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Abstract

The biomolecular modeling field has flourished since its early days in the 1970s due to the 

rapid adaptation and tailoring of state-of-the-art technology. The resulting dramatic increase in 

size and timespan of biomolecular simulations has outpaced Moore’s law. Here, we discuss the 

role of knowledge-based versus physics-based methods and hardware versus software advances 

in propelling the field forward. This rapid adaptation and outreach suggests a bright future for 

modeling, where theory, experimentation and simulation define three pillars needed to address 

future scientific and biomedical challenges.

The trajectory of the field of biomolecular modeling and simulation is a classic example of 

success driven by an eclectic mixture of ideas, people, technology and serendipity. From 

the early days of simulations and force-field development through pioneering applications 

to structure determination, enzyme kinetics and molecular dynamics simulations, the field 

has gone through notable highs and lows1 (Fig. 1). The 1980s were marked by advances 

made possible by supercomputers2,3, and, at the same time, by deflated high expectations 

when it was realized that computations could not easily or quickly supplant Bunsen burners 

and lab experiments1,4. The 1990s saw disappointments when, in addition to unmet high 

biomedical expectations1, such as the failure of the human genome information to lead 

quickly to medical solutions5, it was realized that force fields and limited conformational 

sampling could hold us back from successful practical applications. Fortunately, this period 

was followed by many new approaches, using both software and hardware, to address 

these deficiencies. The past two decades took us through huge triumphs, as successes in 

key areas were realized. These include protein folding (for example, millisecond all-atom 

simulations of protein folding6), mechanisms of large biomolecular networks (for example, 

virus simulations7) and drug applications (for example, search of drugs for coronavirus 

disease 2019 (COVID-19)8). On the shoulders of the force-field pioneers Allinger, Lifson, 
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Scheraga and Kollman, computations in biology were celebrated in 2013 with the Nobel 

Prize in Chemistry recognizing the work of Martin Karplus, Michael Levitt and Arieh 

Warshel9. Clearly, experimentation and modeling have become full partners in a vibrant and 

successful field.

Scientists studying chemical and biological systems, from small molecules to huge viruses, 

now routinely combine computer simulations and a variety of experimental information 

to determine or predict structures, energies, kinetics, mechanisms and functions of these 

fascinating and important systems. Pioneers and leaders of the field who pushed the 

envelopes of applications and technologies through large simulation programs and state-of

the-art methodologies have unveiled the molecules of life in action, similar to what the 

light microscopes and X-ray techniques did in the seventeenth and nineteenth centuries. 

Biomolecular modeling and simulation applications have allowed us to pose and answer 

new questions and pursue difficult challenges, in both basic and applied research. Problems 

range from unraveling the folding pathways of proteins and identification of new therapeutic 

targets for common human diseases to the design of novel materials and pharmaceuticals. 

With the recent emergence of the coronavirus pandemic, all these tools are being utilized 

in numerous community efforts for simulating COVID-19 related systems. Similar to the 

exponential growth so familiar to us now in connection with the spread of COVID-19 

infections, exponential progress is only realized when we take stock of long timeframes.

A key element in this success is the relentless pursuit and exploitation of the state-of-the-art 

technology by the biomolecular simulation community. In fact, the excellent utilization of 

supercomputers and technology by modelers led to comparable performance for landmark 

simulations with the world’s fastest computers (Fig. 2). The simulation time of biomolecular 

complexes scales up by about three orders of magnitude every decade10, and this progress 

is faster than Moore’s law, which projected a doubling every two years11. While some 

aspects of this doubling have been debated, it has also been argued that such doubling of 

computation/performance has held over 100 years in many fields12.

Today, concurrent advances in many technological fields have led to exponential growth in 

allied fields. Take, for example, the dramatic drop in the cost of gene sequencing technology, 

from US$2.7 billion for the Human Genome Project to US$1,000 today to sequence an 

individual’s genome13. Not only can this information be used for personalized medicine, 

but we can also sequence genomes such as of the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) in hours and apply such sequence variant information to 

map the disease spread across the world in nearly real time14. Fields such as artificial 

intelligence, nanotechnology, energy and robotics are all benefiting from exponential growth 

as well. This in turn means that urgent problems can be solved to improve our lives, health 

and environment, from wind farms to vaccines. In particular, biomolecular modeling and 

simulation is thriving in this ever-evolving landscape, evidenced by many successes, and in 

experiments driven by modeling15.

A detailed account of this triumphant field trajectory is described separately in our recent 

field perspective1. A review on the success of computations in this field was also recently 

published by Dill et al.16. In our field perspective, we covered metrics of the field’s rise 
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in popularity and productivity, examples of success and failure, collaborations between 

experimentalists and modelers, and the impact of community initiatives and exercises. Here, 

we focus on two aspects of technology advances that are relevant to numerous areas of 

computational science at large: knowledge-based methods versus physics-based methods, 

and the role of hardware versus software in driving the field.

