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C A N C E R

Predicting and characterizing a cancer dependency 
map of tumors with deep learning
Yu-Chiao Chiu1, Siyuan Zheng1,2, Li-Ju Wang1, Brian S. Iskra1, Manjeet K. Rao1,3,  
Peter J. Houghton1,4, Yufei Huang5,6*, Yidong Chen1,2*

Genome-wide loss-of-function screens have revealed genes essential for cancer cell proliferation, called cancer 
dependencies. It remains challenging to link cancer dependencies to the molecular compositions of cancer cells 
or to unscreened cell lines and further to tumors. Here, we present DeepDEP, a deep learning model that predicts 
cancer dependencies using integrative genomic profiles. It uses a unique unsupervised pretraining that captures 
unlabeled tumor genomic representations to improve the learning of cancer dependencies. We demonstrated 
DeepDEP’s improvement over conventional machine learning methods and validated the performance with three 
independent datasets. By systematic model interpretations, we extended the current dependency maps with 
functional characterizations of dependencies and a proof-of-concept in silico assay of synthetic essentiality. We 
applied DeepDEP to pan-cancer tumor genomics and built the first pan-cancer synthetic dependency map of 8000 
tumors with clinical relevance. In summary, DeepDEP is a novel tool for investigating cancer dependency with 
rapidly growing genomic resources.

INTRODUCTION
The development of novel cancer therapies requires knowledge of 
specific biological pathways to target individual tumors and eradicate 
cancer cells. Toward this goal, the landscape of genetic vulnerabilities 
of cancer, or the cancer dependency map, is being systematically 
profiled. Using RNA interference (RNAi) loss-of-function screens, 
Marcotte et al. (1), Project Achilles (2), and Project DRIVE (3) com-
pleted several high-throughput screenings of hundreds of cancer 
cell lines (CCLs). Recently, the Cancer Dependency Map (DepMap) 
projects of the Broad Institute (4–6) and Wellcome Sanger Institute 
(7) performed genome-wide CRISPR-Cas9 knockout screens in ex-
tensive collections of CCLs. Because the CRISPR technology is less 
susceptible to off-target effects (8), these efforts produce the two largest 
catalogs of gene dependencies with high concordance (9). However, 
since different genomic mechanisms dictate the process of tumori-
genesis and genetic vulnerability, relationships between cancer genomes 
and cancer dependency are nonlinear (2, 10). The nonlinearity 
makes it challenging to predict and investigate these relationships 
and translate the findings of CCL screens to tumors.

Deep learning (DL) is a class of machine learning (ML) methods 
that uses multilayered neural networks to extract high-order features. 
DL is increasingly being used in genomics research for cancer sur-
vival (11, 12) and cancer classification (13–15). DL methods have 
also been applied to pharmacogenomics for predicting drug sensi-
tivity and synergy (16, 17). Predicting gene dependencies using 
CCLs’ genomics, although distinct in the goal, shares a similar com-
putational formulation as the prediction of drug sensitivity. Early 
research endeavors have demonstrated the capacity of sophisticated 

ML methods in predicting drug sensitivity using CCLs’ genomics 
(Fig. 1A) (18). However, the sample size of CCLs could be limited to 
materialize the power of DL models. Furthermore, a model trained 
using merely CCL data may not fully capture tumor-specific contexts 
such as tumor heterogeneity and its microenvironment (19, 20). A 
recent study used the “few-shot learning” technique of DL to trans-
late high-throughput drug screens of CCLs to individual tumors with 
small samples (21). Such a method requires supervised pretraining 
on labeled samples from in vitro screens and then model fine-tuning 
with in vivo screening samples. However, this strategy is not appli-
cable for CRISPR screening with a standard in vitro protocol.

Here, we proposed a DL model, namely, DeepDEP, to predict 
the gene dependency profile of an unscreened CCL or impracticable- 
to-screen tumors. Our model is established with an emerging “un-
supervised pretraining” design of transfer learning (22) that has 
lately revolutionized the field of natural language processing but yet 
adapted to genomic applications. As illustrated in Fig. 1A, the un-
supervised pretraining design allows our model to be (i) pretrained 
using thousands of “unlabeled” tumor samples (i.e., with genomics 
data but no screening results) to capture genomic representations 
of tumors and then (ii) fine-tuned on relatively limited “labeled” 
CCL samples (with both genomics and screens) to optimize the pre-
diction of gene dependencies. The present study addresses an unmet 
demand for a comprehensive investigation of genetic dependencies 
with respect to the genomic context. In this study, we hypothesized 
that a DL model learns the nonlinear interactions between molecular 
contexts (input genomics) and cell vulnerabilities (dependencies) 
and thus makes accurate predictions. Combining multiomics of 
CCLs, novel functional fingerprints of genes, and their correspond-
ing dependency data, DeepDEP enables analyses that are otherwise 
challenging. In this study, we demonstrated three major advances. 
By systematically interpreting DL model behaviors, we (i) identified 
expression signatures that predicted and characterized gene depen-
dencies and (ii) constructed a proof-of-concept in silico assay for 
synthetic essentiality (SE) at a single CCL level. We further applied 
the model to tumor genomics data of The Cancer Genome Atlas 
(TCGA) and established the first pan-cancer tumor dependency 
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map with clinical relevance in treatment effectiveness and progno-
sis. We expect the model’s capability to be enhanced along with the 
rapid growth of the DepMap and multiomics resources.

RESULTS
Model design
Gene dependency or essentiality is defined as the degree to which a 
gene is essential for cell proliferation and survival. In particular, 
gene dependency is highly genetic context dependent in cancer cells 
(2, 3, 23). Here, we present DeepDEP to predict gene dependency 
based on the representations learned from high-dimensional genomic 
profiles of both tumor and cell line samples. DeepDEP embeds a 

transfer-learning design with unsupervised pretraining using the 
unlabeled tumor samples to learn data representations, followed by 
parameters fine-tuning on labeled CCL samples to capture the rela-
tionship between genomics and gene dependencies (Fig. 1A). The 
model is composed of (i) dimension-reducing encoder neural net-
works for a diverse array of molecular data including DNA mutation, 
gene expression, DNA methylation, and copy number alteration 
(CNA); (ii) an encoder network for abstracting functional finger-
prints of a gene dependency of interest (DepOI); and (iii) a predic-
tion network to convert the learned features into a dependency 
score (Fig. 1B and fig. S1). An autoencoder, a dimension-reducing 
DL model widely used in high-dimensional genomic data, was first 
trained for each type of genomic data using 8238 TCGA tumors with 
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Fig. 1. Architecture of DeepDEP. (A) Study designs of conventional methods and the proposed model with an unsupervised pretraining scheme. Conventional ML 
methods (left) were designed on the basis of merely labeled data of CCLs on related topics, such as prediction of drug sensitivity. An analog DL model can be implement-
ed using a similar scheme (middle). The proposed DeepDEP model (right) has an unsupervised pretraining design that captures unlabeled tumor genomic representa-
tions and is further trained with gene dependency data of CCLs (labeled data). Mut, mutation; Exp, expression; methyl, DNA methylation; Fps, functional fingerprint of 
gene dependencies; DNN, deep neural network. (B) Architecture of DeepDEP. DeepDEP is designed to predict the gene effect score of a dependency of interest (DepOI) 
for a cancer sample (CCL or tumor). It is composed of encoders for each type of genomic data of a sample and fingerprint of a DepOI; the former was transferred from an 
unsupervised pretraining of autoencoders using tumors of TCGA. The complete model was trained and tested using CCL data of Broad DepMap.
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hyperparameter optimization (tables S1 to S4). Structure and param-
eters of the encoder subnetwork of the constructed autoencoders 
were transferred to four corresponding encoders of DeepDEP. The 
entire network was further trained using CRISPR-Cas9 dependency 
profiles of 278 CCLs with four types of genomic data (Broad DepMap 
2018Q2 version; table S5) to produce a feature space of gene dependency. 
Here, the functional fingerprint of a DepOI was implemented by a 
3115-dimension binary “fingerprint vector,” which denotes the involve-
ment of the DepOI (1, involved; 0, not involved) in 3115 molecular 
signatures associated with chemical and genetic perturbations (CGPs) 
curated by the Molecular Signature Database (MSigDB) (24).

The original dependency scores were gene effect scores (5) esti-
mated and corrected by CERES (4) with a mode near zero (Fig. 2A). 

