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Abstract 

Rare diseases affect between 25 and 30 million people in the United States, and understanding their epidemiology is 
critical to focusing research efforts. However, little is known about the prevalence of many rare diseases. Given a 
lack of automated tools, current methods to identify and collect epidemiological data are managed through manual 
curation. To accelerate this process systematically, we developed a novel predictive model to programmatically 
identify epidemiologic studies on rare diseases from PubMed. A long short-term memory recurrent neural network 
was developed to predict whether a PubMed abstract represents an epidemiologic study. Our model performed well 
on our validation set (precision = 0.846, recall = 0.937, AUC = 0.967), and obtained satisfying results on the test set. 
This model thus shows promise to accelerate the pace of epidemiologic data curation in rare diseases and could be 
extended for use in other types of studies and in other disease domains. 

Introduction 

In the United States, a rare disease is defined as affecting fewer than 200,000 people.1 It is estimated that between 
6,000 and 8,000 rare diseases exist,2 and that they affect between 25 and 30 million people in the United States.3 
Among rare diseases, there is a significant range in prevalence. Some disorders with higher prevalence rates are well-
documented in the population; for instance, sickle cell disease is estimated to affect 100,000 people in the United 
States.4 Other diseases are much rarer, affecting only a handful of patients. Fewer than twenty cases of Jansen’s 
metaphyseal chondrodysplasia have been reported, for example.5 Still others are sporadically documented only in 
occasional case reports. Accurate estimates of prevalence and incidence rates are critical to developing an 
understanding of a disease’s scope and population burden. Continued epidemiological data on a greater distribution 
of rare diseases can help in recognizing patterns in etiology and inform decisions on research funding by providing 
quantifiable indications of impact.6  

Epidemiologic data can be discovered and presented in several ways. The most complete findings are provided through 
epidemiologic studies, which describe the frequency of a disease in a certain population group by both geographic and 
demographic distribution. Such studies are often found for rare diseases whose affected population sizes range closer 
to the upper margins of the US rare disease definition, as they are prevalent enough to warrant a large-scale study and 
for results to have sufficient statistical strength. For the majority of rare diseases, however, no epidemiology studies 
have been conducted and population estimates are often derived solely from expert opinions and published case 
reports.7  As such, remaining vigilant of newly published epidemiologic studies in these diseases is an important task 
in guiding research efforts focused on the broader field of rare diseases. 

The Genetic and Rare Diseases (GARD) Information Center, a program managed by the National Center for 
Advancing Translational Sciences (NCATS) within the National Institutes of Health (NIH), aims to curate and 
disseminate freely accessible consumer health information on over 6,500 genetic and rare diseases.8 Currently, GARD 
curators search PubMed for relevant articles and manually review them for curation, which is a tedious and error-
prone process. Curators noted that searching with keywords on PubMed returned relevant results, but they found less 
utility in the ranking of those results and were reliant on a manual process of reviewing and selecting evidence to pick 
as sources for curating knowledge. By leveraging natural language processing (NLP) techniques to automatically 
identify rare disease epidemiologic studies from a very large volume of PubMed articles, we aim to supplement this 
evidence selection process and reduce the need for strict manual review of publications. 
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Previously, traditional machine learning approaches have been applied to classify electronic health records for 
epidemiologic studies.9 Biomedical text classification has been performed using convolutional neural networks10 and 
support vector machines.11 In this work, we explored the use of a recurrent neural network (RNN) to predict the 
probability that a given scientific abstract on a rare disease is epidemiology related. In particular, we applied long 
short-term memory units,12 a type of recurrent neural network that is well-suited for NLP because their ability to store 
an internal state allows them to effectively process sequential data such as text.13 RNNs are considered state-of-the-
art for sentiment analysis,14 machine translation,15 and speech recognition.16 RNNs have also shown to perform well 
for biomedicine-related NLP tasks, such as named entity recognition for biomedical related terms17 and chemical-
protein interaction extraction from scientific papers.18 

To our knowledge, this work represents the first attempt to automatically classify epidemiologic publications for rare 
diseases. Based on the performance of RNNs in related tasks, we hypothesize that this model will also be well-suited 
for epidemiology identification. We suspect that an RNN will be able to identify more sophisticated and semantically 
meaningful features than other machine learning approaches such as rule-based models or support vector machines, 
due to its mathematical complexity and broad success across NLP applications. This feature is important for this task 
because of the variation in the structure and content of epidemiologic studies, and the superficial similarities with 
other publication types, particularly in the limited dataset that is available. In addition, the flexibility of neural 
networks could allow for other types of publication classification tasks to benefit from this approach. 