Knowledge-based versus physics-based approaches

Physics-type models based on molecular mechanics principles1 have been successfully 

applied to molecular systems since the 1960s, providing insights into structures and 

mechanisms involved in biomolecular rearrangements, flexibility, pathways and function. 

In these methods, energy functions that treat molecules as physical systems, similar to balls 

connected by springs, are used to express biomolecules in terms of fundamental vibrations, 

rotations and non-bonded interactions. Target data taken from experiments on relevant 

molecular entities are used to parametrize these functions, which are then applied to larger 

systems composed of the same basic chemical subgroups. Thus, experimental data are used 

in constructing these general functions but in a fundamental way, such as the nature of C–O 

bonds or the rotational flexibility around alpha carbons.

Knowledge-based methods, in contrast, lack a fundamental energy framework. Instead, 

various structural, energetic or functional data are used to train a computer program 

into discovering these trends in related systems from known chemical and biophysical 

information on specific molecular systems. Thus, such approaches use available data to 

make extrapolative predictions regarding related biological and chemical systems.

While physics-based models have been in continuous usage, knowledge-based methods have 

gained momentum since the 2000s with the increasing amount of both available data and 

computational power for handling voluminous data. Although physics-based approaches 

remain essential for understanding mechanisms, knowledge-based methods are inevitably 

succeeding in specific applications and overtaking many fields of science and engineering. 

As we argue below, both are important to develop, and their combination can be particularly 

fruitful.

Physics-based methods.

Physics-based methods offer us a conceptual understanding of biological processes. Indeed, 

the development of improved all-atom force fields for biomolecular simulations17–19 in 

both functional form and parameters has been crucial to the increasing accuracy of 

modeling many biological processes of large systems. Force fields for proteins, nucleic 

acids, membranes and small organic molecules have been applied to study problems 

such as protein folding, enzymatic mechanisms, ligand binding/unbinding, membrane 

insertion mechanisms and many others20,21. Current fourth-generation force fields have 

introduced polarization effects22–24, important for processes or systems with induced 

electronic polarization, such as intrinsically disordered proteins, metal/protein interactions 

and membrane permeation mechanisms25,26. Despite 50 years of developments, force fields 

are far from perfect27, and further refinement, expansion, standardization and validation can 

be expected in the future28. Transferability to a wide range of biomolecular systems and 
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‘convergence’ among different force fields will continue to be issues. In parallel to all-atom 

force fields, numerous coarse-grained potentials have been developed for many systems29,30, 

but these are far less unified compared with all-atom force fields. Much development can 

be expected in the near future in this area as the complexity of biomolecular problems of 

interest increases.

In the area of protein structure prediction, for example, the physics-based coarse-grained 

united-residue (UNRES) force field developed by the lab of the late Harold Scheraga 

demonstrated exceptional results in predicting the orientations of domains in the tenth 

Critical Assessment of Protein Structure Prediction (CASP10)31. Such predictions were free 

of biases from structural databases and relied on energetically favorable residue/residue 

interactions (‘first principles’).

Physics-based methods are essential for studying protein dynamics and folding pathways. 

For example, UNRES32 and many all-atom force fields17–19 have been successful in the 

study of folding pathways of several proteins33,34, including a small protein inside its 

chaperonin35. Besides folding mechanisms, kinetic and thermodynamic parameters can be 

determined33.

Many other areas of applications demonstrate how molecular mechanics and dynamics 

simulations provide insights on structures and mechanisms. These include structures 

of viruses7,36 (including SARS-CoV-237), pathways in DNA repair38 or folding of 

chromatin fibers39–41. In drug discovery, molecular docking has shown to be successful 

for high-throughput screening. For instance, restrained-temperature multiple-copy molecular 

dynamics (MD) replica-exchange combined with molecular docking suggested molecules 

that bind to the spike protein of the SARS-CoV-2 virus42.

The most common concerns in such molecular mechanics approaches involve insufficient 

conformational sampling and limited simulation length compared with biological 

timeframes. Other drawbacks are approximations due to force-field imperfections and 

other model simplifications, absence of adequate statistical information and the lack of 

general applicability to all molecular systems43. Increases in computer power, advances 

in enhanced simulation techniques and fourth-generation force fields with incorporated 

polarizabilities22–24 are helping overcome these limitations. For example, the Frontera 

petascale computing system allowed multiple microsecond all-atom MD simulations of the 

SARS-CoV-2 spike glycoprotein embedded in the viral membrane44. Enhanced sampling 

simulations combining parallel tempering with well-tempered ensemble metadynamics 

revealed how phosphorylation of intrinsically disordered proteins regulates their binding 

to their interacting partners45. The polarizable force-field AMOEBA has allowed the 

determination of the phosphate binding mode to the phosphate binding protein46, which 

has remained controversial for a long time.

