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The infectious emission rate is a fundamental input parameter for airborne transmission risk assessment,
but data are limited due to reliance on estimates from chance superspreading events. This study assesses
the strength of a predictive estimation approach developed by the authors for SARS-CoV-2 and uses novel
estimates to compare the contagiousness of respiratory pathogens. We applied the approach to SARS-
CoV-1, SARS-CoV-2, MERS, measles virus, adenovirus, rhinovirus, coxsackievirus, seasonal influenza virus
andMycobacterium tuberculosis (TB) and compared quanta emission rate (ERq) estimates to literature val-
ues. We calculated infection risk in a prototypical classroom and barracks to assess the relative ability of
ventilation to mitigate airborne transmission. Our median standing and speaking ERq estimate for SARS-
CoV-2 (2.7 quanta h�1) is similar to active, untreated TB (3.1 quanta h�1), higher than seasonal influenza
(0.17 quanta h�1), and lower than measles virus (15 quanta h�1). We calculated event reproduction num-
bers above 1 for SARS-CoV-2, measles virus, and untreated TB in both the classroom and barracks for an
activity level of standing and speaking at low, medium and high ventilation rates of 2.3, 6.6 and 14 L per
second per person (L s–1 p–1), respectively. Our predictive ERq estimates are consistent with the range of
values reported over decades of research. In congregate settings, current ventilation standards are unli-
kely to control the spread of viruses with upper quartile ERq values above 10 quanta h�1, such as SARS-
CoV-2, indicating the need for additional control measures.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic has renewed attention to airborne
contagion in shared indoor atmospheres. Airborne transmission
of respiratory tract infection results from the inhalation of virus-
or bacteria-laden droplet nuclei, defined as the evaporated residua
of respiratory droplets expired during breathing, vocalizing, cough-
ing, and sneezing. Modeling by Balachandar et al. (2020) indicated
that all expired respiratory droplets below 100 lm in diameter will
evaporate to droplet nuclei of non-volatile biological material
within a second of expiration and after less than 1 m of travel, even
at 98% ambient air humidity. As such, there is an urgent need to
quantify the emission rate of droplets below 100 lm to facilitate
airborne infection risk assessment. Buonanno et al. (2020a) devel-
oped a novel predictive estimation approach for the quanta emis-
sion rate as a function of respiratory activity and activity level.
The quantal dose–response concept for airborne contagion was
originally developed by Wells (1955) with the understanding that
infection by inhalation is a probabilistic process involving myriad
random variables with substantial heterogeneity. Using a Poisson
model, a quantum equals the unknown amount of pathogenic air-
borne droplet nuclei that will cause sustained infection in 63% of
exposed susceptibles. As cautioned by Nardell (2016), ‘‘quantum,”
the dose traditionally back calculated from the end result of infec-
tions in a group of susceptibles, should not be confused with
‘‘infectious particles,” that originate from the infected source and
can be measured in units of RNA copies or plaque forming units
(PFUs). The predictive estimation approach bridges the gap
between these two concepts, with a quantum representing a
human infectious dose for 63% of susceptibles (HID63) by droplet
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nuclei inhalation that can be approximately related to a viral or
bacillary load in the emitting subject through experimental analy-
sis, as was achieved for seasonal influenza virus by Bueno de
Mesquita et al. (2020).

The aim of this work is threefold: (i) to assess the strength of the
predictive estimation approach for the airborne emission rate of
common respiratory pathogens by comparing estimates to back-
calculated values reported in literature, (ii) to use the estimates
to compare the contagiousness of the modeled pathogens through
the airborne route, and (iii) to assess the ability of modern stan-
dards of ventilation to prevent their epidemic spread.