Methods 

Dataset construction 

We considered epidemiologic study identification as a binary classification task, which thus requires a positive set, 
containing PubMed abstracts that are rare disease-related epidemiologic studies, and a negative set, consisting of 
abstracts that are not rare diseases-related epidemiologic studies. As no such datasets already exist, and manually 
labeling articles would be labor-intensive, we utilized Medical Subject Headings (MeSH)19 and NLP techniques to 
create our own datasets. 

Our positive dataset was constructed from a list of reference articles with epidemiologic data curated by Orphanet, 
which provides datasets relating to rare diseases.20 We selected only the references indexed by PubMed, which allowed 
us to retrieve their abstracts and MeSH terms through the EBI RESTful API.21 While many of these articles were 
epidemiologic studies, some focused on treatments or genetic causes, and instead contained references to data obtained 
in previous epidemiologic studies for the disease. Others were case reports, which were excluded from this study. To 
filter out these types of articles, we retrieved the MeSH terms tagged to each PubMed article through the EBI API. If 
the PubMed article is tagged with the epidemiology-related MeSH terms including “Epidemiology 
(MeSH:D004813)”, “Prevalence(MeSH:D015995),” or “Incidence(MeSH:D015994),” then the article was retained; 
otherwise, it was excluded. Articles that are categorized as case reports based on their publication types were also 
removed. Abstracts were retrieved from the API if available based on their PMIDs. 

To construct our negative dataset, we began with a list of 6,073 rare diseases included in GARD. For each of these 
diseases, we invoked the EBI API to retrieve the top five associated PubMed articles. From these results, we removed  
articles that fall into one of the following criteria: 1) the article is part of the reference list from the Orphanet 
epidemiologic data; 2) the article is associated with any of the aforementioned epidemiology related MeSH terms; 3) 
the abstract mentions any of the keywords of “epidemiology”, “prevalence”, or “incidence.” 

We combined the above two sets and used an 80:20 training/validation split. From the Orphanet dataset, we randomly 
selected one hundred articles to form a test set. 

Text preprocessing 

Text normalization. Abstracts for epidemiologic studies often include the region in which the study was conducted 
and numerical statistics for prevalence data. The particular region and specific numerical values would add noise to 
the interpretation. Thus, we replaced all instances of percentage, geopolitical entities (countries, cities, and states), 
other locations, dates, times, quantities, ordinal values, and cardinal values with their entity types using the spaCy 
library.22 In addition, we applied the scispaCy package23 to normalize individual biomedical entities with their 
corresponding entity types, such as diseases, tissues, organs, and chemicals. We also removed stop words from the 
text. Figure 1 shows an example of the text normalization process for one abstract. All mentions of the specific disease, 
numeric values and geographic locations in this example have been normalized by their entity types. 
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Figure 1: Text normalization example (the abstract is from 24) 

 

Tokenization. We also fit a preprocessing tokenizer from the TensorFlow library on the training set. We limited our 
vocabulary size to 5,000, and the words that are not within the 5,000 most frequently used words in the training set 
are replaced with the <OOV> (out of vocabulary) token. In the example abstract shown in Figure 1, “seroprevalence,” 
“immigrant,” and “cruzi” were all replaced with “<OOV>,” as these words do not occur frequently in rare disease 
texts. The tokenizer additionally vectorizes the set of abstracts and adds padding to standardize the length of the 
abstracts. 

Recurrent neural network 

We fit a shallow recurrent neural network on the training set. Figure 2 diagrams the model architecture. The network 
begins with an embedding layer, which converts the input into dense vectors representing the meaning of the abstract. 
The embedding layer is followed by two long short-term memory layers, the first with 64 units, and the second with 
32 units. The output of the second LSTM layer feeds into a fully-connected (dense) layer with a ReLU activation 
function.25 The final output layer is followed by the softmax activation function, which adjusts the output to create 
probabilities.26 We used two LSTM layers as we found that this improved the model performance compared to one 
layer, and given the size of the dataset, we suspected that additional layers could cause overfitting. We begin with 64 
units in the first LSTM layer to match the dimensionality of the embedding layer, and we decrease the dimensionality 
in the second LSTM layer to 32 to more densely represent the data. The model was compiled using the sparse 
categorical cross entropy loss function, and the Adam stochastic optimization function is applied.27 To reduce 
overfitting, we used early stopping28 with validation loss as the monitor. We set the maximum number of epochs to 
10, as the preliminary results suggested that overfitting would compromise the performance with further epochs. 

