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Abstract

Electronic Health Records (EHRs) have become the primary form of medical data-keeping across the United States.
Federal law restricts the sharing of any EHR data that contains protected health information (PHI). De-identification,
the process of identifying and removing all PHI, is crucial for making EHR data publicly available for scientific
research. This project explores several deep learning-based named entity recognition (NER) methods to determine
which method(s) perform better on the de-identification task. We trained and tested our models on the i2b2 training
dataset, and qualitatively assessed their performance using EHR data collected from a local hospital. We found
that 1) Bi-LSTM-CRF represents the best-performing encoder/decoder combination, 2) character-embeddings tend to
improve precision at the price of recall, and 3) transformers alone under-perform as context encoders. Future work
focused on structuring medical text may improve the extraction of semantic and syntactic information for the purposes
of EHR deidentification.

Introduction

A majority of medical practices across the United States have adopted Electronic Health Records (EHRs). Between
2008 and 2016, EHR use by office-based physicians has nearly doubled from 42% to 86%1 – an increase largely
attributable to the Federal Health Information Technology (IT) Strategic Plan of 20112, 3. One of the goals of this plan is
to allow data within EHRs to be leveraged for scientific research. The use of EHR data continues to be restricted by the
Health Insurance Portability and Accountability Act (HIPAA), whose Privacy Rule limits the distribution of patients’
protected health information (PHI). Unrestricted research use of EHR data is only permissible once it is de-identified -
all PHI has been removed. Per the HIPAA Privacy Rule, health information may be deemed de-identified through one
of two methods: 1) “Expert Determination,” a formal conclusion by a qualified expert that the risk of re-identification
is very small, and 2) “Safe Harbor,” the removal of 18 specified individual identifiers (names; geographic subdivisions;
dates; telephone numbers; vehicle identifiers; fax numbers; device identifiers and serial numbers; emails; URLs; Social
Security Numbers; medical record numbers; IP addresses; biometric identifiers; health plan beneficiary numbers; full-
face images; account numbers; certificate or license numbers; any other identifier, code, or characteristic).

Manual de-identification is tedious and time-consuming4. Researchers in the Natural Language Processing (NLP)
community have developed systems to automate “Safe Harbor” de-identification processes by scanning medical free
text for PHI identifiers. End-to-end de-identification involves three steps: 1) locating PHI in free text, 2) classifying
the PHI correctly, and 3) replacing the original PHI with realistic surrogates. Step (3) is beyond the scope of this
study; for simplicity, we will use the term “de-identification” to refer only to steps (1) and (2). De-identification can
be framed as a named entity recognition (NER) problem. Formally, given a sequence of input tokens s = {wi}ni=1, an
NER system outputs a list of tuples < Is, Ie, t >, each of which is a named entity in s5. Is represents the start token,
Ie represents the end token, and t is the entity type. t is drawn from the 18 HIPAA PHI identifiers.

Automatic de-identification methods fall into four broad categories: rule-based, machine-learning, hybrid, and deep
learning. Rule-based systems rely on pattern-matching of textual elements6. They are simple to implement, interpret,
and modify, but they require laborious construction, lack generalizability to unseen data, and cannot handle slight
variations in language or word forms (e.g., misspellings, abbreviations). Machine learning systems model the de-
identification task as a sequence labeling problem: given an input of tokens w1, w2, . . . , wn, the system outputs label
predictions y1, y2, . . . , yn. Traditional machine-learning algorithms can recognize complex patterns in the data not
evident to the human reader7. However, they require an input of handcrafted numerical “features” that are often time-
consuming to engineer, and not guaranteed to be generalizable to other medical corpora. Hybrid methods combine
elements of machine learning and rule-based systems8. Although they outperform their constituent parts, they still
suffer from a lack of generalizability and a need for manual feature engineering.
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Figure 1: Pipeline taxonomy of deep-learning based NER systems.