2. Materials and methods

The predictive estimation approach for the quanta emission
rate (ERq) is presented as Eq. (1) for respiratory viruses
(Buonanno et al., 2020b), but can also be applied to bacterial
pathogens as described subsequently in this section:

ERq ¼ cv � ci � IR� Vd ¼ cv � 1
cRNA � cPFU

� IR� Vd ð1Þ

where cv is the viral load in sputum (RNA copies mL�1), ci (quanta
RNA copies�1) is a conversion factor defined as the ratio between
one quantum and the infectious dose expressed in viral RNA copies,
IR is the inhalation rate (m3 h�1), and Vd is the droplet volume con-
centration expelled by the infectious person (mL m�3). The conver-
sion factor, ci, can be calculated as the inverse of the product of the
number of RNA copies per plaque-forming unit (PFU) (cRNA) and the
number of PFU approximating the human infective dose (HID63) by
droplet nuclei inhalation (one quantum) (cPFU, PFU quanta–1).
Where viral load is provided in units of PFU mL�1, or the median tis-
sue culture infectious dose (TCID50) mL�1, the CRNA term becomes
unnecessary. For unit conversions, approximately four-fifths of a
quantum is a TCID50 (Wells, 1955), and a PFU is commonly approx-
imated as seven-tenths of a TCID50. The droplet volume concentra-
tion Vd is a function of the expiratory activities and was derived
from the total volume emitted by a loud-speaking person provided
by Stadnytskyi et al. (2020). Representative values for the inhala-
tion rate (0.49 m3 h�1 for resting, 0.54 m3 h�1 for standing, and
1.38 m3 h�1 for light exercise) were obtained from Adams (1993).

While inhalation rate and droplet volume concentrations are
known to vary between individuals based on age, body mass, and
natural physiological heterogeneity, we hold them constant for
each of three evaluated expiratory activities to simplify the calcu-
lation and limit variation to the viral load. With this assumption
the product IR� Vd becomes a constant droplet volume emission
rate in mL h�1 as follows: 9.8 � 10–4 for resting, oral breathing;
4.9 � 10�3 for standing, speaking; and 8.3 � 10–2 for light activity,
speaking loudly. Derived from a laser light scattering study
(Stadnytskyi et al., 2020), the droplet emission rates span the size
range of expiratory droplets produced by speaking. The high sensi-
tivity of light scattering better quantifies droplets in the range of
Table 1
Viral/bacillary load and infectivity input data.

Pathogen log10 cv mean (st.dev)

Adenovirus 3.2 (0.95) TCID50 mL�1

Coxsackievirus 3.4 (1.1) TCID50 mL�1

Influenza 6.7 (0.84) RNA copies m
Measles 3.5 (1.6) TCID50 mL�1

MERS 6.7 (1.6) RNA copies m
Rhinovirus 3.6 (0.83) TCID50 mL�1

SARS-CoV-1 6.1 (1.3) RNA copies m
SARS-CoV-2 5.6 (1.2) RNA copies m
TB (Untreated) 5.5 (1.3) CFU mL�1

TB (On Treatment) 4.0 (1.4) CFU mL�1
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10–100 lm which can be missed by aerodynamic particle sizer
(APS) measurements.

To apply the predictive approach, we used Eq. (1) and a lognor-
mal distribution of viral load to create a lognormal distribution of
ERq defined by an associated probability density function. We com-
piled viral load and infectious dose data for the following eight (8)
viruses: severe acute respiratory syndrome (SARS) coronavirus
(CoV) 1 and 2, Middle East respiratory syndrome (MERS) coron-
avirus, measles virus, seasonal influenza virus, rhinovirus, coxsack-
ievirus, and adenovirus. We did not include respiratory syncytial
virus (RSV) in our evaluation because transmission between
infants is generally a greater concern than between adults and this
is beyond our current scope (Kulkarni et al., 2016). We did not
include smallpox (variola) virus, chickenpox (varicella) virus,
parainfluenza viruses, mumps and rubella viruses and others due
to lack of data on viral load in the respiratory tract and/or infectiv-
ity by droplet nuclei inhalation.

While the focus of this paper is respiratory viruses, we did apply
the predictive approach to Mycobacterium tuberculosis (TB) as it is
the most well-studied agent of airborne contagion. For TB we sep-
arately used bacillary loads representative of both untreated active
cases and cases after two weeks of treatment, and an estimate of
infectious dose in colony forming units (CFUs). We also considered
Bordetella pertussis, which is an airborne-transmitted pathogen
causing whooping cough (Warfel et al., 2012) that may have an
infectious dose below 100 CFU (Weyrich et al., 2014). However,
data collected by Brotons et al. (2016) found infected individuals
over the age of 15 to have significantly lower bacillary loads
(log10 median of 1.7 CFUmL�1) versus infected children and infants
(e.g. log10 median of 4.9 CFU mL�1 for ages 2 to age below
6 months). Thus, as with RSV, we omitted its inclusion herein,
but note that the low bacillary loads for adults indicate quanta
emissions without coughing may be low.