 
Figure 2: The RNN model architecture. “Params” indicates the number of trainable parameters in the layer, and 

“units” indicates the number of basic computational nodes. 

Evaluation 

We conducted three steps to evaluate our model. 1) The model was evaluated on the hold-out validation set of 5,275 
abstracts, of which 295 were epidemiologic studies. From this set, we calculated precision, recall, F1 score, and area 
under the ROC curve (AUC). 2) One GARD curator manually validated the predictive results on the test set consisting 
of 100 abstracts, none of which were included in the training or validation sets. 3) To further assess the performance 
of the model with practical cases, we performed five case studies with five rare diseases, namely Tay-Sachs disease, 
Turner syndrome, sickle cell disease, cystic fibrosis, and Ehlers-Danlos syndrome. Specifically, for each disease, we 
identified epidemiologic studies from their top fifty PubMed articles retrieved via EBI API. We sorted the articles in 
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order of their predicted epidemiology probability and compared with our baseline results, which are the top five results 
by searching for the disease name and epidemiology related MeSH terms from PubMed. 

Results 

Dataset preparation 

From the Orphanet epidemiology dataset, we extracted 10,845 articles with corresponding PMIDs. There are 4,691 
PubMed articles associated with any MeSH terms. Of these, 1506 articles have been tagged with epidemiology-related 
MeSH terms (“Epidemiology,” “Prevalence,” or “Incidence”) and were not categorized as case reports based on their 
publication types. After excluding 93 articles without abstracts, 1,413 articles comprised our positive set. Manual 
inspection on a sample set that confirmed that these articles represent epidemiologic studies. Figure 3 shows the results 
of creating the positive dataset.  

 
Figure 3: Stepwise results for the preparation of the positive dataset. 

 

28,515 PubMed articles were retrieved for the 6,073 GARD rare diseases. Of these articles, we excluded 469 articles 
that are part of the Orphanet epidemiology dataset, and 3,056 articles with epidemiology related MeSH terms or 
keywords, leaving 24,990 articles in the negative dataset. Manual examination on randomly selected articles was 
performed and showed that they cover a wide spectrum of topics, including case reports, treatment explanations, 
genetic analyses, and general literature reviews of disorders. The results of the negative dataset preparation are shown 
in Figure 4. 

 
Figure 4: Stepwise results for the preparation of the negative dataset. 
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Table 1 provides the breakdown statistics of the dataset. In Discussion, we discuss the reason of having the imbalance 
in the training set and its influence on the model performance. Note that the total positive and negative dataset sizes 
were slightly reduced from the aforementioned numbers as articles in the test set were removed. 

Table 1: The composition of the training and validation sets. 

 Positive dataset 
(epidemiologic studies) 

Negative dataset 
(not epidemiologic studies) Total 

Training set 1119 19,981 21,100 

Test set 268 5007 5275 

Total 1387 24,988 26,375 

 

Holdout validation set evaluation 

The recurrent neural network achieved promising results on the holdout validation set. Early stopping halted training 
after three epochs because of an increase in loss in the validation set. At this point, the precision on the validation set 
was 0.846, the recall was 0.937, the F1 score was 0.886, and the AUC was 0.967. The receiver operating characteristic 
(ROC) curve is given in Figure 5.  

Overall, while the average epidemiology probability among the true positives was 0.966, the false positives received 
an average epidemiology probability of 0.892. Conversely, the epidemiology probability among the true negatives 
was 0.0229, while it was 0.0563 for false negatives. Of the 28 false negatives, only eight abstracts included 
epidemiologic information based on our manual review. Thus, given the focus of our study, the other twenty should 
be considered as true negatives, as our classification used only the abstract. 

 
Figure 5: ROC curve for the holdout validation set. 

Manual evaluation 

A GARD curator manually validated the predictive results on the test set consisting of 100 articles, and these results 
suffered slightly compared to results on the holdout validation set. The precision was 0.726, the recall was 0.700, the 
F1 score was 0.701, and the AUC was 0.751. We discuss the reasons behind this discrepancy in the Discussion section.  

Of the twenty false negatives based on the test result, twelve articles described epidemiologic information only in the 
full text, instead of in the abstracts themselves, such as with the two article “Chromosome 1p36 deletions: the clinical 
phenotype and molecular characterization of a common newly delineated syndrome”29 and “Mutations in KANSL1 
cause the 17q21.31 microdeletion syndrome phenotype”.30 Thus, these errors were likely an artifact of the differing 
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focus of the manual evaluation. The false positives included genealogy and genetics studies, a case report, and two 
epidemiologic studies in geographic regions that were too constricted for use by GARD. 