Deep learning – a subset of machine learning based on artificial neural networks (ANNs) – circumvents these problems.
ANNs are capable of representation learning (i.e., automatically discovering useful features for a given task). In
supervised learning, features are learned by training on a large set of labeled data of the form (X,Y ), where X
and Y are the vector representations of the inputs and labels, respectively. Deep learning-based models can learn
complex representations of token sequences through a series of non-linear transformations. Li et al.5 outline the
general structure of deep learning methods for NER, displayed in Figure 1. Once the tokenized sentence is passed
into the model, it undergoes three stages of processing. The distributed representation stage converts every token to
a numeric vector. The context encoder then processes these vectors to capture the contextual dependencies across the
entire sentence, outputting a new sequence of vectors (not necessarily in the same dimensionality as the embeddings).
Finally, the tag decoder uses the output of the context encoder to predict the label for each token. All deep learning-
based NER systems can be characterized by the concrete design decisions made for each of these stages of processing.

Recently, deep learning-based NER has been applied to de-identification9–11. Pre-trained word- and character-level
embeddings have been employed in the first stage to form distributed representations of medical text. Recurrent
Neural Networks (RNNs), specifically Long-Short-Term-Memory Networks (LSTMs), have demonstrated success
in incorporating contextual information. Conditional Random Fields (CRFs) have gained popularity as a means of
decoding the tags and predicting PHI labels in the final stage. In this study, we aimed to determine which NER design
combinations perform better when tackling the de-identification task. Additionally, we aimed to extend the work of
Yang et al.11 and Yogarajan et al.12 by evaluating the performance of our models on real EHR data collected from a
local hospital.

Methods

Figure 2 summarizes the end-to-end structure of our system. The details are described in the following sections.

Data Collection

Upon request, the Blavatnik Institute of Biomedical Informatics at Harvard University granted us access to the de-
identification corpus created by the Center for Informatics for Integrating Biology and Bedside (i2b2) in 2014. The
dataset contains 1,304 free-text medical records of patients with diabetes for which all PHI was manually annotated
and replaced with surrogate PHI. This corpus was used for model training and quantitative evaluation.

Additionally, 25 health record notes collected between March and May of 2020 from Rhode Island Hospital (RIH)
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Figure 2: End-to-end pipeline of the NER design combinations we tested.

were included for qualitative manual performance inspection.

Pre-processing

Before feeding the medical text into our deep learning-based algorithms, we pre-processed it to take the form of
sequences of sentences and tokens for each document. Formally, for every document d ∈ D, where D is the set of all
medical documents, we split d into sentences si and tokens ti,j .

Tokenization, the process of splitting sentences into tokens (si → ti,j), is a critical and highly customizable step for
NLP systems. For many forms of free text, a tokenization scheme that splits based on whitespace and punctuation may
suffice. However, the highly unstructured text in EHRs demands a more refined approach. We emulate the work of Liu
et al.10, which proposed a tokenization module that first splits on blank spaces, then recursively on other characters,
words connected without a space, and numbers that appear adjacent to letters. For example, the EHR sentence “Mr.
SamLee is a 70yo man” would be tokenized as [‘Mr.’, ‘Sam’, ‘Lee’, ‘is’, ‘a’, ‘70’, ‘yo’, ‘man’]. This module preserves
normally-occurring words and numbers whilst avoiding several pre-processing errors, such as “SamLee” and “70yo”
in the example sentence above.

The set of all unique tokens in the training set is known as the “vocabulary.” The training and testing sets have
equivalent vocabularies because the models are not permitted to incorporate any testing words into their training
vocabulary. Any out-of-vocabulary (OOV) tokens – words that appear in the testing set but not the training set – were
replaced with the UNK token. This method allows models to generalize to tokens never encountered during training.

For each token ti,j , we also stored the characters it spans, ci,j,s and ci,j,e, so that our results coincide with the i2b2
label format. Each sentence si functions as a single training instance for our algorithms. Sentences were padded with
PAD tokens so that every sentence had the same length m. PAD tokens are masked during training loss calculation so
that the model focused on predicting actual tokens correctly.

The last pre-processing step generated a sequence of labels for every sentence si, such that every token ti,j has a
corresponding label li,j . We employed the popular BIO scheme to create the label sequence. Let Li,s:e be a PHI in
sentence i that starts at token number s and ends at e. The BIO scheme prepends B- (for beginning) to li,s and I-
(for inside) to li,s+1:e. For instance, if “Rhode Island Hospital” appeared in sentence 2 and spanned tokens 14-16, the
corresponding labels l2,14:16 would be B-HOSPITAL,I-HOSPITAL,I-HOSPITAL. Any tokens that do not qualify
as PHI are assigned the label O (for “outside”). Figure 1 demonstrates BIO tagging for a sample sequence.