Parameters selected for each virus and for TB are summarized in
Table 1. A narrative with referencing for all parameter values and
rationales for inclusion is provided in the Supplementary data text.
Where sputum viral load data were unavailable or considered
otherwise non-representative, we used nasal swab or nasal wash
data as a substitute.

Over the course of 2021, novel strains of SARS-CoV-2 have
emerged that preliminary epidemiological data suggest are more
transmissible than those circulating at the beginning of the pan-
demic. A more contagious strain would have higher ERq values
through a higher median viral load and/or a lower infectious dose.
For the B1.1.7 (Alpha) variant, the median and 65th percentile viral
load values estimated by Kidd et al. (2021) of approximately
log10 5.2 and log10 6.2 copies mL�1, respectively, are generally con-
sistent with our viral load distribution values of log10 5.6 and log10
6.1 copies mL�1, respectively. Based on this the increased transmis-
sivity of B1.1.7 (Alpha) may relate to a lower infectious dose, but
clearly further data are necessary. For B.1.617 (Delta) variant infec-
tions, Li et al. (2021) found viral loads to be approximately 1000
Conversion Factor (ci)

0.50 quanta TCID50
–1

0.025 quanta TCID50
–1

L�1 7.1 � 10�6 quanta RNA copies�1

1.0 quanta TCID50
–1

L�1 2.3 � 10�6 quanta RNA copies�1

0.053 quanta TCID50
–1

L�1 6.8 � 10�6 quanta RNA copies�1

L�1 1.4 � 10�3 quanta RNA copies�1

2.0 � 10�3 quanta CFU�1



Fig. 1. Predictive ERq distributions for the standing and speaking activity level.
Boxes span the interquartile ranges, with whiskers extending from the 5th–95th
percentile values and the median denoted by the vertical line in each box.
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times higher on the first day of positive testing than those of the
original 2020 strains in mainland China. As approximately 81% of
oropharyngeal swab samples contained Delta variant viral loads
above log10 5.8 copies mL�1 (Li et al., 2021), the increased trans-
missivity of the Delta variant appears at least in part related to
viral loads higher than those used to generate our estimates. We
note that the predictive estimation approach lends itself to effi-
cient updating of the emission distributions as new variants
emerge and associated data sets are published. Our calculations
used the thermodynamic equilibrium dose–response model of
Gale (2020), which suggests a very low median infectious dose of
only 1 to 2 PFU due to the relative absence of a protective effect
in the mucus barrier. Thus, our ERq estimates already reflect the
high contagiousness of SARS-CoV-2 through the airborne route
even though they are based on the earlier viral load distributions
described in the Supplementary data text.

To quantify the ability of ventilation to mitigate the risk of air-
borne transmission, we calculated the individual risk (R) of an
exposed person (Buonanno et al., 2020b) and event reproduction
numbers (Revent) for a typical classroom studied by Wells (1943)
and for a military barracks studied by Couch et al. (1970). Revent

is defined as the expected number of new infections arising from
a single infectious individual at an event (Tupper et al., 2020).
We performed the calculations using low, medium, and high ven-
tilation rates of 2.3 L per second per person (L s–1p–1), 6.6 L s–1p-1,
and 14 L s–1p–1, respectively, and assuming one infectious occu-
pant and a fully susceptible population. Our low and medium ven-
tilation rates correspond to the mean values estimated for low and
high ventilation dormitories in Zhu et al. (2020), and our high ven-
tilation rate corresponds to the value estimated by Wells for the
control classrooms in his air disinfection experiments (Wells,
1943). Based on the room volumes these ventilation rates are
equivalent to 1.3, 3.8 and 8.0 air changes per hr for the classroom,
and 0.70, 2.0 and 4.3 air changes per hr for the barracks, respec-
tively. For reference, the ANSI/ASHRAE 62.1 combined outdoor
air rate values for acceptable indoor air quality for these two
spaces are approximately 6.3 L s–1p–1 and 3.7 L s–1p–1 for class-
rooms and barracks sleeping areas, respectively (ASHRAE, 2019).
These values, as well as the low and medium ventilation rates used
in our models, are below the World Health Organization’s (WHO)
recommended minimum ventilation rate of 10 L s–1p–1 in non-
residential settings in the context of the COVID-19 pandemic
(World Health Organization WHO, 2021). We also note that even
the high ventilation rate of 14 L s–1p–1 results in well below the
12 air changes per hour minimum WHO recommendation for an
airborne precaution room (Atkinson et al., 2009). A summary of
the modeling approach and parameter assumptions are provided
in the Supplementary data text.