Knowledge-based methods.

Knowledge-based methods are less conceptually demanding than physics-based models and 

can in principle overcome the approximations of physics-based methods.
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In the field of protein folding and structure prediction, knowledge-based methods, such as 

homology47, threading48 and minithreading modeling49 have shown to be more effective 

than physics-based methods in some cases50. Other successful algorithms use information 

on evolutionary coupled residues, namely, residues involved in compensatory mutations51. 

Such information can be detected from multiple sequence alignments and used to predict 

protein structures de novo with high accuracy, as observed in CASP11.52

In particular, the artificial intelligence approach by Google AlphaFold, a co-evolution-based 

method, upstaged the CASP13 exercise held in 2018, outperforming other methods for 

protein structure prediction53 (Fig. 3a). More recently, analyses of CASP14 (2020) results 

with the updated AlphaFold2 revealed unprecedented levels of accuracy across all targets54.

The increasing amount of high-resolution structural data for protein/ligand binding, as 

deposited in the Protein Data Bank, has accelerated the use of knowledge-based methods 

in drug discovery, a key application of biomolecular modeling. For example, the crystal 

structure of the main protease of the SARS-CoV-2 virus was solved unliganded and in 

complex with a peptide mimetic inhibitor55, providing the basis for the development of 

improved inhibitors using knowledge-based methods56. Also related to COVID-19, artificial 

intelligence tools have been used to identify potential drugs against SARS-CoV-257.

Of course, the accuracy of knowledge-based methods depends on the quality and size of the 

database available, similarity between the underlying database and the systems studied, and 

the analysis methods applied. Even in large databases, some systems are underrepresented. 

These include, for example, RNAs with higher-order junctions58, where few experimental 

data exist, and intrinsically disordered proteins, which are difficult to solve by conventional 

X-ray or NMR techniques. Such problems may be alleviated in principle as more data 

become available. Nonetheless, unbalanced databases can produce erroneous results. For 

example, models trained with databases of ligand–protein complexes where ligands that bind 

weakly are underrepresented59,60 can overestimate binding affinities.

For some applications, such as deriving force fields by machine learning protocols, access to 

a large and diverse high-quality training dataset obtained by quantum mechanics calculations 

is essential to obtain reliable results for general applications61. However, there are no known 

criteria of sufficiency. How many molecular descriptors are required to satisfactorily explain 

ligand binding or chemical reactivity? How many large non-coding RNAs are diverse 

enough to represent the universe of RNA folds for these systems?

Combined knowledge and physics-based methods.

Fortunately, combinations of knowledge and physics-based approaches can merge the 

strengths of each technique, integrating specific molecular information with learned patterns. 

For instance, maximum entropy62 and Bayesian63 approaches integrate simulations with 

experimental data. They generate structural ensembles for the systems using MD or Monte 

Carlo simulations and incorporate them by imposing restraints to reproduce experimental 

data.
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Protein-folding approaches can be improved by the use of hybrid energy functions that 

combine physics-based with knowledge-based components. For example, physics-based 

functions can be modified with structural restraints from NMR experiments49, torsion 

angle correction terms for the backbone or side chains of residues64 or hydrogen-bonding 

potentials based on high-resolution protein crystal structures65.

In protein structure refinement, combinations of physics-based and knowledge-based 

approaches have shown to be particularly successful. For example, in the CASP10 

exercise, MD simulations from the Shaw66 and Zhang67 groups showed that experimental 

constraints were crucial for refining predicted structures. Pure physics-based methods 

were unsuccessful at correcting non-native conformations toward native states. Recently, 

it was reported that refinements with MD simulations of models obtained with AlphaFold 

substantially improve the predicted structures68.

In computer-aided drug design, quantitative structure/property relationship (QSPR) models 

combine experimental and quantum mechanical descriptors to improve the prediction of 

Gibbs free energies of solvation69. MD simulations combined with machine learning 

algorithms can help create improved quantitative structure–activity relationship (QSAR) 

models70.

In the long run, inferring mechanisms is critical for understanding and addressing complex 

problems in biophysics. Force fields will not likely disappear any time soon, despite the 

growing success of knowledge-based methods. As shown in public citizen projects, such 

as Foldit for protein folding71, combinations of both physics-based and knowledge-based 

methods will probably work best. Importantly, human intuition and insight is needed to fully 

merge both approaches and properly interpret the computational findings.