The scores were calculated with stringent quality controls on single- 
guide RNAs (sgRNAs), screen replicates, and CCLs (table S6) (4, 5). 
A more negative value denotes a stronger dependency and, there-
fore, stronger essentiality. We selected 1298 candidate DepOIs with 
implications in cancers, due either to their highly selective depen-
dencies (with an SD of >0.2 in the dependency scores across 278 CCLs) 
or to being part of the COSMIC Cancer Gene Census (table S7). 
On average, each DepOI was involved in 33.2 molecular signatures 
(number of 1s in the fingerprint vector) (Fig. 2B). Together, 360,844 
(278 CCLs × 1298 DepOIs) labeled samples were available. We ran-
domly partitioned CCLs into training/validation (90%) and testing 
(10%) sets, where eight-ninth of the samples in the former set were 
randomly selected for training and one-ninth for validation (Fig. 2C). 
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Fig. 2. Performance and validation of DeepDEP. (A) Distributions of original dependency scores of CCLs and predicted scores of CCLs and tumors. (B) Nonzero elements 
in functional fingerprint vectors (membership of 3115 molecular signatures) of 1298 DepOIs. (C) Model performance of DeepDEP. (D) Performance comparisons with 
other DL and ML methods. Average per-DepOI  across 1298 DepOIs are summarized by means (bars) and SD (error bars) of 10 independent subsampling trainings (dots), 
or three rounds of 10-fold cross-validations (CV). The results were contrasted to identically structured DL models trained merely on CCLs without unsupervised pretraining 
on tumors, trained by individual DepOIs without the fingerprints to learn from other DepOIs, or with scrambled dependency scores (“y-scrambling”), and linear and non-
linear conventional ML methods with full or dimension-reduced inputs of genomic data and gene fingerprints. For each ML method, a model was trained using the same 
training/testing partition as used in the final reported DeepDEP model. Using the type of input data [full, principal component analysis (PCA), or nonnegative matrix 
factorization (NMF)] yielding the best performance for each ML method, we further trained and tested 10 models with the training/testing subsamples as used for DeepDEP 
(the first bar). Support vector machine (SVM) with nonlinear Gaussian and radial basis function (RBF) kernels did not converge and are not included here. A data point of 
SVM with NMF inputs at −0.07 and the SD of the model without the fingerprints at 0.23 are not shown since they are beyond the range of the vertical axis. Results of two 
subsets of highly variable DepOIs are shown in fig. S2. (E to G) Analysis of three independent validation datasets. Scores predicted by DeepDEP were compared to depen-
dency scores in (E) newly assayed CCLs by Broad DepMap using a refined computational pipeline, (F) the Sanger DepMap using a different CRISPR library and computa-
tional algorithm, and (G) RNAi-based screens.
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No significant bias was observed between the training and testing sets 
in terms of tissue type, cell culture type, culture medium, or quality 
of CRISPR screen (table S6).

Model performance and comparisons to other methods
The prediction on the testing set was highly accurate (Pearson correla-
tion coefficient  = 0.87 across 28 testing CCLs × 1298 DepOIs) 
(Fig. 2C). The performance was robust to the experimental uncertainty 
associated with the replicates of the CRISPR screen (see Supplemen-
tary Text). We evaluated the model by the correlation (per-DepOI ) 
between predicted and original dependency scores of each DepOI 
among testing CCLs, a metric commonly used to measure the pre-
diction performance of genetic and chemical screening data (10, 18). 
Overall, our model achieved an average per-DepOI  of 0.18 across 
all 1298 DepOIs (Fig. 2D and fig. S2), much higher than expected by 
random chance using the y-scrambling method (0.003 ± 0.007). To 
further assess the performance on the DepOIs that cannot be simply 
predicted by the mean value across CCLs (25), we focused on two 
subsets of highly variable DepOIs: 61 DepOIs with SD in dependency 
scores of >0.3 (table S7) and 506 “high-variance” DepOIs with top 
3% most variable scores as defined by the Broad DepMap. These 
DepOIs are more likely cancer-relevant genes for their selective es-
sentialities, such as the top variable dependency of TP53 (SD, 0.61). 
Our model achieved stronger average per-DepOI  of 0.34 and 0.28 
among the 61 and 506 DepOIs, respectively (fig. S2). A strong  of 
0.62 was achieved for TP53 (fig. S2).

We compared the model performance to variations of DeepDEP 
and conventional ML methods. Notably, DeepDEP achieved a marked 
improvement in performance and stability over an identically con-
figured DL model without unsupervised pretraining (i.e., trained on 
CCLs alone; average per-DepOI  across all DepOIs, 0.08 ± 0.07; 
Fig. 2D). The data suggested that the unsupervised representations 
of genomic data learned from large-sample tumors are beneficial to 
the prediction of relatively limited cell line screens. The DeepDEP 
model outperformed 100 identically configured models, each of which 
was trained and tested using only one DepOI (average per-DepOI 
 = 0.06 ± 0.23), demonstrating the benefit of the fingerprint in cap-
turing functional similarities shared among DepOIs. We further 
compared DeepDEP to six linear and nonlinear ML methods with a 
total of 18 settings (see Materials and Methods). Since a transfer learning 
strategy is not part of standard ML implementation, the ML models 
were trained using CCLs alone to benchmark the optimal perform-
ance that a prediction machine can achieve in merely labeled CCL 
data. These models used full genomic data and gene fingerprints as 
inputs or dimension-reduced inputs obtained by principal compo-
nent analysis (PCA) or nonnegative matrix factorization (NMF). 
Support vector machines (SVMs) with nonlinear Gaussian or radial 
basis function (RBF) kernels failed to converge on any set of input 
data. Compared to DeepDEP, all ML methods resulted in signifi-
cantly lower per-DepOI correlation coefficients across 10 rounds of 
subsampling (average per-DepOI  = 0.03 to 0.11; paired one-tailed 
t test, P < 9.5 × 10−4; Fig. 2D). Model evaluations on the two sets of 
highly variable DepOIs demonstrated even more evident improve-
ments by DeepDEP over other ML algorithms (fig. S2).

Model validations
To address the concern of model overfitting, we validated the model 
performance by subsampling (average per-DepOI  = 0.17 ± 0.03; 
Fig. 2D) and 10-fold cross-validations (0.16 ± 0.004; table S8). The 

performance remained even with the leave-cluster-out cross-validation 
by training and testing the model with distinct clusters of CCLs formed 
in the expression data (see Supplementary Text and table S9). Our 
data also indicated a moderate dependency of model performance 
on the diversity of training samples, given the underlying difference 
between hematopoietic and solid tumor lineages in the original de-
pendency profile (fig. S3). Overall, the model evaluations demon-
strate the performance of DeepDEP, a critical assessment before we 
attempted to predict tumor dependency.

We used three independent datasets to validate the model (table 
S5). For 104 CCLs newly assayed in the 2018Q3 to 2020Q2 period 
by the Broad DepMap, DeepDEP-predicted scores were in line with 
the actual dependency scores (Pearson  = 0.87 across 104 CCLs × 
all DepOIs) (Fig. 2E), although the scores were generated using an 
updated computational pipeline (see Materials and Methods) (5). 
On a per-DepOI basis, DeepDEP achieved average per-DepOI  of 
0.21, 0.16, and 0.10 among the two sets of highly variable DepOIs 
and all DepOIs, respectively. The other two datasets were collected 
from (i) a CRISPR-Cas9 screens conducted by the Sanger Institute using 
a different CRISPR library (7) and (ii) RNAi-based genome-wide 
dependency screens (25). Despite the distinct screening mechanisms 
and/or computational algorithms used to process these screening 
data, we confirmed a general agreement between the Broad and the 
other two screens among the common CCLs (112 and 227 CCLs; 
 = 0.66 and 0.50; Fig. 2, F and G) as observed in a recent study (9). 
For CCLs unique to the validation sets, our predicted dependencies 
recapitulated their real screening results (89 and 211 CCLs;  = 0.61 
and 0.47). Average per-DepOI  were 0.24, 0.17, and 0.10 among 
the two sets of highly variable DepOIs and all DepOIs, respectively, 
in the CCLs unique to the Sanger screen and 0.22, 0.14, and 0.10 in 
the CCLs unique to the RNAi screen.

Assessment of gene fingerprints in DeepDEP
DeepDEP includes unique functional fingerprints of DepOIs to fa-
cilitate model learning of functional similarities (pathway/signature 
involvement) shared among DepOIs. The CGP signatures were se-
lected as fingerprint features because they encode molecular responses 
of cells to perturbations. Substituting the CGP fingerprints by 5247 
gene ontology (GO) terms or 1175 canonical pathways of MSigDB 
reduced the performance of DeepDEP (12.4 and 20.2% drops in aver-
age per-DepOI , respectively; fig. S4). The drops were largely at-
tributable to the lower information content and higher dependence 
between features of these fingerprints (fig. S4).