The infection risk equations and quanta emission rate distribu-
tions documented in this paper are implemented in a spreadsheet
tool named the Airborne Infection Risk Calculator (AIRC) Version
3.0, posted in the public domain (Mikszewski et al., 2021). For
Table 2
Predictive ERq (quanta h�1) statistics as a function of the expiratory activity and activity l

Pathogen Resting,
oral breathing

SARS-CoV-1 0.0084 (6.1E-5, 1.2)
MERS 0.011 (2.6E-5, 4.7)
TB (On Treatment) 0.020 (1.0E-4, 4.0)
Influenza 0.035 (0.0015, 0.84)
Coxsackievirus 0.062 (9.6E-4, 4.0)
Rhinovirus 0.21 (0.0091, 4.9)
SARS-CoV-2 0.55 (0.0058, 52)
TB (Untreated) 0.62 (0.0045, 85)
Adenovirus 0.78 (0.021, 28)
Measles 3.1 (0.0072, 1,300)

3

SARS-CoV-2, AIRC Version 3.0 will generally produce higher risk
estimates using the default emission rates than earlier versions
of the tool, owing to the higher standard deviation of the viral load
distribution used herein.
3. Results and discussion

3.1. Quanta emission rates

The median ERq estimates from the predictive estimation
approach are ranked from high to low as follows: measles virus,
adenovirus, TB (untreated), SARS-CoV-2, rhinovirus, coxsack-
ievirus, seasonal influenza, TB (on treatment), MERS, and
SARS-CoV-1. Table 2 provides the 5th percentile, 50th percentile
(median), and 95th percentile ERq estimates for each virus for
the three emission profiles evaluated herein (resting, oral breath-
ing; standing, speaking; light activity, speaking loudly). Based on
the assumed lognormal distribution for the viral load, the ERq esti-
mates also follow a lognormal distribution, with the log10 mean
value equal to the log10 of the reported median value in Table 2,
and the log10 standard deviation equal to that of the viral load in
Table 1. For example, the log10 ERq distribution for SARS-CoV-2
for standing and speaking has a mean of 0.43 (the log10 of 2.7)
and a standard deviation of 1.2. Plots of the lognormal distributions
for the standing and speaking activity level are provided in Fig. 1.
Published ERq values in literature are presented in Table 3 for
comparison.
evel provided as 50th percentile (5th percentile, 95th percentile).

Standing, speaking Light activity,
speaking loudly

0.042 (3.1E-4, 5.8) 0.71 (0.0052, 98)
0.056 (1.3E-4, 24) 0.96 (0.0022, 410)
0.098 (4.9E-4, 20) 1.7 (0.0085, 340)
0.17 (0.0071, 4.1) 3.0 (0.12, 72)
0.31 (0.0048, 20) 5.2 (0.081, 340)
1.0 (0.043, 23) 18 (0.78, 420)
2.7 (0.029, 250) 46 (0.49, 4,300)
3.1 (0.023, 430) 52 (0.38, 7,200)
3.9 (0.11, 140) 66 (1.8, 2,400)
15 (0.035, 6,400) 260 (0.61, 1.1E+5)



Table 3
Predictive ERq comparisons with literature values.