Distributed Representation

We leveraged information about the input across two levels (word and character) to form the embeddings for each to-
ken. At the word level, a token is viewed as a standalone unit. Every token in the training vocabulary was mapped to a
unique vector in Rd. The vectors were initialized to random values, and through training converged to useful represen-
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tations. A random seed was set at the beginning of the program to ensure that the random vectors were initialized to the
same values for every model we tested. At the character level, a token is viewed as a sequence of characters, allowing
the model to incorporate sub-token patterns into the representation and thus capture additional semantic information
from OOV tokens. Because it was trained on substantially more text than is available in the i2b2 dataset, we utilized
a pre-trained character embedding layer, char2vec, to generate character-based embeddings. char2vec, trained using a
Bidirectional Long-Short-Term-Memory (Bi-LSTM) to detect similar words based on character information13, outputs
vectors in R50, which we concatenated with the token-level vectors in Rd to form a new distributed representation of
each token.

The use of pretrained word embeddings has led to dramatic successes in a wide range of NLP tasks. Pretrained word
embeddings are embeddings learned through one task – generally one that requires no labeled data – and applied to
solve a different task. While pretrained embeddings would likely have increased our models’ performances, our study
was focused on the foundational architectural components of the NER pipeline. We refer the reader to other work that
focuses specifically on how pre-trained word embeddings improve performance on the de-identification task14.

Context Encoder

Recurrent Neural Networks (RNNs) have demonstrated success in capturing contextual information from variable-
length sequential data. Let x1, x2, . . . , xm be a sequence of vectors at steps t = 1, . . . ,m. In our task, x1, . . . , xm

correspond to the distributed representations of each token in a sentence. Unlike a normal feed-forward network,
RNNs maintain a hidden state ht that is fed as input into the model at time t+1 along with xt+1. This way, the model
is able to propagate prior information forward as the embeddings are sequentially processed.

RNNs lack the ability to capture long-term dependencies and suffer from the vanishing gradient problem. LSTMs
attempt to alleviate these issues by incorporating a “cell state” ct. ct serves as a memory block that retains relevant
information and discards irrelevant information collected up to time t. It does so through the use of forget and input
gates; the forget gate controls what information from previous timesteps should be removed from the cell state, while
the input gate controls what information from the current timestep should be added to the cell state. Furthermore, an
output gate combines information from the current cell state ct and the previous hidden state ht−1 to calculate a new
hidden state ht (recall that RNNs only utilize ht−1). Both ct and ht are transmitted to the next timestep for use in
processing input xt+1.

Bi-LSTMs improve upon LSTMs by performing the same calculations in the reverse direction (with different param-
eters), thereby propagating contextual information in both directions. The final output of a Bi-LSTM is the concate-
nation of the hidden states from both the forward and backward passes. Bi-LSTMs are widely used in state-of-the-art
NER systems, including those designed for de-identification9–11. Still, sustaining long-range dependencies is a chal-
lenge for sequential models such as Bi-LSTMs. In addition, because Bi-LSTMs perform sequential operations, they
cannot be parallelized. These issues can be addressed by an alternative context encoder: a transformer. Transformer
models have been adopted as context encoders for many NLP tasks, including NER15, but are yet to be tested on the
de-identification task.

Transformers gained immense popularity in the NLP community following recognition of the power of self-attention
in sequence-to-sequence (seq2seq) modeling (e.g., machine translation)16. Self-attention mechanisms simultaneously
relate elements in a sequence to each other. Formally, attention is mapping of a query and a set of key-value pairs to
an output, calculated as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where Q,K, V are matrices of the query, key, and value vectors packed together, and dk is the dimension of the key
vectors. Q,K, V are calculated by multiplying the input sequence x1, x2, . . . , xm by weight matrices WQ,WK ,WV

that are learned through training.

Since transformers do not rely on sequential processing in their calculations, they have no inherent notion of token
order. In order for the model to leverage positional information of the input tokens, positional encodings are added to
the embedding of each element in the input sequence. The encoding function is designed such that the same token will
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have slightly different embeddings depending on where it appears in the sentence, thereby “encoding” its position. We
employed the same positional encoding function used by Vaswani et al.16.