Model interpretation by characterizing gene dependencies 
using gene expression profiles
To enable applications to samples with only one or part of the ge-
nomic assays, we built several simplified models, e.g., Mut-DeepDEP 
for mutation data alone and Mut/Exp-DeepDEP for paired mutation 
and expression data. Most of the simplified models, such as Mut/
Exp-DeepDEP and the expression-alone model (Exp-DeepDEP), 
achieved comparable performance to DeepDEP, while CNA- and 
mutation-alone models yielded weaker performance (fig. S5). Details 
of the simplified models can be found in Supplementary Text.

We interpreted Exp-DeepDEP to understand the information learned 
by a single-omic model or, more specifically, the associations cap-
tured by our model between dependency and expression profiles. The 
hyperparameter optimization during initial training on the TCGA 
data resulted in 50 neurons for the bottleneck (encoder output) layer 
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(table S2). However, only two neurons carried nonzero values after 
the final training using the CCL dependency data. The training pro-
cess of Exp-DeepDEP was repeated for 10 times with consistent re-
sults (average, 2.1 nonzero neurons; range, 1 to 3). This is likely due 
to the limited diversity and sample size of CCLs (n = 222 for train-
ing) and intercorrelation of gene expression levels (see Discussion). 
To decipher the effects of these bottleneck layer neurons, we artifi-
cially intervened the two neurons and examined the changes in pre-
dicted dependency scores (illustrated in Fig. 3A; see Materials and 
Methods). We decoded the expression signatures of the two neurons 
by reconstructing the gene expression profiles of 6016 genes through 
the decoder network from each of two neurons (Fig. 3B and table 

S10) and analyzed the functional relevance by Gene Set Enrichment 
Analysis (GSEA). Signature 1 was positively associated with pathways 
related to cell proliferation, such as DNA repair, E2F targets, and 
G2M checkpoint [all false discovery rate (FDR), ~0; Fig. 3, C and D]. 
Signature 2 encoded a broader range of processes involved in tum-
origenesis and tumor microenvironment, including P53 signaling, 
epithelial-mesenchymal transition (EMT), and hypoxia (all FDR, ~0).

We mapped 278 CCLs through the encoder network that converted 
the expression profile of each CCL into two signature scores at the 
bottleneck layer. We found that 20 of 24 leukemia, lymphoma, and 
myeloma CCLs exhibited the lowest activities in signature 2 but high 
variations in signature 1 (Fig. 3E), reaffirming the fundamental difference 
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in the dependency profile compared to solid cancer cells (fig. S3). 
Otherwise, CCLs of different tissue origins appeared indistinguishable. 
We designed a simplified linear regression model to evaluate the pre-
dictive power of the signature scores. The two signatures predicted 
459 (35.4%) and 321 (24.7%) DepOIs, respectively, with Bonferroni- 
adjusted P < 0.05 (fig. S6 and table S11). We further assessed the 
impact of potential cofactors related to cell culture and screen quality 
by fitting the dependency of each DepOI with the expression signa-
tures and other variables (see Materials and Methods). The expres-
sion signatures were the major factors that predicted 389 DepOIs 
(fig. S6 and table S11). However, dependencies known to be closely 
associated with their own expression levels, such as ESR1, ERBB2, 
and SOX10, could be predicted by self-gene expression only.

Gene essentiality depends on the genomic context of a CCL (2, 3, 23). 
We predicted gene dependencies by combining different signature 
scores and visualized the results using contour plots (Fig. 3F) or the 
“essentiality map” for a DepOI. The constructed maps revealed dis-
tinct characteristics for each gene. Genes associated with the cell 
cycle (CCND1 and CDK6), DNA repair (H2AFX), and EMT tended 
to be more essential with higher signature 1. In addition, the essen-
tiality of a hypoxia marker, HIF1A, was high in cells with moderate 
signature 2 but low signature 1. Among tumor suppressors, such as 
TP53, PTEN, and RB1, we identified peaks of positive dependency 
scores (denoting cellular growth when the gene is knocked out) in 
cells where signature 2 was enhanced. Further investigations into 
genes sharing common functions revealed an intrafunction concor-
dance [such as oxidative phosphorylation (OXPHOS)] or rather 
diversity (G2M checkpoint, MYC targets, and the P53 pathway) in 
essentiality maps (figs. S7 to S10). Together, these maps provide a 
novel view of genes’ function—their potential to act as essential 
genes in different contexts.

Model interpretation by investigating SE  
using Mut-DeepDEP
The mutation-alone model (Mut-DeepDEP) with binary mutation 
input is a simple model with a prediction error comparable to the 
full-DeepDEP model yet subpar average per-DepOI  (see Supple-
mentary Text and fig. S5). To interpret what our model learned given 
binary input data, we used Mut-DeepDEP to predict the change in 
a gene dependency associated with a synthetically induced or removed 
gene mutation in a CCL, or SE between a mutation and a gene 
knockout (26). For simplicity, we perturbed one mutation at a time; 
changing from 0 to 1 represents switching endogenous wild-type 
to mutated or from 1 to 0 vice versa (Fig. 4A). For each mutation- 
DepOI pair in a CCL, an SE score was calculated by comparing the 
predicted dependency of a DepOI with versus without a mutation 
(mutation status, 1 versus 0). Thus, a more negative SE score indi-
cates stronger essentiality in a CCL carrying an endogenous or syn-
thetic mutation. In general, SE scores were modest (5th to 95th 
percentiles, −0.0055 to 0.0054; Fig. 4B) and appeared to be independent 
of cell lineages (Fig. 4C). Only aerodigestive tract, breast, kidney, non–
small cell lung cancer (NSCLC), nervous system, skin, and urogenital 
system exhibited significantly stronger intralineage similarities in SE 
scores than between lineage (with Bonferroni-adjusted one-tailed 
t test, P < 0.05; Fig. 4C and fig. S11), implying that SE may be a ge-
nomic context-specific, rather than lineage-specific, phenomenon 
in many cancer cells.

We examined two of the best-known SE pairs, PTEN mutation/ 
CHD1 depletion (27) and BRCA1/PARP1 (28); the latter is more 

synergistic and also categorized as synthetic lethality. We note that 
in the original dependency data, CHD1 essentiality was not signifi-
cantly stronger in 43 CCLs harboring PTEN mutations compared to 
the other 235 CCLs (one-tailed t test, P = 0.46), and neither was 
BRCA1/PARP1 (P = 0.10; 20 mutated CCLs versus others), indicating 
that the complexity of genomics may overcome SE effects. Since 
CHD1 and PARP1 were not part of the 1298 DepOIs, we predicted 
their dependency scores using Mut-DeepDEP without additional 
training. SE scores of PTEN/CHD1 were significantly lower than 
zero among CCLs (one-sample one-tailed t test, P = 0.018). The av-
erage SE score of PTEN/CHD1 across CCLs was significantly more 
negative than those between CHD1 and any other 4538 gene muta-
tions (P ~ 0 and ranked among the top 12 of all mutations; Fig. 4D), 
although the magnitude of the SE scores was subtle. Similar results 
were observed for BRCA1/PARP1 (P = 1.3 × 10−6 and 5.7 × 10−219 
for comparisons against zero and other mutations, respectively). 
The two examples demonstrated the feasibility of using Mut-Deep-
DEP to study SE, while the model may become more sensitive with 
mutation data harboring more functional/complex information be-
yond binary states (see Discussion).

We further explored the capability of our model to investigate 
SE in a CCL-specific manner. As a demonstrating example, we in-
vestigated SE genes associated with mutations in KRAS, one of the 
hardest-to-target oncogenic variants (26, 29). In our prediction, 
mutated KRAS was associated with stronger dependencies on 12 genes 
(with top ranking negative SE scores in at least 100 CCLs; see Materials 
and Methods). The genes included key players in the KRAS signal-
ing pathways, such as EGFR and MAP3K7 (table S12). EGFR is an 
upstream regulator of the RAS pathway. Our data revealed that EGFR 
was an SE interactor with KRAS in 126 CCLs (Fig. 4E). Among 
them, 18 CCLs (or 108 CCLs) with endogenous KRAS mutations 
(or wild-type) were synthetically converted to wild-type (or mutated). 
On average, a CCL exhibited a 78.5% increase in EGFR dependency 
when the KRAS mutation was synthetically added. Our analysis also 
indicated MAP3K7, a member of the mitogen-activated protein ki-
nase family involved in the downstream signaling of KRAS, as an-
other promising SE interactor of KRAS in 108 CCLs (Fig. 4E). 
Future studies are warranted to further investigate these SE interac-
tions as potential targets for KRAS mutations (see Discussion).