Virus & Setting Reference ERq(quanta h�1) Standing,
speaking
(percentile)

Light activity,
speaking loudly
(percentile)

SARS-CoV-1: Taipei Hospital Liao et al. (2005) 29 98th 89th
SARS-CoV-2: Wuhan Apartment Bazant and Bush (2021) 15 73rd 35th
SARS-CoV-2: Cruise Ship Bazant and Bush (2021) 15 73rd 35th
SARS-CoV-2: Wuhan Bus #1 Prentiss et al. (2020) 36 83rd 46th
SARS-CoV-2: Ningbo Bus Bazant and Bush (2021) 45 85th 50th
SARS-CoV-2: Restaurant Buonanno et al. (2020b) 61 87th 54th
SARS-CoV-2: Wuhan Bus #2 Prentiss et al. (2020) 62 87th 54th
SARS-CoV-2: School, Germany Kriegel et al. (2020) 116 91st 63rd
SARS-CoV-2: Courtroom Vernez et al. (2021) 130 92nd 65th
SARS-CoV-2: Buddhist Bus Prentiss et al. (2020) 133 92nd 65th
SARS-CoV-2: School, Israel Kriegel et al. (2020) 139 92nd 66th
SARS-CoV-2: Meeting Kriegel et al. (2020) 139 92nd 66th
SARS-CoV-2: Fitness Center Prentiss et al. (2020) 152 93rd 67th
SARS-CoV-2: Abattoir Kriegel et al. (2020) 232 95th 72nd
SARS-CoV-2: Call Center Prentiss et al. (2020) 683 98th 84th
SARS-CoV-2: Chorus, USA Miller et al. (2021) 970 98th 87th
SARS-CoV-2: Chorus, Germany Kriegel et al. (2020) 4213 – 95th
Measles: Classroom Wells (1955); Riley et al. (1962) 18 52nd 23rd
Measles: Elementary and secondary schools Riley (1980) 60 (min.) 65th 35th

600 (median) 84th 59th
5600 (max.) 95th 80th

Measles: Secondary school Azimi et al. (2020) 2765 92nd 74th
Measles: Pediatrician’s office Remington et al. (1985) 8640 96th 83rd
Influenza: Human transmission trials in quarantine rooms Bueno de Mesquita et al. (2020) 0.11 41st 4th
Influenza: Transmission experiments among ferrets Zhou et al. (2018) 7.95 98th 69th
Influenza: Airliner during delay with inoperable ventilation Moser et al. (1979); Rudnick and Milton (2003) 79 – 95th
Rhinovirus: Transmission trials using card playing games Dick et al. (1987); Rudnick and Milton (2003) 3.1 72nd 18th
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The three evaluated coronaviruses have similar viral load distri-
butions, but the significant difference in infectivity results in ERq

estimates for SARS-CoV-2 that are over an order of magnitude
higher than SARS-CoV-1 and MERS. Recent estimates of ERq back
calculated from SARS-CoV-2 superspreading events are presented
in Table 3, including data from pre-prints that are subject to revi-
sion, and approximately span the 35th-95th percentile for the light
activity, speaking loudly distribution. The result of most percentile
values above the median for SARS-CoV-2 is expected, as it is
overdispersed with a minority of cases responsible for most sec-
ondary transmission (Endo et al., 2020).

Previous ERq estimates for measles virus are significantly differ-
ent based on calculations made before and after the introduction of
the vaccine in the early 1960s. Riley et al. (1962) reported the
emission rate of the average child with measles to be 18 quanta
h�1 based on the earlier work of Wells (1943, 1955), which is very
similar to our median estimate for standing and speaking. The pat-
tern of the spread of measles in schools studied by Wells in the
pre-vaccine era was consistent with past epidemiology showing
outbreaks to begin when the density of susceptibles reached
30%–40%, and wane when the density decreased to 15%–20%
(Wells, 1943, 1955). Conversely, the post-vaccine era estimates
are based on superspreading events with back calculated emission
rates reaching over 1000 quanta h�1 (Riley, 1980; Remington et al.,
1985; Azimi et al., 2020). This discrepancy is potentially explained
by the impact of the density of susceptibles on the threshold emis-
sion rate needed to reproduce infection. Wells (1955) noted a con-
tact rate, or probability of infection, of 11% for measles over a
three-day infectious period in a well-ventilated classroom, from
which the 18 quanta h�1 estimate was derived. The initial density
of susceptibles in the class was approximately 33%. If this density
of susceptibles were reduced to 5% through vaccination, to gener-
ate an equivalent number of secondary cases on average, the con-
tact rate would need to increase to approximately 75%. This
corresponds to an emission rate over 200 quanta h�1, more consis-
tent with the post-vaccine estimates of Riley (1980). Community
4

transmission of measles in the post-vaccine era appears limited
to individuals with high viral load, and thus high ERq, capable of
picking out the few remaining susceptibles in a group (Langmuir,
1980).