The role of algorithms versus hardware

Rigorous and efficient algorithms are essential for the success of any biomolecular modeling 

or simulation. New algorithms are required to address problems as they emerge, as well as 

to utilize new technologies and hardware developments. Classic examples of algorithms that 

enhanced the reliability and efficiency of biomolecular simulations include the particle-mesh 

Ewald method for treatment of electrostatics72 and symplectic and resonance-free methods 

for long-time integration1,73–75 in MD simulations. Hardware advances, in addition, are 

essential for expanding system size and simulation timeframes. The continuing increase 

in computer power, in combination with parallel computing, has been crucial in the 

development of the field of biomolecular simulations. Both hardware and software will 

be essential to the continued success of the field.

Algorithms and software advances.

Outstanding progress has been reported in developing software to enhance sampling, 

reduce computational cost and integrate information from machine learning and artificial 

intelligence methods to solve biological problems. Algorithms that utilize novel hardware 

such as graphics processing units (GPUs) and coupled processors have also been impactful. 

Enhanced sampling methods and particle-based methods such as Ewald summations have 
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revolutionized how molecular simulations are performed and how conformational transitions 

can be captured, for example, to connect experimental endpoints76. MD algorithms such 

as multiple timestep approaches, in contrast, have achieved far less impact than hardware 

innovations, due to a relatively small net computational gain. However, their framework may 

be useful in combination with other improvements such as enhanced sampling algorithms77 

or optimized particle-mesh Ewald algorithms78. The complexity and size of the biological 

systems of interest increases every year and thus continued algorithm development is crucial 

to obtain reliable methods that balance accuracy and performance.

Density functional theory (DFT)79,80, used in quantum mechanical (QM) applications since 

the 1990s, has become one of the most popular QM methods to study biomolecules. DFT 

has a computational cost similar to semi-empirical methods but higher accuracy. New DFT 

functionals are continuously being developed to improve the description of dispersion and 

for special applications81. The high efficiency of DFT implies that larger and more complex 

systems can be studied, expanding the applications and predictive power of electronic 

structure theory, and promoting collaborations between modelers and experimentalists82. 

This high efficiency has also been exploited by MD methods; DFT-based MD simulation 

methods, such as Car–Parrinello MD83 and ab initio MD84, are widely applied to study 

electronic processes in biological systems, such as chemical reactions85.

Because of the computational cost of QM methods and the large size of most biological 

systems, the development of combined quantum mechanics/molecular mechanics (QM/MM) 

methods was fundamental to advance electronic structure calculations of biological 

systems86. In particular, computational enzymology has driven the development of these 

methods since the pioneering work of Warshel and Levitt on the reaction mechanism 

of the lysozyme87. By partitioning the system into an electronic active region and the 

rest, which is treated at a molecular mechanical level, computational effort is centered in 

the part of the system where it is needed, and the overall cost is substantially reduced. 

Nowadays, several QM/MM methods differing in the scheme used to compute QM/MM 

energies, the treatment of the boundary region and the QM to MM interactions are applied 

to study many enzymatic mechanisms, metal–protein interactions, photochemical processes 

and redox processes, among others86,88,89. Adaptive QM/MM methods that reassign the QM 

and MM regions on the fly have also been developed90. These methods are particularly 

important to study ions in solution or in biomolecules, and chemical reactions in explicit 

solvent.

Recent QM/MM methods employ machine learning (ML) potentials in place of MM 

calculations91. Such QM/ML schemes can avoid problems associated with force fields as 

well as boundary issues between the QM and MM regions. Other recent developments use 

neural networks coupled with QM/MM algorithms; the neural networks are used to predict 

potential energy surfaces at an ab initio/MM level from semi-empirical/MM calculations92.

Many of the biological processes of interest occur on timescales that are not easily 

accessible by conventional MD simulations. Thus, a variety of enhanced sampling 

algorithms have been developed93,94. These methods improve the sampling efficiency by 

reducing energy barriers and allowing the systems to escape local minima in the potential 
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energy surface. Speedups compared with conventional MD can be around one order of 

magnitude or more95. Methods based on collective variables such as umbrella sampling96, 

metadynamics97 and steered MD98 have advanced the field with applications to ligand 

binding/unbinding, conformational changes of proteins and nucleic acids, free energy 

profiles along enzymatic reactions and ligand unbinding, and protein folding. Methods 

that do not require definition of specific collective variables or reaction coordinates, 

such as replica exchange MD99 and accelerated MD100 have shown to be particularly 

successful when defining a collective variable is difficult, for example, when exploring 

transition pathways and intermediate states. Markov state models (MSMs) can help 

describe pathways between different relevant metastable states identified by experiments 

or MD. For example, when studying the folding of a dimeric protein101, an MSM of the 

metastable states on the free-energy surface has identified the states that describe the folding 

process, as well as the specific inter-residue interactions that can lead to kinetic traps. 