Prediction of tumor dependencies
The DeepDEP model is embedded with the tumor genomic context 
through the unsupervised pretraining of the autoencoders using the 
TCGA data. To confirm the effectiveness of this scheme, we carried 
out a proof-of-concept prediction of gene expression by training a 
DeepDEP-like model with an identical transfer-learning scheme. 
The satisfactory performance ( = 0.50 ± 0.20) and meaningful 
model behaviors of well-predicted genes (see Supplementary Text 
and fig. S12) supported our transfer-learning scheme. Thus, we ap-
plied DeepDEP with full genomic input to the TCGA data to pre-
dict the dependency profiles of the 1298 DepOIs in 8238 tumors 
(table S13). To our knowledge, this study is first to report a pan-cancer 
dependency map in tumors. The predicted dependency scores fol-
lowed similar distributions as the original and predicted dependency 
scores of CCLs (Fig. 2A). In general, correlation in the overall de-
pendency profile between a tumor and a CCL was similar to that 
between two CCLs (Fig. 5A). Variations of most dependencies across 
tumors were modest (average SD, 0.087; fig. S13 and table S14). Among 
the top selective genes were two cell cycle regulators, CCND1 and 
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CDK6, that have inhibitors approved for cancer treatment and novel 
gene dependencies that worth further studies, such as SCAP and YRDC.

Associations of predicted tumor dependencies 
with genomics
Similar to CCLs (fig. S3), the gene dependency profile of tumors 
generally did not cluster by lineages (Fig. 5, B and C). This observation 
was in contrast to the cancer-type specificity seen in the genome- 
wide expression and methylation data (Fig. 5B). Dependency pro-
files of some tumors were associated with higher mutation burdens 
(e.g., group 1 in Fig. 5C), increased CNA (group 2), and expression/
methylation patterns (group 3). Group 1 was composed of 593 tumors 
with a significantly higher mutation burden than others (average 
number of mutated genes per tumor, 363.0 versus 61.5; one-tailed 

t test P = 2.0 × 10−314; fig. S14). These heavily mutated tumors were 
predicted to have stronger dependencies on 660 DepOIs (with one-
tailed t test, P < 10−5) that predominantly perform mitochondrial 
functions (table S15). Our finding agreed with previous reports that 
mitochondrial dysfunction is closely related to the induction of DNA 
damage (30) and it may be targeted to enhance tumor vulnerability 
due to the interplay among mitochondrial metabolism, cell cycle 
checkpoint regulators, and mutation burden [reviewed in (31)]. 
Group 2 (n = 285) had significantly higher copy numbers (average 
CNA score per tumor, 0.52 versus 0.16; P = 4.6 × 10−133; fig. S14). In 
the group of tumors, we observed enhanced essentialities on 312 
genes related to miscellaneous functions, such as transcription fac-
tor activities, cell differentiation, and cell proliferation (table S15). 
In the predicted tumor dependency map, group 3 (n = 551) had unique 
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expression and DNA methylation profiles compared to other tumors 
(Fig. 5C). Tumors of this group exhibited significantly higher correla-
tions with another tumor within the group than with a tumor out-
side the group in both expression (average correlation coefficients, 
0.66 versus 0.43 and P ~ 0; fig. S14) and methylation profiles (0.77 
versus 0.68; P ~ 0). A total of 594 DepOIs were predicted to be more 
essential in group 3, which had no significant overlap with the 360 
up-regulated genes in the group (two-tailed Fisher’s exact test, P = 1.0; 
fig. S14). However, the two sets of genes significantly overlapped in 

GO terms (right-tailed Fisher’s exact test, P = 9.4 × 10−5; fig. S14 and 
table S15). This implies that highly active cellular functions and 
processes (as marked by up-regulated genes in our analysis) may be 
targeted for cancer vulnerability.

Next, we sought to determine the effects of genomic mechanisms in 
codetermining gene dependencies. Through a systematic search (see 
Materials and Methods), we identified 1.6 million M-Dep (mutation- 
driven dependency), 2.1 million E-Dep (expression-driven depen-
dency), 1.3 million Me-Dep (DNA methylation-driven dependency), 

ACC
BRCA
CHOL
DLBC
GBM
KICH
KIRP
LIHC
LUSC
OV
PCPG
SARC
STAD
THCA
UCEC
UVM

BLCA
CESC
COAD/READ
ESCA
HNSC
KIRC
LGG
LUAD
MESO
PAAD
PRAD
SKCM
TGCT
THYM
UCS

C
N

A
(
n  = 7460)

P
redicted dependencies

of 1298 genes
M

ethyl
(
n  = 6617)

E
xp

(
n  = 6016)

M
ut

(
n  = 4539)

Pan-cancer tumors (n = 8238)

1.0–1.0

Dep. score

1 32

CA

B
t-SNE of dependency ACC

BLCA
BRCA
CESC
CHOL
COAD/
READ
DLBC
ESCA
GBM
HNSC
KICH
KIRC
KIRP
LGG
LIHC
LUAD
LUSC
MESO

OTHER

OV
PAAD
PCPG
PRAD
SARC
SKCM
STAD
TGCT
THCA
THYM
UCEC
UCS
UVM

CCL
Tumor

SKCM

LGG

THCA

THCA

t-SNE of expression

t-SNE of methylation

0.6 0.7 0.8 0.9 1

ρ of predicted dependency scores
between two samples

0

1

2

3

4

5

6

7
D

en
si

ty
 (×

0.
01

) CCL-CCL
CCL-tumor

8

CCLs

CCLs

ED

0

0.2

0.4

0.6

0.8

1

Gene dependencies (n = 1298)

P
ro

po
rti

on

M-Dep dominated
(27.7%)

E-Dep
(48.6%)

Me-Dep
(1.8%)

C-Dep
(22.0%)

Positive
Negative

events

M-Dep
(23.4%)

E-Dep
(30.9%)

Me-Dep
(19.7%)

C-Dep
(26.0%)

Omics-driven Dep events
(n = 6.6 × 106)

M-Dep
(27.7%)

E-Dep (48.6%)

Me-Dep
(1.8%)

C-Dep
(22.0%)

Dependencies dominated by each type
of omics-driven events (n = 1298)

Mut-driven Dep
(M-Dep) event MutA Dep1

Positive

Negative

Fig. 5. A predicted pan-cancer dependency map of tumors. (A) Distributions of pairwise CCL-CCL and CCL-tumor correlation coefficients in predicted dependency 
scores across 1298 DepOIs. (B) t-distributed stochastic neighbor embedding (t-SNE) plots of the predicted dependency map and baseline gene expression and methylation 
data of CCLs and tumors. (C) Heatmap of the predicted tumor dependency map and associations with genomics and cancer types. Hierarchical clustering of tumors by 
the predicted dependencies revealed groups of samples with distinct genomic patterns (e.g., groups 1 to 3). Abbreviations of cancer types are according to TCGA and are 
detailed in Supplementary Text. (D) Summary of dependencies driven by individual genomics. Inset: the definition of a mutation-driven dependency (M-Dep) event. 
Definitions of expression-driven dependency (E-Dep), methylation-driven dependency (Me-Dep), and CNA-driven dependency (C-Dep) are identical. Left: Genomics-driven 
dependency events. Right: Dependencies dominated by each type of genomics-driven events. (E) Distributions of genomics-driven events across 1298 dependencies.



Chiu et al., Sci. Adv. 2021; 7 : eabh1275     20 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 17

and 1.7 million C-Dep (CNA-driven dependency) events (Fig. 5D). 
For each DepOI, we calculated the percentage of the four classes of 
events. Most DepOIs were dominated by E-Dep, M-Dep, and C-Dep 
events (48.6, 27.7, and 22.0%, respectively) (Fig. 5, D and E), echoing 
a recent study showing that gene expression had higher power than 
DNA level features in predicting cancer cell vulnerability (32). While 
Me-Dep accounted for 19.7% of all events (Fig. 5D), these events often 
cooccurred with E-Dep events (Fig. 5E). Thus, Me-Dep dominated 
only 1.8% of DepOIs. Given that methylation sites are mostly probed 
within promoter regions on microarrays, the results support our un-
derstanding that DNA methylation mediates cancer cell proliferation/
dependency largely through the regulation of gene expression.

