract steps, and implementation units, to be made available to researchers wanting to
customise an existing computable phenotype within Phenoflow for their research tasks. Such efforts are already un-
derway in the UK, under the umbrella of the Health Data Research UK (HDR UK, https://www.hdruk.ac.uk) network
which is developing a National Human Phenome portal, of which Phenoflow is a part. Moreover, a broader range of
implementation languages will be supported, by developing implementation unit plugins, such as those that perform
file type conversion, e.g., from a CSV file to a lightweight SQL table, so that an SQL script can be executed against the
data within an individual step. Finally, we will investigate how our experiences of developing our structured definition
model and the Phenoflow architecture can be extrapolated to a set of heuristics to be followed when designing and
sharing novel phenotype definitions.

References

[1] Richesson R, Smerek M. Electronic health records-based phenotyping. In: Rethinking clinical trials: A living
textbook of pragmatic clinical trials. Duke Clinical Research Institute; 2014. p. 1–19.

150

[2] Kirby JC, Speltz P, Rasmussen LV, Basford M, Gottesman O, Peissig PL, et al. PheKB: A catalog and workflow
for creating electronic phenotype algorithms for transportability. Journal of the American Medical Informatics
Association. 2016;23(6):1046–1052.

[3] Denaxas S, Gonzalez-Izquierdo A, Direk K, Fitzpatrick NK, Fatemifar G, Banerjee A, et al. UK phenomics
platform for developing and validating electronic health record phenotypes: CALIBER. Journal of the American
Medical Informatics Association. 2019;26(12):1545–1559.

[4] Hey T, Trefethen AE. Cyberinfrastructure for e-Science. Science. 2005;308(5723):817–821.

[5] Bernardi F, Santucci JF. Model design using hierarchical web-based libraries. In: Design Automation Confer-
ence. New York, New York, USA: ACM Press; 2002. p. 14–17.

[6] Hull D, Wolstencroft K, Stevens R, Goble CA, Pocock MR, Li P, et al. Taverna: a tool for building and running
workflows of services. Nucleic Acids Research. 2006;34(Web-Server-Issue):729–732.

[7] Chapman M, Tyson G, McBurney P, Luck M, Parsons S. Playing hide-and-seek: an abstract game for cyber
security. In: 1st International Workshop on Agents and CyberSecurity (ACySE); 2014. p. 1–8.

[8] Curcin V, Ghanem M, Guo Y. The design and implementation of a workflow analysis tool. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010;368(1926).

[9] Curcin V, Bottle A, Molokhia M, Millett C, Majeed A. Towards a scientific workflow methodology for primary
care database studies. Statistical Methods in Medical Research. 2010;19(4):378–393.

[10] Shang N, Liu C, Rasmussen LV, Ta CN, Caroll RJ, Benoit B, et al. Making work visible for electronic phenotype
implementation: Lessons learned from the eMERGE network. Journal of Biomedical Informatics. 2019 11;99.

[11] Rasmussen LV, Kiefer RC, Mo H, Speltz P, Thompson WK, Jiang G, et al. A Modular Architecture for Electronic
Health Record-Driven Phenotyping. AMIA Joint Summits on Translational Science. 2015;2015:147–51.

[12] Bird R, Wadler P. An Introduction to Functional Programming. Prentice Hall International (UK) Ltd.; 1988.

[13] Sam Newman. Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith. O’Reilly; 2019.

[14] Chapman M, Curcin V. A Microservice Architecture for the Design of Computer-Interpretable Guideline Pro-
cessing Tools. In: 18th International Conference on Smart Technologies (EUROCON); 2019. p. 1–6.

[15] Hripcsak G, Shang N, Peissig PL, Rasmussen LV, Liu C, Benoit B, et al. Facilitating phenotype transfer using a
common data model. Journal of Biomedical Informatics. 2019 8;96.

[16] Rasmussen L, Brandt P, Jiang G, Kiefer R, Pacheco J, Adekkanattu P, et al. Considerations for Improving the
Portability of Electronic Health Record-Based Phenotype Algorithms. In: AMIA Symposium; 2019. p. 755–764.

[17] Rasmussen LV, Kiefer RC, Mo H, Thompson WK, Jiang G, Pacheco JA, et al. The Phenotype Execution and
Modeling Architecture (PhEMA) - A Standards-Based Composition of Software for Phenotype Algorithm De-
velopment. Northwestern; 2015.

[18] Mo H, Jiang G, Pacheco JA, Kiefer R, Rasmussen LV, Pathak J, et al. A Decompositional Approach to Exe-
cuting Quality Data Model Algorithms on the i2b2 Platform. AMIA Joint Summits on Translational Science.
2016;2016:167–75.

[19] Pacheco JA, Rasmussen LV, Kiefer RC, Campion TR, Speltz P, Carroll RJ, et al. A case study evaluating the
portability of an executable computable phenotype algorithm across multiple institutions and electronic health
record environments. Journal of the American Medical Informatics Association. 2018 8;25(11):1540–1546.

[20] Tang S, Davarmanesh P, Song Y, Koutra D, Sjoding MW, Wiens J. Democratizing EHR analyses with FID-
DLE: a flexible data-driven preprocessing pipeline for structured clinical data. Journal of the American Medical
Informatics Association. 2020 oct;27(12):1921–1934.

151