Physics-based protein folding has benefited from the application of MSMs that combine 

many short independent trajectories102,103. Related thermodynamic integration104 and free

energy perturbation105 methods, which calculate free-energy differences between initial and 

final states, have also helped determine protein/ligand binding constants, membrane/water 

partition coefficients, pKa values and folding free energies106,107 to connect simulations to 

experimental measurements.

Enhanced sampling techniques are now being combined with machine learning to improve 

the selection of collective variables108 and to develop new methods109,110. Clearly, 

artificial intelligence and ML algorithms are changing the way we do molecular modeling. 

Coupled with the growth of data, GPU-accelerated scientific computing and physics-based 

techniques, these algorithms are revolutionizing the field. Since the pioneering work of 

Behler and Parrinello on the use of neural networks to represent DFT potential energy 

surfaces and thus to describe chemical processes111, ML has been applied to design all

atom and coarse-grained force fields, analyze MD simulations, develop enhanced sampling 

techniques and construct MSMs, among others112. As discussed above, Google’s AlphaFold 

performance in CASP13 and CASP14 showed how impactful these kinds of algorithms can 

be for predicting protein structure53,54. Artificial intelligence platforms for drug discovery 

have also led to clinical trials for COVID-19 treatments in record times57.

Multiscale models.

A special case of algorithms that has potential to revolutionize the field involves multiscale 

models. Crucial for bridging the gap between experimental and computational timeframes, 

such models increase spatial and temporal resolution by use of coarse graining, interpolation 

and other ways to connect all the information on different levels.

The 2013 Nobel Prize in Chemistry that recognized Karplus, Levitt and Warshel for their 

work on developing multiscale models has underscored the importance of these models. 

In the 1970s, bridging molecular mechanics with quantum mechanics defined indeed a 

new way of simulating molecular systems113. The first hybrid model of this type by 

Warshel and Karplus113 was initially intended to study chemical properties and reactions 

of planar molecules but was later extended to study enzymatic reactions87. Today’s models 
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are numerous and varied. While useful in practice, they are generally tailored to specific 

systems and lack a rigorous theoretical framework.

For example, numerous coarse-grained protein models have been developed and applied to 

protein dynamics, folding and flexibility, protein structure prediction, protein interactions 

and membrane proteins, as recently reviewed114.

Coarse-grained models have also been developed to study nucleic acids. Possibly due to 

small volumes of structural data, high charge density and wide structural diversity, they have 

progressed somewhat slower than for proteins, especially in the case of RNA.

DNA coarse-grained models allow us to study, in reasonable time, large DNA systems that 

could not be approached by all-atom models. The reduction in the degrees of freedom 

achieved by coarse-grained models has allowed the study of thousands of base pair systems 

in scales of microseconds to milliseconds. Crucial studies include self-assemblies of large 

DNA molecules, the denaturalization process, the hybridization process important for many 

biological functions, the topology of DNA mini-circles and the sequence-dependence of 

single-stranded DNA structures29,115,116.

The flexibility of RNAs and the huge spectrum of possible conformations make their 

modeling challenging, and numerous coarse-grained models that differ in the number of 

beads per nucleotide and interactions included in the model and their treatment have 

been developed117,118. A different coarse-grained approach using two-dimensional and 

three-dimensional graphs to represent RNA structure has also proven useful to analyze and 

design novel RNAs, including the SARS-CoV-2 frameshifting element119 (Fig. 3b).

Coarse-grained models have also been applied to biomembranes, systems of thousands of 

lipids that undergo large-scale transitions in the microsecond-to-millisecond regime120–122. 

Membrane protein dynamics, virion capsid assembly, lipid recognition by proteins and 

many remodeling processes have been successfully captured in such coarse-grained 

applications121.

Finally, to study DNA complexed with proteins, such as in the context of chromatin fibers, 

multiscale approaches are essential, as recently reviewed123,124. These approaches derive 

the chromatin model from the atomistic DNA, nucleosomes and linker histones. Successful 

models by the groups of the late Langowski41, Wedemann125, Nordenskiöld126, Olson127, 

Spakowitz128, de Pablo129 and ours40,123 have been applied to understand the mechanisms 

that regulate chromatin compaction and function. For example, our recent three-dimensional 

folding of the HOXC gene cluster (~55 kbp) at nucleosome resolution by mesoscale 

modeling130 revealed how epigenetic factors act together to regulate chromatin folding (Fig. 

3c). The next challenge for these types of model is to merge the kilobase to megabase levels 

of understanding chromatin while retaining a basic dependency on the physical parameters 

that dictate fiber conformations.