We employed Multi-Head Attention by computing attention multiple times (with different WQ,WK ,WV ), concatenat-
ing the results, and multiplying by another weight matrix WO. The output of Multi-Head Attention is passed through
a feed-forward network to retrieve the final output sequence. The transformer model proposed by Vaswani et al.16

includes an encoder and a decoder, each consisting of several Multi-Head Attention “blocks.” Because the model was
designed for tasks such as translation between languages, the decoder does not necessarily output sequences of length
m as necessitated by NER (one label for each token). Therefore, only the encoder portion of the model was used to
encode context, retaining the benefits of self-attention and parallelization.

Tag Decoder

The tag decoder takes the output of the context encoder as input and produces a final sequence of tags. Sequence
labeling can be cast as a multi-class classification problem; that is, for every token, output a probability distribution
over all possible PHI (after BIO conversion). This can be achieved using a time-distributed dense layer with softmax
activation. The dense layer is applied to each token, and the softmax activation creates a probability distribution over
all the PHI for that token. For a vector x, softmax is calculated as follows:

p(y = j|x) = e(w
T
j x+bj)∑

k∈K e(w
T
k x+bk)

where w, b denote the weights and biases of the dense layer, j is the index of one label, and K is the set of all labels.
To find the most probable label, we take the argmax of the above equation. Because softmax assumes the tags to be
independent, the probability of an entire sequence of tags y1, . . . , ym is given by

p(y1, . . . , ym|x) = p(y1|x) · . . . · p(ym|x)

A shortcoming of using the softmax approach is that every token and label is decoded independently, rendering it
unable to capture patterns in the sequence of tags (e.g., I-HOSPITAL is likely to follow B-HOSPITAL). CRFs
improve this by modeling dependencies between labels through graphical connections. In particular, linear-chain
CRFs implement strictly sequential dependencies, as is the case in NER. Linear-chain CRFs define a global score for
a sequence of tags as

C(y1, . . . , ym|s1, . . . , sm) =

b[y1] +

m∑
t=1

st[yt] +

m∑
t=1

T [yt, yt+1] + e[ym]

where m is the length of the sequence, T is a transition matrix between all tags, and b, e are vectors that indicate the
cost of beginning or ending on a given tag. The scores s1, . . . , sm are obtained by passing the output of the context
encoder through a linear dense layer of size |K|. T contains parameters that encode how likely it is transition from
one tag to the next, thereby capturing common sequences of tags that appear in the training data. Similar to softmax,
CRFs model the posterior probability of a tag sequence using the following equation:

p(y1, . . . , ym = j1, . . . , jm|s1, . . . , sm) =

eC(j1,...,jm|s1,...,sm)∑
k1,...,km∈Km eC(k1...,km|s1,...,sm)

Linear-chain CRFs satisfy the optimal substructure property. Consequently, the calculations over possible sequences
of tags can be completed efficiently via dynamic programming. The optimal sequence can be calculated using the
Viterbi algorithm.
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Training

Our networks were trained using cross-entropy loss, defined as

L = −
∑
i

log(P (yi))

where yi = y1i, . . . ymi is the correct sequence of tags for sentence i. The probability P is given by the outputs of the
softmax and CRF decoders.

Adam has been shown to yield the highest performance and fastest convergence on sequence labeling tasks17. Thus,
we used the Adam optimizer with a learning rate of 0.001 to update the network weights in batches of size 32 for 10
epochs.

Experiments and evaluation

Table 1 lists the combinations of model components we tested. Model hyperparameters were selected according to
the literature and constrained by GPU memory allocation. We trained each model independently on the official i2b2
training set and subsequently tested it on the official test set. All models were built using Tensorflow, a deep learning
framework developed by Google.

Table 1: List of the tested models with their combination of representation, context encoder, and tag decoder.