Validation of predicted tumor dependencies using clinical 
and preclinical data
For a lack of ground truth, we validated the predicted tumor depen-
dencies by clinical parameters and clinical/preclinical treatment 
responses. We first investigated breast cancer (BRCA) because of its 
comprehensive clinical data from TCGA. Estrogen receptor–positive 
(ER+) tumors were predicted to have stronger dependencies on ESR1 
(t test, P = 2.2 × 10−26; Fig. 6A). We also evaluated drug response 
data categorized as “targeted molecular therapy,” where a monoclonal 
antibody against human epidermal growth factor receptor 2 (HER2), 

trastuzumab (Herceptin, n = 10), was the only drug with an analyzable 
number of samples. All BRCA tumors with a complete response 
(CR; n = 9) to trastuzumab were more dependent on ERBB2 than 
the only tumor with stable disease (Fig. 6B), yet the sample size was 
too small to assess the statistical significance. To further validate our 
prediction, we collected an independent dataset from preclinical 
drug screening on patient-derived xenografts (PDXs) performed by 
the PDX Encyclopedia project (33). Since CR was not often achieved 
among the PDX trials, we only analyzed LLM871, an inhibitor of 
fibroblast growth factor receptor 2/4 (FGFR2/4), that had the largest 
number of CR samples in BRCA. The Exp-DeepDEP model was used 
to predict the dependencies of each xenograft on FGFR2 and FGFR4 
by the baseline expression profiles. Three PDXs achieving CR were 
predicted to be significantly more dependent on FGFR2/FGFR4 than 
22 PDXs with progressive diseases (PDs; Kruskal-Wallis test, P = 0.030; 
Fig. 6C). Another important dependency previously reported from 
in vitro and in vivo studies (34, 35) was WRN in cancer with high 
microsatellite instability (MSI). Tumors with high MSI were predicted 
to be significantly more dependent on WRN both across MSI-prone 
cancers of TCGA (t test, P < 6.4 × 10−14; Fig. 6D) and within indi-
vidual cancer types (P < 7.3 × 10−3; fig. S15). Together, the predicted 
tumor dependencies were concordant with clinical and preclinical 
data, although the statistical power was limited by small sample sizes 
and the availability of in vivo CRISPR screens (see Discussion).

Clinical relevance of predicted tumor dependencies 
in chemoresistance and survival
To explore the clinical relevance of the predicted tumor dependen-
cies in nontargeted therapies, we searched for dependencies related 
to chemoresistance in BRCA. We compared predicted dependen-
cies between patients who achieved a CR (n = 117) and PD (n = 6) 
after chemotherapy. A total of 71 genes exhibited significantly dif-
ferential dependencies between these two groups (t test, P < 0.05; 
Fig. 7A and table S16). The vast majority of these dependencies 
(98.6%) was positively associated with chemoresistance, where a more 
negative dependency score was associated with a poorer response to 
chemotherapy. NDUFS5, an enzyme of the electron transport chain, 
was the most significant dependency (P = 2.9 × 10−3; Fig. 7B). The 
chemoresponse-related DepOIs were significantly enriched in the 
GO terms of mitochondrion and OXPHOS (one-tailed Fisher’s ex-
act test, P = 9.0 × 10−26 and 9.5 × 10−10; Fig. 7C), echoing the depen-
dency of chemoresistant cells on the energy metabolism (36, 37).

To further establish the physiological relevance of our model, we 
analyzed the associations between gene dependencies and overall 
survival (OS) of patients with cancers from different lineages. We 
identified 4655 prognostic dependencies among 32 cancers (Benjamini- 
Hochberg FDR, <0.2; table S16). Thirty-four DepOIs were prognostic 
in at least eight cancers (Fig. 7, D and E). For instance, a more neg-
ative dependency score of (stronger dependency on) a tumor- 
suppressive gene, interleukin-2 (IL2), was associated with better OS 
in seven cancers and adverse OS in two cancers (Fig. 7F). IL2 is an 
approved treatment for melanoma and metastatic renal cell carci-
noma. Our data echoed that a stronger dependency on IL2 marked 
better OS in uveal melanoma (UVM; FDR, 0.018; Fig. 7G), kidney 
chromophobe (KICH; fig. S16), and kidney papillary cell carcinoma 
(KIRP), although its dependency data may be prone to non–cell- 
autonomous effects of pooled screens (see Discussion). Another 
top prognostic gene, SMAD4 is also a tumor suppressor. Tumors 
with stronger SMAD4 dependencies had significantly better OS in 
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Fig. 6. Validation of clinical significance of predicted tumor dependencies by 
clinical data (TCGA) and preclinical drug trials (PDX Encyclopedia). (A) Predicted 
ESR1 dependencies in breast tumors (BRCA) with positive and negative immuno-
histochemical (IHC) status of estrogen receptor (ER+ and ER−). Statistical significance 
is assessed by the one-tailed t test. (B) ERBB2 dependencies in BRCA with different 
responses to trastuzumab. SD, stable disease. (C) Validation of predicted FGFR2/FGFR4 
dependencies by drug response of LLM871 in preclinical PDX models. Predicted 
dependency scores of FGFR2 and FGFR4 were averaged for each PDX. Statistical 
significance is assessed by the Kruskal-Wallis test. (D) Predicted WRN dependencies 
across five MSI-prone cancers of TCGA, including colon adenocarcinoma, esophageal 
carcinoma, rectum adenocarcinoma, stomach adenocarcinoma, and uterine corpus 
endometrioid carcinoma. MSI categories were experimentally determined by TCGA: 
MSI-high (MSI-H), MSI-low (MSI-L), and microsatellite stable (MSS). Statistical signif-
icance is assessed by the one-tailed t test. See fig. S15 for the results of individual 
cancer types and pan-cancer MSI scores predicted by the MANTIS algorithm.
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Fig. 7. Clinically relevance of predicted tumor dependencies. (A) Top 10 dependencies associated with chemoresponse in BRCA. Statistical significance is assessed by 
the t test comparing predicted tumor dependency scores of each DepOI between samples achieving CR and PD after chemotherapy. (B) NDUFS5, the most significant 
chemoresistance-associated dependency in BRCA. (C) Associations of chemoresistance-associated dependencies (Chemo Deps) with GO terms of mitochondrion and 
OXPHOS in BRCA. Significance is assessed by a one-tailed Fisher’s exact test for enrichment. (D and E) Top OS-associated gene dependencies and their hazard ratios (HR) 
identified by a univariate Cox proportional hazard regression model (Benjamini-Hochberg FDR, <0.2). A DepOI with a more negative dependency score, which indicates 
stronger dependency, associated with better (or worse) survival is termed as a protective (or adverse) dependency. Thus, a dependency score with a hazard ratio of >1 indi-
cates a protective dependency. Full results of the univariate and multivariate Cox models are provided as table S16. (F and G) Pan-cancer significance of IL2 and Kaplan-Meier 
curves of uveal melanoma (UVM) and BRCA (see fig. S16 for other cancer types). Cancers with a Cox FDR of <0.2 are labeled in bold. CI, confidence interval; mth, month. 
(H and I) Significance of SMAD4 dependency and Kaplan-Meier curves of lower-grade glioma (LGG) and kidney chromophobe (KICH) (see fig. S17 for other cancer types).
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seven cancers (Fig. 7, H and I, and fig. S17). To assess the interaction 
of the prognostic dependencies with other clinical variables, we per-
formed a multivariate Cox analysis that included patients’ age, gender, 
and pathological/clinical stage. Among the nine cancer types with a 
large sample size (n ≥ 300), 68.6% of the prognostic dependencies 
(711 of 1036) remained significant with multivariate Cox P < 0.05 
(table S16). Together, we demonstrate that gene dependency scores 
have clinical implications in both treatment responses and prognosis. 
Future studies aimed at validating these genes in physiologically 
relevant cancer models will have far-reaching clinical significance.