The median estimated ERq for seasonal influenza for standing,
speaking (0.17 quanta h�1) is consistent with the recent estimate
of 0.11 quanta h�1 calculated from a human transmission trial
(Bueno de Mesquita et al., 2020). The 79 quanta h�1 estimate for
a superspreading event on a grounded airliner (Moser et al.,
1979; Rudnick and Milton, 2003) is approximately equal to the
95th percentile value for the light activity, speaking loudly activity
level (Table 3). Supporting the extreme nature of the airliner case
study, Bischoff et al. (2013) measured the maximum emission rate
from 61 influenza patients to be approximately 1.2 � 106 RNA
copies h�1, equal to 8.7 quanta h�1 using the conversion factor in
Table 1. We therefore conclude that ERq values above 10 quanta
h�1 may be quite uncommon for seasonal influenza, limiting the
potential for explosive outbreaks of short duration. However, our
estimates are for breathing and vocalizing, and severely symp-
tomatic cases with high frequency of cough may generate signifi-
cantly higher emissions, as with the airliner case study.

The median estimated ERq for rhinovirus of 1.0 quanta h�1 for
standing and speaking is consistent with the mean value of 3.1
quanta h�1 calculated based on the range of values (0.6–7.8) esti-
mated by Rudnick and Milton (2003).

The median ERq estimated for adenovirus of 3.9 quanta h�1 for
standing and speaking is second only to measles. No literature val-
ues are available for comparison, but a high emission rate is consis-
tent with explosive outbreaks observed at US military basis during
the late 1990s and early 2000s when the adenovirus vaccine was
temporarily unavailable. Russell et al. (2006) described one such
military outbreak where over the course of a 4-week period a
98% attack rate was observed among 180 susceptible persons.
Echavarria et al. (2000) identified a correlation between aden-
ovirus PCR results on air filters and the number of hospitalizations
within military companies and found that companies with one
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ventilation unit per floor and wing had lower attack rates (11%)
than those with one ventilator supplying air for multiple floors
(18–21%). While resumption of adenovirus vaccination largely
eliminated these types of outbreaks on US military bases, China
has not yet included adenovirus in its military vaccination pro-
gram. Guo et al. (2020) described a recent outbreak of adenovirus
type 7 at a boot camp in China that lasted 30 days, resulting in 375
cases and 109 hospitalizations.

The estimated ERq values for coxsackievirus fall between those
of influenza and rhinovirus, with a median of 0.31 quanta h�1 for
standing and speaking. Airborne transmission of coxsackievirus
A21 was conclusively demonstrated in a cross-infection experiment
conducted in a military barracks with physical separation of occu-
pants and well-mixed air (Couch et al., 1970). We modeled the
mean emission rate for each of 10 infected subjects in this experi-
ment to be between 1.3 quanta h�1 and 3.6 quanta h�1, consistent
with the predictive calculations at the 72nd percentile to 83rd per-
centile range of the standing and speaking distribution. A descrip-
tion of the experiment and our modeling approach is provided in
the Supplementary data text.

The closest model for the contagiousness of SARS-CoV-2 may be
provided by an untreated, active case of TB, as we estimated a med-
ian ERq of 3.1 quanta h�1 for standing and speaking, approximately
15% higher than that of SARS-CoV-2. The office outbreak from an
untreated casemodeled byNardell et al. (1991) (13 quanta h�1) cor-
responds to the 68th percentile of the standing, speaking distribu-
tion, while the modeled emission rate from an explosive outbreak
of multi-drug resistant (MDR) TB aboard a long-haul flight (108
quanta h�1; Ko et al., 2004) corresponds to the 88thpercentile value.