Model Name Distributed Repr. Context Encoder Tage Decoder
Token Char2Vec BiLSTM Transformer Softmax CRF

BiLSTM X X X
BiLSTM-CRF X X X
C2V-BiLSTM-CRF X X X X
Transformer X X X
Transformer-CRF X X X
Transformer-BiLSTM X X X X

To assess the performance of our models, we computed precision (PPV), recall (sensitivity), and F1 of the PHI entities.
We evaluated entities rather than tokens because unidentified tokens represent an infringement of the HIPAA Privacy
Rule. For the same reason, we used the i2b2 “strict” measure that only takes a prediction to be correct if the entire
entity is matched exactly.

Let TP stand for true positives, FP stand for false positives, and FN stand for false negatives. Precision calculates the
proportion of correctly labeled PHI entities in the set of all PHI entities returned by the system (i.e. TP

TP+FP ). Recall
calculates the proportion of correctly labeled PHI entities in the set of all PHI entities in the test set (i.e. TP

TP+FN ). F1

is the harmonic mean of precision and recall (i.e. 2 · precision·recall
precision+recall ). The overall performance of each system was

evaluated using “micro” and “macro” versions of these metrics. Micro-average calculates metrics at the corpus level,
whereas macro calculates them at the document level and averages the result over all documents. Furthermore, we
calculated precision, recall, and F1 for each HIPAA-PHI type; these metrics are reported on the token level to offer a
more detailed insight into performance variation across different PHI types. All of these calculations were executed
using the official i2b2 evaluation script.

To evaluate the generalizability of our model, we qualitatively inspected the results of our best system on EHR data
collected from RIH between March and May of 2020. We were unable to perform quantitative analyses of the RIH
data because it was not accompanied by any true PHI labels.

Results

Table 2 shows descriptive statistics about the dataset after pre-processing. Table 3 displays the global results of our
systems, evaluated at the macro-average level. Bi-LSTM-CRF is the best-performing system according to all three
metrics (0.8391, 0.818, 0.8284), followed closely by Bi-LSTM (0.8154, 0.7949, 0.805).

107



Table 2: Summary statistics of the data after pre-processing

Training Testing
Sentences 31,535 21,670
Vocab Size 23,905 23,905

Tokens 627,208 421,839
PHIs 15,953 10,834

PHI Tokens 44,298 30,006

Table 3: Global performance (all PHI categories) on the test set. Metrics are reported on the macro-average level.

Model Precision Recall F1

BiLSTM 0.8154 0.7949 0.805
BiLSTM-CRF 0.8391 0.818 0.8284

C2V-BiLSTM-CRF 0.7925 0.3183 0.4542
Transformer 0.5027 0.6345 0.561

Transformer-CRF 0.6068 0.5843 0.5953
Transformer-BiLSTM 0.7259 0.6865 0.7056

Table 4 lists the performances of our models on HIPAA-PHI categories, evaluated at the micro-level. Bi-LSTM-CRF
has the highest F1 score in all categories. The addition of a transformer to the context encoder in Transformer-Bi-
LSTM improved precision in both the AGE and CONTACT categories. Char2vec significantly improved the precision
of LOCATION and slightly improved the precision of DATE, yet suffered tremendously in recall as a consequence.
Bi-LSTM had higher recall than Bi-LSTM-CRF in three categories. DATE yielded the highest scores in all model
combinations, owing to the constant, structured format in the i2b2 dataset (MM/DD/YYYY).

Table 4: Performance per category. Metrics are reported on the micro-average level.

PHI Category BiLSTM BiLSTM-CRF C2V-BiLSTM-CRF
P R F1 P R F1 P R F1

NAME 0.9012 0.7238 0.8028 0.9268 0.7266 0.8146 0.8992 0.2482 0.389
PROFESSION 0.7331 0.5389 0.6212 0.8148 0.5483 0.6555 0 0 0
LOCATION 0.7792 0.6181 0.6894 0.7975 0.6174 0.696 0.8814 0.2681 0.4112
AGE 0.8863 0.9241 0.9048 0.9407 0.8868 0.913 0.8843 0.2543 0.395
DATE 0.9798 0.9675 0.9736 0.9703 0.9839 0.9771 0.9914 0.228 0.3707
CONTACT 0.6416 0.619 0.6301 0.8226 0.5113 0.6306 0.7619 0.401 0.5255
ID 0.8943 0.7099 0.7915 0.8398 0.7847 0.8113 0.8631 0.4142 0.5598