DISCUSSION
This study addresses significant bioinformatics challenges that have 
arisen from the rapid accumulation of cancer dependency maps: 
how to link genomic contexts to cell viability and how to systematically 
translate cell line assays to tumors. DeepDEP links a cell’s genomic 
context to its gene dependencies assayed by CRISPR-Cas9 screens 
and creates a model to predict tumor dependency via a transfer- 
learning design. Our model demonstrated the promise of bridging 
CCL-based screens and tumor genomics with an unsupervised pre-
training design, echoing a recent success of applying another trans-
fer learning technique, namely, the few-shot learning, to translate 
high-throughput drug screens to individual patients (21). We note 
that this few-shot learning is different from our transfer-learning 
strategy because it is a supervised pretraining method that requires 
model pretraining using labeled samples. It also needs fine-tuning 
of the pretrained model using labeled tumor data, which are not 
applicable to a standard pooled CRISPR protocol. In vivo CRISPR 
screen is a potential path to directly optimizing computational models 
to mitigate the gap between CCLs and tumors. However, such a 
screen remains challenging and costly and can only be carried out 
in few mouse models (38, 39). When systematic in vivo screens be-
come available, the proposed model can be a stepping stone toward 
an accurate prediction for tumor dependencies. Furthermore, methods 
that align genomic profiles between CCLs and tumors (40, 41) may 
help to reduce the differences between tumor and CCL domains. 
We expect that the incorporation of these methods will improve the 
translational capability of DeepDEP along with the expansion of 
CCLs being screened by the DepMap projects.

The study of SE between a mutation and an essentiality may lead 
to the critical discovery of cancer-specific vulnerabilities and thus 
context-specific therapeutic targets (26, 27). Traditional approaches 
identify SE by statistically inferring mutual exclusivity between two 
mutations in tumors (27), comparing gene dependency profiles be-
tween CCLs in the presence or absence of a specific gene mutation, 
or experimentally searching for a gene inhibition effectively killing 
a CCL harboring a mutation. However, the wet laboratory explora-
tion is costly, and conventional computational methods require a 
huge sample size to infer mutual exclusivity and overcome genomic 
variations in heterogeneous cancer cells (26). We demonstrated the 
utility of Mut-DeepDEP to study SE by mimicking a virtual switch 
of a gene mutation in a given CCL and observing the effect on a 
dependency. We observed our model’s behaviors and identified known 
(PTEN/CHD1 and BRCA1/PARP1) and novel SE pairs with KRAS. With 
the expanding genomics and screening resources, we expect to see 
the establishment of a curated SE database that will permit us to 
systematically substantiate our results. The current model only con-
siders binary mutation status, so the mutation matrix was highly 

sparse (5.7% of nonzero elements). Our simplified model, as well as 
the perturbation of binary mutation status, may not fully represent 
the functional heterogeneity of gene mutations as multiple somatic 
alterations and mechanisms can activate/inactivate genes in cancers. 
For instance, VHL can be inactivated by both deletion and mutation 
in kidney cancers, so as EGFR amplification/mutation in glioblastoma 
and lung cancer, and TP53 deletion/mutation. Future studies that 
enrich the mutation contents and refine our model are warranted to 
produce candidates for wet laboratory validations and develop hy-
potheses for novel patient-specific therapeutic targets.

KRAS is a frequently mutated oncogene in cancer (~7% in our 
reanalysis of TCGA data). It has been one of the hardest gene muta-
tions to target. Thus, targeting its SE interactors may be an effective 
alternative (42). Using our prediction machine, we identified fre-
quent SE interactions of KRAS with 12 gene knockouts, including 
its upstream (EGFR) and downstream (MAP3K7) interactors and 
other less studied genes associated with ribosomal (RPL21 and RPL22) 
and mitochondrial function (NARS2). EGFR is part of the ERBB 
family. Our prediction of EGFR as a potential SE target of KRAS 
echoed findings from several in vivo studies. A study suggested 
pancreatic tumorigenesis driven by oncogenic KRAS is strongly de-
pendent on EGFR; knockdown of EGFR expression by short hairpin 
RNAs (shRNAs) effectively inhibited tumorigenesis (43). Concor-
dantly, genetically engineered mouse models of NSCLC showed 
that EGFR deletion impaired mutant KRAS activity and transiently 
reduced tumor growth, which then triggers an escape mechanism 
mediated by the activation of other non-EGFR ERBB family mem-
bers (44). Thus, a pan-ERBB inhibitor, afatinib, effectively inhibited 
tumor growth of KRAS-mutated NSCLC on patient- or cell line–
derived xenografts (44). We note that our data and other reports do 
not imply that currently approved EGFR inhibitors would be effica-
cious for KRAS-mutated tumors, since EGFR tyrosine kinase domain 
inhibitors (gefitinib and erlotinib) function via distinct inhibition 
mechanisms from CRISPR-Cas9 and are prone to the aforementioned 
resistance mechanisms. As for MAP3K7, our prediction was in line 
with previous studies reporting that (i) shRNA-based depletion of 
MAP3K7 has the most potent and selective effects among a panel of 
kinases in inhibiting the viability of KRAS-mutant colon CCLs (45); 
and (ii) pharmacologic inhibition of MAP3K7 suppresses KRAS- 
mutated colorectal cancer growth in vitro and in vivo (46). Our pre-
diction also indicated the need to investigate SE interactions in a 
tumor context–specific manner [Fig. 4C; reviewed in (47)]. Together, 
comprehensive in vitro and in vivo investigations into these poten-
tial SE partners of KRAS mutations are necessary to confirm our 
predictions and to gain better biological and clinical insights.

Mitochondrial dysfunction is a hallmark of cancer (48). Energy 
metabolism is vital for cancer cells to survive the damage induced 
by chemotherapeutic drugs (36); therefore, targeting energy metab-
olism may overcome drug resistance. Our analysis of the pan-cancer 
dependency map revealed predominant mitochondrial functions in 
genes essential in chemoresistant tumors. However, activity of the 
OXPHOS pathway in CCLs can be modulated by the culture medi-
um (49) and confounded by the timing that a CCL is derived rela-
tive to chemotherapy. Our data also suggested that the dependencies 
on certain tumor-suppressive genes (SMAD4 and IL2) and less 
studied genes (ACVR1 and DEK) are associated with OS in many 
cancers. IL2 is a key cytokine, and its receptor is expressed in many 
different immune cells. Endogenous expression of IL2 in tumors is 
related to cancer cell proliferation and histological tumor grade in 
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different cancer lineages (50). Besides, IL2 has been approved as 
immunotherapy of metastatic cancers of melanoma and renal cell 
carcinoma. Our predicted tumor dependencies indicated a poten-
tial prognostic role of IL2 dependency in UVM, KICH, KIRP, and 
other cancers (Fig. 7F). We noted that more research is needed to 
further elucidate the mechanism of IL2 dependency in tumor progno-
sis and to validate the screening results of IL2 in view of a common 
limitation of pooled screens by non–cell-autonomous effects (51) 
including paracrine signaling of cytokines. SMAD4 is a well-studied 
tumor suppressor gene. However, in a malignant background, it may 
perform multifaceted functions since its tumor-suppressive functions 
may have already been compromised by mutations or bypassed 
through other oncogenic pathways. We found that tumors with 
stronger dependency on SMAD4 had significantly better survival in 
multiple cancers including BRCA, echoing a previous in vivo study 
demonstrating knockdown of SMAD4 in BRCA cells effectively in-
hibits bone metastasis (52). Overall, survival analysis of the predicted 
tumor dependencies revealed interesting candidate genes for future 
studies and demonstrated a novel strategy to identify prognostic 
markers.

We used the unbounded gene effect score as model output to 
facilitate subsequent investigations with genomic data. However, the 
gene effect score may be vulnerable to biases and uncertainty asso-
ciated with batch effects and screen quality (5). Future studies may 
extend our model to predict the dependency probability (4–6) or 
the binary fitness score (7, 53), which indicates the likelihood of a 
gene knockout to have real depletion effects, by applying a softmax 
or sigmoid output layer to our model. Addressing the common lim-
itation of DL models as “black boxes,” we implemented an interpre-
tation strategy by perturbing and/or decoding the input (e.g., gene 
mutations) or intermediate nodes (e.g., gene signatures) to mimic 
typical molecular biology assays that study functional genomics by 
perturbing individual genes or pathways. A promising alternative of 
model construction/interpretation may be the visible neural network 
(54) that integrates the GO hierarchy into DL architecture to enable 
gene set level interpretation.