To compare our estimates to the human-to-guinea pig trans-
mission trials of Riley et al. (1959, 1962) and the similar studies
in the MDR-TB and HIV era (Escombe et al., 2007, 2008;
Dharmadhikari et al., 2012), we created ERq distributions for up
to six infected individuals from the resting, oral breathing activity
level for both untreated and treated TB. This was done by adding
together up to six random samples from the respective lognormal
Fig. 2. Predictive cumulative ERq distributions for a tuberculosis (TB) ward with up to
Supplementary data text) representative of active, untreated TB (Fig. 2a) and after two
extending from the 5th–95th percentile values and the median denoted by the horizon
seminal human-to-guinea pig transmission trials as follows: 0.72 quanta h�1 from a six-
et al., 1962), 34 quanta h�1 from a six-bed ward with patients wearing masks (after Dhar
(after Escombe et al., 2007, calculated as the mean reported individual patient ERq of 8.2
six-bed ward with no mask use (after Dharmadhikari et al., 2012).

5

distributions 100,000 times. The simulated distributions are pre-
sented on Fig. 2a (untreated) and 2b (treated), representing the
predicted cumulative ERq produced on a TB ward with up to six
occupied beds, consistent with the five to six bed occupancy of
the seminal works (note that while the Escombe et al. (2007) study
used an eight-bed ward, mean bed occupancy was 66%, or 5.3
beds). Fig. 2a shows that the untreated predictive estimates for a
five to six-patient ward are consistent with the recent MDR-TB
and HIV-era transmission trials, whereas Fig. 2b shows that the
treated predictive estimates for a five to six-patient ward are more
consistent with the original experiments of Riley et al. (1959,
1962). The highest two ERq estimates from individual TB patients
in the guinea pig studies, 60 quanta h�1 (Riley et al., 1962) and
226 quanta h�1 (Escombe et al., 2008), approximately correspond
to the 94th and 98th percentile values, respectively, of the resting,
oral breathing distribution for untreated TB.

3.2. Classroom and barracks modeling scenarios

Results of the two modeling scenarios described in the Supple-
mentary data text are presented in Fig. 3a and Supplementary data
Table S1 for the classroom, and Fig. 3b and Supplementary data
Table S2 for the barracks. With respect to the individual risk (R)
in both settings at the standing and speaking expiration, the results
indicate: (i) the low ventilation rate (2.3 L s–1p–1) is only able to
keep R below 1% for seasonal influenza and SARS-CoV-1, 2) the
high ventilation rate (14 L s–1p–1) is needed to keep R approxi-
mately at or below 1% for rhinovirus, MERS, coxsackievirus, and
TB (on treatment), and (iii) even at the high ventilation rate, R is
above 1% for adenovirus, TB (untreated), and SARS-CoV-2, and
above 10% for measles. With respect to the expected number of
infections resulting from the exposures at standing and speaking:
(i) at the high ventilation rate, Revent is above 1 in both settings
for TB (untreated), SARS-CoV-2, and measles, with adenovirus also
above 1 in the barracks, and (ii) Revent approaches or exceeds 1 in
the barracks at the low ventilation rate for rhinovirus, MERS, cox-
six patients based on the resting, oral breathing expiration and bacillary load (see
weeks of treatment (Fig. 2b). Boxes span the interquartile ranges, with whiskers
tal line in each box. Labeled gridlines present the cumulative ERq estimates from
bed ward (after Riley et al., 1959), 1.25 quanta h�1 from a five-bed ward (after Riley
madhikari et al., 2012), 43 quanta h�1 from an eight-bed ward with 66% occupancy
quanta h�1 times the mean bed occupancy of 5.3 beds), and 138 quanta h�1 from a



Fig. 3. Individual risk (R, %) and event reproduction numbers (Revent) for the (a) classroom and (b) barracks modeling scenarios. Circles depict results for resting, oral
breathing and triangles depict results for standing, speaking. White, gray, and black symbol fill corresponds to the high, medium, and low ventilation rates, respectively.
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sackievirus, and TB (on treatment). Illustrating the potential for
high attack rates of SARS-CoV-2 in congregate housing, Revent is
above 1 in the barracks at the resting, oral breathing expiration
at both the medium and low ventilation rates. The four pathogens
with calculated Revent values above 1 at the high ventilation rate
have upper quartile ERq estimates above 10 quanta h�1 for stand-
ing and speaking (Fig. 1).