Multiscale models are as much art as science, as they require subjective decisions on what 

parts to approximate and what parts to resolve. Yet much information guides these models, 

and important biological problems serve as motivators. Overall, innovative advances in both 
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algorithms and hardware, especially in multiscale modeling, will be pivotal for the progress 

of the biological sciences in the coming years.

Hardware advances.

The computational biology and chemistry communities have utilized hardware exceptionally 

well. This is evident from the expectation curve in Fig. 1 and from the computer technology 

plot in Fig. 2. We see that hardware innovations have propelled the field of biomolecular 

simulations forward by around six orders of magnitude over three decades as reflected by 

simulation length and size of biomolecular systems.

In the first decade of the twenty-first century, hardware innovations such as the 

supercomputers Anton and Blue Waters propelled the field by expanding the limits of 

both system size and simulation time that is possible. Today, nanosecond simulations of 

a 160-million-atom influenza virus36 or the 1-billion-atom GATA4 gene39 have become 

possible.

At the same time, the introduction of GPUs for biomolecular simulations by NVIDIA broke 

new grounds. GPUs are specialized electronic circuits designed to rapidly manipulate and 

alter memory to accelerate computations. Such GPUs contain hundreds of arithmetic units 

and possess a high degree of parallelism, allowing performance levels tens or hundreds of 

times higher than a single central processing unit (CPU) core with tailored software131.

The acceleration of MD simulations by GPU computing and supercomputers substantially 

reduced the gap between experimental and theoretical scales. For example, as mentioned 

above, the world’s second-fastest supercomputer—Summit from the Oak Ridge National 

Laboratory, with more than 27,000 NVIDIA GPUs and 9,000 IBM Power9 CPUs—was 

used to explore SARS-CoV-2 virus inhibitors among more than 8,000 compounds42. Such 

simulations were conducted in just a few days, with 77 compound candidates found. GPU

based algorithms for free-energy calculations can achieve a speedup of 200 compared with 

CPU-based methods132. QM/MM GPU-based methods have also accelerated calculations 

focused on enzymatic mechanisms. For example, GPU-based DFT in the framework of 

hybrid QM/MM calculations such as ONIOM133 or additive QM/MM134 realize speedup 

factors of 20 to 30 compared with CPU-based calculations. The Folding@home distributed 

computing project, dedicated to understanding the role of protein folding in several 

diseases, is conducting most calculations on GPUs by using simulation packages adapted 

to this architecture135. Recently, over a million citizen scientists helped solve COVID-19 

challenges; they combined ~280,000 GPUs, reaching the exascale and generating more than 

0.1 s of simulation136. These simulations helped understand how the SARS-CoV-2 virus 

spike surface protein attaches to the receptors in human cells. MD software adapted to GPU

accelerated architectures is also being used to perform enormous cell-scale simulations137, 

important to mimic realistic cellular environments and to study viral and bacterial infections.

Cloud-based computing is surging as a viable alternative to supercomputers, providing 

researchers with remote high-performance computing platforms for large-scale simulations, 

analysis and visualization. Acquisition and maintenance of such hardware is not affordable 

for individual research groups, but feasible for institutions and companies. For example, 
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Google’s Exacycle has been used to conduct millisecond simulations of the G-protein

coupled receptor β2AR that revealed its activation pathway, important for the design of 

drugs to treat heart diseases138. Recently, in an unprecedented study, the Google Cloud 

Platform and Google Cloud Storage were combined to screen around 1 billion compounds 

against 15 SARS-CoV-2 proteins and 2 human proteins involved in the infection139 

(Fig. 3d). A high-performance version of the popular visualization program VMD has 

been implemented on the Amazon cloud140, as well as the MD toolkit QwikMD141 and 

the molecular dynamics flexible fitting (MDFF) method for structure refinement from 

cryo-electron microscopy densities142. These efforts allow scientists worldwide to access 

powerful computational equipment and software packages in a cost-effective way.

Overall, tailored computers for molecular simulations, such as Anton, can accelerate the 

calculation of computationally expensive interactions with specialized software143, while 

general-purpose supercomputers or cloud computing that parallelize MD calculations across 

multiple processors with thousands of GPUs or CPUs can accelerate performance (for 

example, trillions of calculations per second) for large systems36,39.

Although hardware advances have overwhelmed software advances, both are clearly needed 

for optimal performance. Hardware bottlenecks will inevitably emerge as computer storage 

limits are reached. Yet, whether or not Moore’s law will continue to be realized11, software 

advances will always be important. Certainly, engineers and mathematicians will not be out 

of jobs.

Figure 4 summarizes key software, hardware and algorithm developments that helped 

breakthrough studies.