Project DRIVE suggested that ~1% of gene dependencies are pre-
dominantly determined by their self-expression levels (3), such as 
SOX10. To predict these dependencies, simple uni- or few-variate 
models, as well as properly regularized models such as an elastic net, 
are expected to achieve optimal or near-optimal performance to 
capture specific associations between model inputs and outputs. Ex-
panding the range of biological contexts, computational tools such 
as CEN-tools (55) identify dependencies that are specific to the tis-
sue of origin and/or individual mutation state and expression level. 
On the basis of the concepts of differential network biology (56) and 
genetic coessentiality (57), an interactive tool called FIREWORKS 
(58) interrogates functional relationships between gene dependen-
cies using context-specific “coessentiality networks” and identifies 
multiomic signatures associated with differential gene dependencies. 
Since our goal is to link multiomics to the landscape of dependencies 
regardless of their simple or complex associations, we designed a 
unique architecture to allow the model to learn from genes with 
similar functions implemented by a functional fingerprint. Taking 
Exp-DeepDEP as an example, the encoder network of our model 
captured two gene expression signatures that predicted (as demon-
strated by simple linear regressions in fig. S6) and characterized a 
broad panel of gene dependencies. Such a prediction machine also 
allows interpolating and extrapolating gene dependencies beyond 

the limited screened CCLs. The constructed essentiality maps create 
a novel way of visualizing gene dependencies, both at the level of 
individual genes (Fig. 3F) and the landscape of genes in the same 
pathway (figs. S7 to S10). The implementation of functional fingerprint 
is a key to the enhanced performance and efficiency of DeepDEP.  
Unlike the chemical fingerprints of drugs, to our knowledge, there 
is no fingerprinting system to describe the functions of a gene. 
The proposed functional fingerprint focuses on CGPs. Besides the 
involvement of genes in curated molecular signatures, other bio-
chemical and functional features may be used to enrich the infor-
mation captured by fingerprints. To alleviate the limitation in the 
sample size, we also adopted the unsupervised pretraining strategy 
to train our model by two steps (22). The model captured data rep-
resentation of each type of genomic data using TCGA samples and 
was then fine-tuned toward the prediction of dependencies using 
CCL data. The benefits of this strategy were demonstrated in our 
previous study for predicting drug response (16). For expression 
data, pretraining suggested an optimal architecture of 6016 to 500 
to 200 to 50 neurons to capture the most information out of the 
tumors’ expression data. However, when we incorporated the en-
coder into Exp-DeepDEP and retrained the model using CCLs’ de-
pendency data (Fig. 3A), the model was exposed to only 222 unique 
expression profiles (80% of 278 CCLs)—not enough to support 
network optimization. This limitation may cause neuron degrada-
tion to prevent model overfitting, largely accounting for the abun-
dant zeros we observed at the bottleneck layer of the Exp-DeepDEP 
model. We expect a further improvement of our model by incorpo-
rating training techniques, such as data augmentation and regular-
ization, and with the expansion of the DepMap projects and other 
large genetic screens.

MATERIALS AND METHODS
Datasets
Dependency profiles of CCLs
The primary dataset used in this study was CRISPR-Cas9 essenti-
ality screens of 17,634 genes in 436 CCLs from the publicly available 
Broad DepMap dataset (2018Q2 version; https://depmap.org/portal/). 
Summary statistics of the CCLs can be found in table S6. Gene effect 
scores estimated and corrected by CERES (4) were used as the mea-
sure of gene dependency (5). Here, we used the dependency profiles 
of 1298 genes (DepOIs) with high-essentiality variation among the 
CCLs (SD, >0.2) and those listed in the Cancer Gene Census of COSMIC 
(59). We included three independent validation datasets (table S5). 
One dataset included 348 CCLs newly assayed by Broad DepMap 
(2018Q3 to 2020Q2), while the present study was in progress. This 
validation dataset contains gene effect scores derived from a refined 
computational pipeline that incorporated the batch correction of 
CERES scores, the newer hg38 reference genome, an updated list of 
genes used to scale the gene effect scores, etc. The second dataset 
was collected from a recently published CRISPR screen conducted 
by the Sanger Institute using a different CRISPR library (7). Here, 
we used the fitness effect score that was calculated as the quantile- 
normalized depletion log fold change between targeting sgRNAs and 
plasmid library. We also downloaded data from three RNAi-based 
large screens [Marcotte et al. (1), Project Achilles (2), and Project 
DRIVE (3)] combined and harmonized by the DEMETER2 algo-
rithm (25). The RNAi dataset contains dependency scores of 712 
CCLs on 17,212 genes.

https://depmap.org/portal/
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Genomic profiles of CCLs and tumors
We collected four types of genomic profiles (mutations, gene expres-
sion, methylation, and CNAs) of CCLs and tumors of TCGA. Mu-
tation profiles were reprocessed into gene-level binary status (i.e., 1 
for mutated and 0 for wild-type) from Mutation Annotation Format 
files downloaded from Cancer Cell Line Encyclopedia (CCLE) 
(1463 cells) (60) and TCGA PanCanAtlas (9093 tumors) (61) data-
bases. Here, we considered five types of nonsynonymous mutations—
missense and nonsense mutations, frameshift insertions and deletions, 
and splice sites. For the TCGA dataset, we only included high- 
confident mutations that passed the Multi- Center Mutation Calling 
in Multiple Cancers filter (61). Overall, we included 4539 genes mu-
tated in at least 1% of TCGA samples. We represented gene expres-
sion levels by log2(TPM + 1), where TPM denotes the number of 
transcripts per million, in 935 CCLs and 9806 TCGA tumors down-
loaded from the Cancer Target Discovery and Development Network 
(62) established by the National Cancer Institute’s Office of Cancer 
Genomics and the UCSC TumorMap (63), respectively. We used 
6016 genes with means and SD greater than 1 in the TCGA samples. 
For DNA methylation, we collected data of 1028 CCLs assayed by 
Illumina 450K BeadChip (GSE68379) (64) and 12,039 TCGA 
samples with merged Illumina 27K and 450K BeadChips from the 
PanCanAtlas (65). We eliminated probes with low methylation 
( value, <0.3) in >90% of TCGA samples, leaving 6617 probes for 
subsequent analysis. CNA data called from Affymetrix SNP 6.0 
arrays of 1043 CCLs and 11,101 TCGA samples were downloaded 
from CCLE and PanCanAtlas, respectively. Here, we generated 
~310,000 consecutive segments of length 10,000 bases along the 
chromosomes and mapped each CNA onto these segments weighted 
by the percentage covered by CNA. DeepDEP included 7460 infor-
mative CNA segments (zeros in <5% of samples, mean of absolute 
values of >0.20, and coefficient of variation of >0.20 in TCGA). 
In this study, mutation and expression data were gene-based, while 
methylation and CNA data were represented by probes and chro-
mosomal segments, respectively.
Pairing genomic and dependency profiles
A total of 278 CCLs [covering 17 tissue types according to annotations 
of Genomics of Drug Sensitivity in Cancer (64)] with four genomic 
profiles and CRISPR-Cas9 dependency data were incorporated into 
DeepDEP. Among TCGA tumors, merging four genomic profiles 
yielded a sample size of 8238, covering 32 tumor types.
Fingerprint vector of a DepOI
To define the functional features of a DepOI, we collected molecular 
signatures of 3433 CGPs (3115 signatures after removing those not 
containing any of the 1298 DepOIs) from MSigDB v6.2 (24). Each 
DepOI was described by its involvement in the 3115 signatures. 
Mathematically, the fingerprint matrix fps∈{0,1}D×S is written as

   fps(d, s ) =  {    1, d ∈  G  s     
0, otherwise

    (1)

where d and s denote DepOI d and a molecular signature s, respec-
tively, and Gs is the set of genes of signature s. Thus, a DepOI can be 
mathematically described by the corresponding row vector of the 
fps matrix, or a fingerprint vector.