Transformer Transformer-CRF Transformer-BiLSTM
P R F1 P R F1 P R F1

NAME 0.6922 0.7117 0.7018 0.7401 0.6074 0.6672 0.8171 0.5914 0.6862
PROFESSION 0.4403 0.5514 0.4896 0.6959 0.4704 0.5613 0.6307 0.4735 0.5409
LOCATION 0.6772 0.5137 0.5842 0.5987 0.4925 0.5404 0.6189 0.5571 0.5863
AGE 0.7779 0.8628 0.8182 0.8176 0.8176 0.8176 0.9508 0.7976 0.8675
DATE 0.8083 0.8564 0.8317 0.8563 0.824 0.8398 0.9603 0.9805 0.9703
CONTACT 0.3953 0.2932 0.3367 0.4854 0.1253 0.1992 0.8525 0.2607 0.3992
ID 0.6443 0.5967 0.6196 0.6751 0.4626 0.549 0.8887 0.4443 0.5925

Table 5 highlights one example in which Char2vec improved the ability to predict the label for OOV tokens. Table 6
shows the results of our BiLSTM-CRF model on ten samples of EHR data collected from RIH. The samples show that
although our model generalizes to some pieces of PHI, it struggles with others that are unlike the ones present in the
i2b2 dataset (e.g., signature formats).
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Table 5: Output of BiLSTM-CRF vs. C2V-BiLSTM-CRF on a sentence that contains several OOV terms. Character
embeddings are able to identify “HESS” and “CLARENCE” as PATIENT tokens, whereas BiLSTM-CRF is not.

Original Tokens HESS , CLARENCE 64365595
Test Tokens UNK , UNK UNK
BiLSTM-CRF B-HOSPITAL O O O
C2V-BiLSTM-CRF B-PATIENT O I-PATIENT O
True Labels B-PATIENT I-PATIENT I-PATIENT B-MEDICALRECORD

Discussion

In this study, we tested several different combinations of NER components – distributed representations, context
encoders, and tag decoders – for EHR de-identification. We found that Bi-LSTM-CRF, introduced by Huang et al.18

for general NER outside of the clinical domain, is the best overall encoder/decoder combination for de-identification.
Our results are in agreement with Dernoncourt et al.9, Liu et al.10, and Yang et al.11.

Despite Bi-LSTMS-CRF’s overall superior performance, Table 4 shows that other configurations can locally outper-
form Bi-LSTM-CRF for some of the HIPAA-PHI categories. We attribute these findings to the distribution patterns of
tokens in each category. LOCATION, for example, includes ZIP codes, sequences of five numbers. Char2vec is able
to recognize that ZIP codes are consistently tokens with a length of five and composed only of numbers. Therefore,
C2V-BiLSTM-CRF is the model most equipped to classify ZIP codes, contributing in part to its nearly 10% increase
in LOCATION precision.

Furthermore, we found that character embeddings improved precision in several categories, yet decreased recall.
This implies that morphological information captured by character embeddings increased the model’s accuracy in
identifying PHI type, yet decreased its sensitivity in detecting PHI. Disambiguation of PHI type is especially difficult
for OOV tokens without the use of character embeddings, as evidenced in Table 5. The decline in recall is likely
because the char2vec embeddings were not fine-tuned during the training process. Thus, the character embeddings
remained static, unable to adapt to the distribution of medical text. Alternative character embeddings, such as those
that utilize Convolution Neural Networks (CNNs)19, could also improve performance.

In our study, transformers were less effective than Bi-LSTMs at encoding context. This may be accounted for by the
uncontrolled sentence lengths in EHRs. Due to the transcriptional style of medical text, there are “sentences” that con-
tain over a thousand tokens (m = 1567). As a result, the transformer model may try to capture long-term dependencies
via self-attention in the absence of meaningful relationships. Moreover, in an analysis of encoder representations in
transformers, Raganato et al.20 show that syntactic information is captured in the first 3 layers of the encoder, while
semantic information is captured later. The transformer we used, which only had two layers of multi-headed attention,
may have only partially captured the syntactic information of a distribution of medical text that conformed to limited
syntactic rules. Performance improved when a Bi-LSTM was stacked on top of the transformer, potentially having
compensated for the lack of captured semantic information. Future research may explore adding more transformer
layers to the context encoder to extract more semantic information.