Conclusions and outlook

Technology has driven many advances that affect our everyday life, from cellphones 

and personal medical devices, to solar energy and coping in times of physical isolation 

during the current COVID-19 pandemic. Biomolecular modelers have consistently leveraged 

technology to solve important practical problems efficiently and will undoubtedly continue 

to do so. Machine learning and other data science approaches are now offering new tools for 

discovery in numerous fields. These tools for predicting structures, dynamics and functions 

of biomolecules can be combined with physics-based approaches not only to find solutions 

but also to understand associated mechanisms. Algorithms such as MSMs, neural networks, 

multiscale modeling, enhanced conformational sampling and comparative modeling can be 

leveraged as never before, especially in combination with these data-science approaches.

We expect that force-field based methods will remain essential for the understanding of 

mechanisms of biomolecular systems, but knowledge-based methods will certainly gain 

momentum. Although the recent breathtaking results from AlphaFold254 might tempt us to 

believe that the physics-based era is over, the range of complex problems beyond protein 

folding is unlikely to be easily solved by knowledge-based methods alone. Novel computing 

platforms will also play an important role in the future of biomolecular simulations. As 

quantum computing, neuromorphic computing and other architectures enter the arena, we 
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can be sure that they will be exploited avidly by the biomolecular community. Despite the 

extraordinary technical impact of computers on our field and the incredible potential of 

artificial intelligence techniques to address many scientific problems, human intuition and 

intelligence will continue to be instrumental for developing ideas and pursuing new research 

avenues. After all, such human talent is responsible for artificial intelligence design and 

implementation in the first place and will probably continue to do so.

Finally, gone are the days when modelers worked in isolation. Whether on Zoom or sharing 

a bench, teams of multidisciplinary scientists (and likely automated machines too in the 

future) are collaborating to address essential problems of life, from energy to vaccines. 

Despite some bumps, exponential growth appears a reality in the near future, and the field 

of biomolecular modeling and simulation will undoubtedly continue to incorporate, innovate 

and digitize the inner workings of biological systems to solve the secrets of life and to 

develop solutions for treating human disease, improving global health and enhancing our 

environment.
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Fig. 1 |. Expectation curve for the field of biomolecular modeling and simulation.
The field started with comprehensive molecular mechanics efforts, and it took off with 

the increasing availability of fast workstations and later supercomputers. In the molecular 

mechanics illustration (top left panel), symbols b, θ and τ represent bond, angle and 

dihedral angle motions, respectively, and non-bonded interactions are also indicated. The 

torsion potential (E) contains two-fold (dashed black curve) and three-fold (solid violet 

curve) terms. Following unrealistically high short-term expectations and disappointments 

concerning the limited medical impact of modeling and genomic research on human 

disease treatment, better collaborations between theory and experiment has ushered the 

field to its productive stage. Challenges faced in the decade 2000–2010 include force-field 

imperfections, conformational sampling limitations, some pharmacogenomics hurdles and 

limited medical impact of genomics-based therapeutics for human diseases. Technological 

innovations that have helped drive the field include distributed computations and the advent 

of the use of GPUs for biomolecular computations. The molecular-dynamics-specialized 

supercomputer Anton made it possible in 2009 to reach the millisecond timescale for 

explicit-solvent all-atom simulations. The 2013 Nobel Prize in Chemistry awarded to Levitt, 

Karplus and Warshel helped validate a field that lagged behind experiment and propel 

its trajectory. Along the timeline, we depict landmark simulations: 25-bp DNA (5 ns and 

~21,000 atoms)144; villin protein (1 μs and 12,000 atoms)145; bc1 membrane complex (1 

ns and ~91,000 atoms)146; 12-bp DNA (1.2 μs and ~16,000 atoms)147; Fip35 protein (10 

μs and ~30,000 atoms)148 (image from149); Fip35 and bovine pancreatic trypsin inhibitory 

(BPTI) proteins (100 μs for Flip35 and 1 ms for BPTI, and ~13,000 atoms)150; nuclear 

pore complex (1 μs and 15.5 million atoms)151; influenza A virus (1 μs and >1 million 

atoms)152; N-methyl-D-aspartate (NMDA) receptor in membrane (60 μs and ~507,000 

atoms)153; tubular cyclophilin A/capsid protein (CypA/CA) complexes (100 ns and 25.6 

million atoms)154; HIV-1 fully solvated empty capsid (1 μs and 64 million atoms)7; GATA4 
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gene (1 ns and 1B atoms)39; and influenza A virus H1N1 (121 ns and ~160 million 

atoms)36. Figure adapted with permission from ref.1, Cambridge Univ. Press.
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Fig. 2 |. Performance of landmark simulations compared with the world’s fastest supercomputers 
and moore’s law trend.
Plot of the computational system ranked first (blue) and the highest ranked academic 

computer (orange) as reported in Rmax according to the LINPACK benchmark as assembled 

in the Top500 supercomputer lists (www.top500.org). Rmax is the unit used to define 

computer performance in TFLOPS (trillion floating point operations per second). Landmark 

simulations (green diamonds) are dated assuming calculations were performed about a 

year before publication, except for the publications in 1998, which we assumed were 

performed in 1996. These include, from 1996 to the present, 25-bp DNA using National 