Case studies 

On the case studies we performed for five rare diseases, our model generally successfully identified epidemiologic 
studies from PubMed. We set the probability threshold for an epidemiology article to be 0.5, and additionally included 
the exact probability for analysis. In most cases, the results returned with our method were more relevant than those 
found via filtering by epidemiology related MeSH terms from PubMed. The PubMed search query was composed as 
“(((epidemiology[MeSH Terms]) OR (prevalence[MeSH Terms])) OR (incidence[MeSH Terms])) AND (Disease 
Name)”, where “Disease Name” is replaced with the specific disease name. 

Tay-Sachs disease.31  Four of the five articles that are predicted as epidemiologic studies by our model contain 
epidemiologic information, as shown in Figure 6. The article without epidemiologic information was ranked fourth of 
the five and had an epidemiology probability of 0.644. In contrast, out of the top five results from the manual PubMed 
search for Tay Sachs with epidemiology related MeSH terms, only one article titled “Insights into the genetic 
epidemiology of Crohn's and rare diseases in the Ashkenazi Jewish population”32 was epidemiology related and 
contained minimal information on Tay-Sachs disease. None of the four epidemiology articles discovered by our model 
appeared in the PubMed search results. 

Turner syndrome.33 Two articles were predicted as epidemiologic studies. The first article does in fact give the 
prevalence of the syndrome,34 while the second article described the risk of coronary artery disease, a known clinical 
complication amongst Turner syndrome patients.35 The manual PubMed search does not include any epidemiologic 
studies in the top five results; notably, two of them were not related to Turner syndrome at all, and another two articles 
detail bone fragility and autoimmune thyroid disease in Turner syndrome, but are not epidemiologic studies.  

Sickle cell disease (SCD).36 Of the four articles predicted as epidemiologic studies for SCD, one stated a rough 
estimate for its prevalence in the United States,37 one referred to the millions of patients affected worldwide,38 one 
compared the prevalence of priapism in those with and without SCD,39 and one detailed an approach to 
treatment.40 None of the results from the manual PubMed search were epidemiologic studies or provided 
epidemiologic information in their abstracts. 

Cystic fibrosis.41 One positive result from the model for cystic fibrosis described the prevalence of fungal disease 
within the disorder.42 None of the results from the manual PubMed search were epidemiologic studies, although one 
provided an estimate for the worldwide prevalence of the disease.43 

Ehlers-Danlos syndrome.44 One of the two positive results generated from the model, detailed the prevalence of 
cardiovascular disorders in patients with this syndrome.45 The other was did not involve epidemiology.46 One result 
classified as negative did include a prevalence statistic, but the topic of the article was surgical outcomes.47 None of 
the manual search results were epidemiologic studies or included epidemiologic information for Ehlers-Danlos 
syndrome. 

 

 
Figure 6: Predictive results generated for the case study of Tay-Sachs disease. 

330



  

Discussion 

Epidemiologic studies provide insights and directions for basic and clinical research to determine the causes and 
mechanisms of rare diseases and develop methodologies for prevention, diagnosis, and treatment. However, 
epidemiologic data curation in the rare disease field continues to rely heavily on human effort, from identification of 
epidemiologic studies from PubMed to data curation. In this study, we presented a computational model by applying 
recurrent neural networks and NLP techniques to programmatically identify epidemiologic studies from PubMed. This 
work can reduce the human effort required from the epidemiologic data curation process and holds promise for other 
applications beyond rare diseases and with other types of studies. 

Quantitatively, our model performed very well on the holdout validation set, with a high AUC of 0.967. Our manual 
inspection of the results further proved that our model can consistently assign high epidemiology probabilities (above 
0.98) for standard epidemiologic studies, and strong correlation is found between the predicted epidemiology 
probability and the amount of epidemiologic information mentioned in the abstract. For example, an article titled 
“Birth prevalence of Prader-Willi syndrome in Australia”, whose abstract details an epidemiologic study,48 obtained 
an epidemiology probability of 0.999. However, the article titled “Th17 cytokine deficiency in patients with 
Aspergillus skull base osteomyelitis”, which is a molecular study,49 is predicted to have an epidemiology probability 
of 0.00956. In addition, the five case studies demonstrated that this model was effective at surfacing epidemiologic 
studies for individual diseases. Compared to the baseline results with manual PubMed search, our model captured 
more epidemiologic studies, which were not part of the top five results, or were even not found in the entire list of 
PubMed search results. However, we observed the performance of the model on the test set was not as promising as 
the holdout validation set. Our analysis indicated this discrepancy was likely due to our focus on the content of the 
abstract, while the curators often examined the full text in addition to the abstract when labeling the dataset.  