While CRFs as tag decoders generally improve the F1 score, our results show that they can decrease recall for both
Bi-LSTM and transformer context encoders. We hypothesize that certain sequences of tags seen in the training set
became favored by the model, leading to unseen sequences in the testing set receiving low likelihoods.

A hybrid method that leverages the strengths of each model – based on its performance in individual PHI categories –
may function best in practice. For instance, Bi-LSTM-CRF could be used to output an initial set of candidate PHI’s
because it has the highest F1 score in all categories. The candidates could then be filtered using models with high
specificity scores, such as Transformer-BiLSTM for AGE and CONTACT predictions and C2V-BiLSTM-CRF for
LOCATION and DATE predictions.

Qualitative assessment of our top model with the EHR data collected from RIH indicates that it somewhat generalizes
beyond the i2b2 dataset (Table 6). It was still able to classify crucial PHI such as Medical Record Numbers (MRNs),
account numbers, and dates. However, it failed with sentences and phrases whose formatting significantly differs from
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Table 6: Sample output of BiLSTM-CRF for phrases in the RIH EHR dataset. Original tokens have been manually
replaced. Green entities are PHI correctly identified (TP ), red entities are PHI that went unidentified (FN ), and
orange entities were incorrectly identified as PHI (FP ).

Mr. Smith is a 200-year-old gentleman
Admitted to Rhode Island Hospital for COVID-19
travel to YZ from 8/20 - 8/26 who presented to RIH ER on 8/28/60
Signature: Sam Lee, MD Electronic Signature
I communicated with this patient’s father John Smith at 123-456-7890
Sunday will be the last day of therapy
Vent Mode: PC FiO2 (%) [50% - 100%]
until Sunday, as discussed with dr. Lee
Social work will continue to follow. LICSW 456-7890
MR #: 00000000000 Account #: 111111111

i2b2 (e.g., signature formats, incomplete phone numbers), as well as with tokens it never encountered (e.g. “COVID-
19”). One particularly revealing example is the classification of “Rhode Island Hospital” vs. “RIH ER.” Our model
could correctly classify the former because it extrapolated from similar hospital names it encountered during training.
On the other hand, it was unable to extract any semantic information from the abbreviated form and thus misclassified
it.

To alleviate the problem of model portability, Yang et al.11 show that fine-tuning their model on labeled data from
local hospital EHRs improves their performance. We were unable to do the same because the EHR data we received
contained no PHI labels. Future research might explore the utilization of local EHR data to fine-tune a language model
that is independent of the de-identification pipeline, drawing inspiration from models like ClinicalBERT that are fine-
tuned on clinical text21. That said, recent research has shown that it is possible to extract personally identifiable
information from large language models through adversarial attacks22. More work must be done to protect against
these attacks before safely incorporating PHI into training data.

The underlying problem remains that medical text is highly unstructured and non-standardized, resulting in sentences
that lack syntactic and semantic cohesiveness. Without structured information, it becomes near impossible to auto-
matically achieve results that fully satisfy the HIPAA Privacy Rule and are portable to multiple hospital systems. At
the lowest level, the text must be tokenized in a way that permits inference. Dedicated medical tokenizers like Medex
exploit domain knowledge to extract information about medications from medical narratives23. However, this does
not resolve the long and disorganized nature of medical text. Recent efforts to enforce structure upon notes using NLP
may help in downstream tasks like de-identification that rely on extracting very specific information24. Uniformity in
note structure will not only improve the model’s performance but will also increase its ability to generalize beyond the
data used in training.

Conclusions

This study gives a comprehensive review of wide-ranging information extraction techniques on the de-identification
of EHRs. Through empirical testing of different NER design combinations, we found that Bi-LSTM-CRF is the
best-performing encoder/decoder combination for the de-identification task. Character-embeddings tend to improve
precision at the cost of recall, while the opposite is true for CRFs. Meanwhile, transformers alone underperformed as
context encoders. Qualitative assessment of Bi-LSTM-CRF on local EHR data showed some success, yet the issue of
model portability remains. Future work lies in automatically structuring medical text such that semantic and syntactic
information can more easily be extracted and models become more generalizable.
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