Of the pathogens evaluated, the modeling results suggest air-
borne transmission risk to be greatest for adenovirus, TB (un-
treated), SARS-CoV-2, and measles, for all of which even a high
ventilation rate of 14 L s–1p–1 may be insufficient to maintain event
reproduction numbers below one in a fully susceptible population,
depending on indoor occupant activities. To maintain safe opera-
tion of classrooms during the on-going COVID-19 pandemic, inter-
ventions such as improving natural or mechanical ventilation
6

combined with minimizing the amplitude of vocalization should
be pursued, as conceptualized by Stabile et al. (2021). For the less
contagious pathogens, secondary transmission becomes a signifi-
cant concern in congregate living settings like the barracks where
ventilation is poor (e.g. 2.3 L s–1p–1 or less). However, the modeling
results indicate that improved ventilation in such settings can
effectively reduce reproductive numbers of endemic rhinovirus
and seasonal influenza, consistent with real-world studies in uni-
versity dormitories (Sun et al., 2011; Zhu et al., 2020). Lastly, our
finding of high contagiousness of SARS-CoV-2 via the airborne
route reinforces the need for airborne precaution rooms and N95
or FFP3 respirators to protect health care workers. This conclusion
is supported by mounting evidence of the inadequate protection
provided by surgical masks, even in the absence of aerosol gener-
ating procedures (Ferris et al., 2021; Goldberg et al., 2021).
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3.3. Limitations

Our mass balance analysis should be interpreted as a proof of
concept and is limited by the paucity of data on viral load and
infectious dose by natural inhalation in the real world. Where spu-
tum data were unavailable, the use of nasal swab data may bias
ERq estimates low due to dilution in transport medium, although
this may be offset by laboratory-derived infectious dose estimates
that are lower than those required by breathing ambient air in the
real world. Uncertainty also arises from virus-specific nuances,
with one example for measles being the potential expiration of
cell-associated virus derived from epithelial damage in the upper
respiratory tract (Ludlow et al., 2013). The relative proportion of
virions and bacteria in sputum versus expired droplets requires
further study (Patterson and Wood, 2019). Droplet volume emis-
sions from coughing and sneezing require better quantification
so that comparisons can be made to emissions from vocalization,
and refinement of the predictive approach is necessary to incorpo-
rate variation in droplet volume emissions between individuals
(Edwards et al., 2021). We expect on-going advancements in
exhaled breath sampling (e.g. Patterson et al., 2020) to help vali-
date and improve the predictive approach.

The main limitation of our infection risk modeling approach is
the assumption of a homogeneous concentration of droplet nuclei
within the room, instead of a plume with the highest concentration
closest to the emitting source. Additional mechanisms decreasing
the viral concentration, such as particle deposition and inactivation
in ambient air, are held constant in the model, but should be
evaluated for more detailed site-specific analysis, also considering
that the airborne inactivation rate varies significantly between
pathogens and based on environmental factors such as relative
humidity.
4. Conclusions

The ERq estimates we produced for a range of respiratory
viruses and for TB are in good agreement with the range of values
back calculated from experimental studies and superspreading
events in literature, although further work is necessary to compare
droplet volume emissions from symptomatic cases with those of
speaking loudly at varying activity levels. The predictive estima-
tion approach advances methods of prospective risk assessment
for airborne transmission of disease. Our calculations suggest
measles virus to be the most contagious of those evaluated, but
the median estimates for SARS-CoV-2, adenovirus, and untreated,
active TB are within the same order of magnitude. Our risk model-
ing scenarios for a classroom and barracks show that even a high
ventilation rate of 14 L s–1p–1 will likely fail to prevent the spread
of adenovirus, TB (untreated), SARS-CoV-2 and measles in a fully
susceptible population, indicating that additional engineering con-
trols such as advanced ventilation design or air disinfection are
necessary to supplement public health measures. Conversely, a
ventilation rate of 14 L s–1p–1 is more likely to prevent sustained
airborne transmission of rhinovirus, SARS-CoV-1, MERS, coxsack-
ievirus, TB (on treatment) and seasonal influenza. For SARS-CoV-
2, our results highlight the importance of masking for both source
control and personal respiratory protection and reinforce the need
for airborne precaution and/or isolation rooms in health care or
cohabitation settings treating COVID-19 patients.
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