Notably, our model reached satisfying performance even with a dataset that is small and imbalanced: non-
epidemiology articles outnumbered epidemiologic studies by roughly 20:1. Initially, we expanded our positive dataset 
by including articles tagged with epidemiology-related MeSH terms that were not referenced by Orphanet. However, 
this did not significantly improve the performance. This was likely because some of the MeSH terms may have been 
assigned incorrectly, whereas restricting the dataset to those also used by Orphanet added another layer of confirmation 
that the articles were likely related to epidemiology. The success of our model in light of this illustrates that the features 
of an epidemiologic study are easily identifiable and significantly distinct from those characteristic of case reports, 
clinical guidelines, genetic analyses, and other types of studies. For instance, of the 1702 case reports in the validation 
set, only 17 were predicted as epidemiologic studies. Since case reports rarely include epidemiology information about 
a disease, this result suggests that the model was able to identify features distinguishing case reports from 
epidemiologic studies.  

Given the lack of available training data relating to epidemiology, we used a combination of Orphanet data, MeSH 
terms, and keyword searches to generate our dataset. This approach could introduce bias based on the types of sources 
selected by Orphanet and the process used to assign MeSH terms. The strategy of generating the negative set by 
excluding abstracts containing epidemiology keywords set might also bias the model toward over-relying on keywords 
to generate its predictions rather than more sophisticated linguistic features. We did not observe significant negative 
impact as a result, but a follow-up analysis could better characterize any bias. Relatedly, a more robust evaluation of 
the model from a larger and more consistently labeled dataset would assist in confirming our results. 

The computational approach established in this study will be able to support the task of supplementing epidemiology 
curation for GARD and other applications in multiple ways. First, our model can identify and rank epidemiologic 
studies relating to rare diseases. This would allow curators to begin by reviewing the articles with the highest predicted 
epidemiology probability, rather than searching for relevant articles manually. Second, the model could be integrated 
into an alert system to notify curators about the publication of new epidemiologic studies. From a set of epidemiologic 
studies identified by the model, we could apply information extraction to their text following previous work50, which 
could lead to a process to fully automate the curation of epidemiology data. 

Furthermore, there are several directions for expanding this work. A deeper analysis into the results of our model 
could reveal features or patterns in its predictions that would allow the model to be refined to achieve better 
performance, as the interpretability of the model at present is limited. The addition of more data, particularly 
epidemiology articles, could also improve performance. In this study, we limited the dataset to articles addressing rare 
diseases as this was the immediate use case of the model, and this approach accounts for any unique structural and 
content features of rare disease epidemiologic abstracts. In future work, epidemiologic studies addressing diseases 
that are not rare may also be included. Because the text processing steps remove the specific disease features, this 
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change will likely improve the capacity of the model to identify rare disease epidemiologic studies, as the benefit of 
increasing the size of the dataset could outweigh any noise that is introduced. Furthermore, an expanded dataset could 
allow for more advanced approaches such as Bidirectional Encoder Representations from Transformers (BERT)51 or 
a deeper neural network architecture; these approaches were not used in this study due to concerns about overfitting 
on a limited dataset. In order to capture epidemiologic information beyond epidemiologic studies, our model 
framework could be applied to identify case reports, as these can be aggregated to determine case or family counts. 
When we combined case reports with epidemiologic studies in our dataset, the model performance suffered, likely 
because the structure and content of case reports differ significantly from epidemiologic studies. However, case reports 
could be considered independently in a separate model. Similarly, because of the generalizability of neural networks, 
our approach could also be used to develop classifiers for natural history studies or clinical trials, and in other domains 
beyond rare diseases. 

Conclusion 

In this paper, we demonstrated that a recurrent neural network with long short-term memory architecture achieved 
good performance in classifying epidemiologic studies of rare diseases. Our model can be leveraged to greatly shorten 
the manual curation process for evidence selection in curating epidemiologic information. We hypothesize that the 
success of our model suggests that our approach can be applied to other similar tasks such as classifying natural history 
studies and in other medical domains. 
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