Center for Supercomputing Applications (NCSA) Silicon Graphics Inc. (SGI) machines144; 

villin protein145 using the Cray T3E900; bc1 membrane complex146 using the Cray 

T3E900; 12-bp DNA147 using MareNostrum/Barcelona; Fip35 protein148 using NCSA Abe 

clusters; nuclear core complex151 using Blue Waters; influenza A virus152 using the Jade 

Supercomputer; CypA/CA complex154 using Blue Waters; HIV-1 capsid7 using Titan Cray 

XK7; GATA4 gene39 using Trinity Phase 2; and influenza A virus H1N136 using Blue 

Waters. As Blue Waters has opted out of the Top500, we use estimates of sustained system 

performance/sustained petascale performance (SSP/SPP) from 2012 and 2020. For system 

size and simulation time of each landmark simulation, see Fig. 1.
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Fig. 3 |. Applications of biomolecular modeling made possible by technology advances.
a, AlphaFold workflow. Deep neural networks are trained with known structures deposited 

in the Protein Data Bank to predict protein structures de novo155. The distribution 

of distances and angles are obtained and then the scores are optimized with gradient 

descent to improve the designs. b, RNA mesoscale modeling. Target residues for drugs 

or gene editing in SARS-2-CoV frameshifting element (FSE) identified by graph theory 

combined with all-atom microsecond MD simulations made possible by a new four-petaflop 

‘Greene’ supercomputer at New York University. c, Chromatin mesoscale modeling. HOXC 
mesoscale model at nucleosome resolution constructed with experimental information on 

nucleosome positioning, histone tail acetylation and linker histone binding130. Shown 

is the unfolded gene (left) and the folded structure of the gene (right). d, Cloud 

computing. Targeted protein sites related to SARS-CoV-2 with bound ligands from the 

billion compound database screened with VirtualFlow platform that makes use of cloud 

computing and cloud storage156. Figure reproduced with permission from: a, ref.157, 

Springer Nature America, Inc. (structure image); b, ref.119, Cell Press; c, ref.130, PNAS; 

d, https://vf4covid19.hms.harvard.edu, Harvard Univ. See original works for full names and 

abbreviations.
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Fig. 4 |. Key developments in algorithms, software and hardware that advanced the field.
1970s: simulations of <1,000-atom systems and few picoseconds in vacuo were possible 

due to the development of digital computers and algorithms to treat long-range Coulomb 

interactions. The image depicts the structure of the small protein BPTI that was simulated 

for 8.8 ps without hydrogen atoms and with four water molecules158. 1980s: simulations that 

considered solvent effects became possible, and algorithms such as SHAKE, to constrain 

covalent bonds involving hydrogen atoms, allowed the study of systems with explicit 

hydrogens. The image depicts the 125 ps simulation of the 12 bp DNA in complex with 

the lac repressor protein159 in aqueous solution using the simple three-point charge water 

model. 1990s: QM/MM methods can perform geometry optimizations, MD and Monte 

Carlo simulations160. The image depicts the acetyl-CoA enolization mechanism by the 

citrate synthase enzyme studied with AM1/CHARMM. 2000s: GPU-based MD simulations, 

specialized supercomputers such as Anton, shared resources such as Folding@home, 

enhanced sampling algorithms and Markov state models (MSMs) all contributed to advance 

protein folding161. The image depicts the long 100 μs simulation of the Fip35 folding 

conducted in Anton (red) compared with the X-ray structure (blue). 2010s: all-atom 

and coarse-grained MD simulations of viruses performed on supercomputers such as 

Blue Waters became common162. The image depicts the MD simulation of the all-atom 
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HIV capsid using the MDFF method that uses cryo-electron microscopy data to guide 

simulations. 2020s: physical whole-cell models are being developed to fully understand 

how biomolecules behave inside cells and to study interactions between them, for example, 

within viruses and cells. The image depicts the model of the interaction between the spike 

protein in the SARS-CoV-2 surface and the ACE2 receptor on a human cell surface being 

developed in the Amaro Lab. From left to right, images adapted with permission from: (left 

to right); second image, ref.159, Wiley; third image, ref.163, Wiley; fourth image, ref.150, 

AAAS; fifth image, ref.164, Springer Nature Ltd; sixth image, https://amarolab.ucsd.edu/

news.php, Amaro Lab.
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