Design of DeepDEP
Model overview and performance assessment
DeepDEP was designed to predict the essentiality for a gene in an 
unscreened CCL or tumor based on four genomic profiles of a sample 

and the fingerprint vector of the gene of interest (Fig. 1). An auto-
encoder network was constructed to learn high-order representations 
of each genomic data and fingerprint. Outputs of the five encoder 
networks were concatenated into the prediction network to yield a 
predicted gene effect score. The entire model was trained and tested 
using the data from CRISPR-Cas9 knockout screens of 1298 DepOIs 
in 278 CCLs (i.e., 360,844 samples). We used 80% of these samples 
to train the model, 10% to monitor the training process to control 
overfitting, and 10% to test model performance. The model was 
optimized with a loss function of mean squared error (MSE). After 
model training, we evaluated the performance by per-DepOI Pearson 
correlation coefficient  between the predicted and original scores 
of each DepOI in testing CCLs. Performance assessment on the most 
variable 61 DepOIs with an SD of >0.3 and 506 DepMap-defined 
high-variance DepOIs with top 3% most variable scores (https://
depmap.org/portal/; version 20Q2) is provided in the Supplementary 
Materials.
General DL settings and computation environment
We implemented and optimized the model using the Python library 
Keras 1.2.2 with TensorFlow backend. For a neuron j in our fully 
connected neural networks, its output yj is calculated by

   y  j   = F( ∑ i      w  ij    x  i   +  b  j  )  (2)

where xi denotes the output of neuron i at the previous layer; wij and 
bj are the weight and bias, respectively; and F represents the activa-
tion function. Summarization of all neurons at a layer can thus be 
written as
  y = F(wx + b)  (3)

During training, weights and biases are adjusted to minimize a 
loss function. We optimized the model by an Adam optimizer (66) 
with a loss function of MSE. We set F as a rectified linear unit 
(ReLU); activation of the output layer was linear to fit the unbounded 
distribution of gene effect scores. All analyses were performed on a 
Linux server with 4× 24-core Xeon E7-8890 v4 2.20-GHz processors 
with 512-gigabyte random-access memory.
Encoder networks for genomic data and gene fingerprints
DeepDEP has five input encoder networks, four of which were de-
signed for genomic data of a CCL/tumor and the other for the func-
tional fingerprint of a DepOI (Fig. 1). For each set of genomic data, 
an autoencoder was pretrained using TCGA (n = 8238) to learn 
low-dimensional embeddings of high-dimensional inputs, which 
we previously showed to improve the convergence and stability of a 
DL model (16). We used a hyperparameter optimization method, 
hyperas (https://github.com/maxpumperla/hyperas), to determine 
the optimal number of neurons for each layer of an autoencoder as 
previously described (16). Hyperas is a grid-searching algorithm that 
searches a prefixed parameter space by a fixed number of parameter 
combinations using the Hyperopt optimization library (67). Here, 
we set the parameter space as follows: the first {1000,500,200}, sec-
ond {200,100,50}, and bottleneck layers {50,20,10}. For each genomic 
data, 20 combinations were evaluated for 20 epochs using the TCGA 
data. The best-performing autoencoders were then fully trained for 
100 epochs. The architectures of the four encoder subnetworks 
were used in the DeepDEP model; the weights and biases were used 
to initialize the corresponding networks in DeepDEP. The encoder 
for gene fingerprints adopted the architecture of that for mutations 
since they had similar inputs of binary data, while the former was 

https://depmap.org/portal/
https://depmap.org/portal/
https://github.com/maxpumperla/hyperas
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not pretrained and randomly initialized by the He’s uniform distri-
bution (68).
Prediction network
The prediction network was designed to learn from embedded ge-
nomic features (characterizing a CCL/tumor) and gene fingerprints 
(portraying the functions of a DepOI) and to predict a gene depen-
dency score. Bottleneck layer neurons of the five encoders were 
concatenated and passed onto two fully connected hidden layers, 
followed by a single-neuron output. The number of nodes at each 
hidden layer was set at the total number of neurons passed from the 
encoder networks. The output value is a predicted gene dependency 
score of a DepOI in a CCL/tumor sample. The network was ran-
domly initialized by the He’s uniform distribution.

Implementation of linear and nonlinear ML methods
The performance of DeepDEP was compared to several ML methods. 
We used the (i) full input data or the top 50 components of either 
(ii) PCA or (iii) NMF of each genomic profile and gene fingerprints 
(250 dimensions in total). The input data were fed into six conven-
tional ML models: (i) linear least squares regression models with lasso 
(least absolute shrinkage and selection operator), (ii) ridge, or (iii) 
elastic net (with equal weighting on L1 and L2 penalties) regulariza-
tions, and (iv) SVMs with linear, (v) Gaussian, or (vi) RBF kernels 
to predict gene dependencies. A random forest model was not im-
plemented because of extreme computation cost due to large input 
dimension. These models were trained and tested on the same 
90-10 partition of CCLs used for DeepDEP. The best model of each 
ML method was repeated 10 times with subsampling; in each 
round, a set of sample partitions was used across ML methods 
and DeepDEP. All ML models were implemented using MATLAB 
built-in functions (Statistics and Machine Learning Toolbox, 
MathWorks Inc., MA).

Leave-cluster-out cross-validations and y-scrambling
We performed leave-cluster-out cross-validation analyses to test model 
performance. CCLs were divided into 10 groups by k-means clus-
tering (k = 10) based on the squared Euclidean distance of the ex-
pression data. Each k-means analysis was repeated three times to 
ensure convergence with a MATLAB built-in function. For each 
leave-cluster-out analysis, a cluster of CCLs was used to test three 
independent models trained on the rest of the samples. Because of 
the differences in the number of CCLs among clusters, the perform-
ance of leave-cluster-out cross-validations was assessed by MSE 
only and summarized by means ± SD across the three models.

We also performed y-scrambling validation to verify that the 
achieved performance was “real” and not by random chance accord-
ing to previous reports (69, 70). We randomly permuted dependency 
scores among all CCL-DepOI samples to generate mismatched in-
put and output data. We used 90 and 10% of CCLs to train/validate 
and test a model as the reported DeepDEP model. The performance 
of the random model was evaluated by the per-DepOI  in the test-
ing samples. The entire process was performed 100 times, and the 
final performance was summarized by mean and SD.

Model interpretation
Interpretation of encoded gene expression bottleneck nodes
We investigated gene expression nodes to explore the relevance of 
gene expression signatures in determining genetic vulnerabilities. 
At the output layer of the expression encoder of Exp-DeepDEP, for 

each node of interest, we performed a step-wise simulation to its 
output value from the mean of all CCLs with a step size of 0.25 SD.  
To understand the expression signature encoded in the node, we 
built an autoencoder comprising (i) the expression encoder of 
Exp-DeepDEP with hard-coded weights to retain the data embedding 
and (ii) a symmetric decoder network with fully trainable weights. 
The autoencoder was then trained using the TCGA data to optimally 
“reverse engineer” the expression signatures captured by the encoder 
network. After training, we fed a vector of all 0s except for 1 at the 
node of interest into the decoder network, and the output represents 
the expression signature captured by the node. Each signature was 
analyzed by GSEA (71) using a single-sample setting (i.e., ranked by 
the levels, instead of differences) for the association with hallmark 
gene sets of the MSigDB (24). We only considered positive enrich-
ments with an FDR of <0.001.

Multivariate linear regression models were used to test the pre-
dictive power of the two identified signatures on the original gene 
effect scores with the absence or presence of other variables

   Eff  d   =  {    
 β  1    Sig  1   +  β  2    Sig  2   +  β  3    Sig  1   ∙  Sig  2   + 

     
 β  1    Sig  1   +  β  2    Sig  2   +  β  3    Sig  1   ∙  Sig  2   +  β  4    Exp  d   +  ∑ k=1  7     β   v  k      v  k   + 

   

(4)

where Effd is a vector of original gene effect scores of the dth DepOI, 
Sig1 and Sig2 are expression signature scores, Expd is the expression 
level of the DepOI, vk is screen or cell variable k, and  and  are 
regression coefficients and error. The Sig1∙Sig2 term represents the 
interaction effect between two signatures. Here, vk included seven 
variables in two categories: cell culture [adhesion (versus suspension), 
Dulbecco’s modified Eagle’s medium (DMEM), Eagle’s minimum 
essential medium (EMEM), minimum essential medium (MEM), and 
Roswell Park Memorial Institute medium (RPMI)], and screen quality 
[strictly standardized mean difference (SSMD) and Cas9 activity] as 
listed in table S6. All CCLs (n = 278) were used for the regression. All 
input and output data were z-transformed. Statistical significance of 
each term was assessed by t statistics against zero and corrected for 
multiple tests by the Bonferroni correction with a factor of 278. 
Bonferroni-adjusted P < 0.05 was used for significance. We de-
fined a category of variables to be predictive of a DepOI if any of its 
component variables was significant.
Model interpretation by perturbing input mutation data 
to study SE
To comprehensively study SE, to each CCL, we perturbed the muta-
tion status of one gene at a time (from 0 to 1 or 1 to 0), with all other 
genes unchanged, and fed the mutation profile into Mut-DeepDEP 
to predict gene dependencies. We defined an SE score as the change 
in the predicted dependency score of a DepOI d in a CCL c carrying 
a gene mutation g compared to the same CCL without the mutation

   E(d, g, c ) = Dep (  d,  M c  
 g   1   )   − Dep (  d,  M c  

 g   0   )     (5)

where Dep is the prediction function of Mut-DeepDEP given d and 
the binary mutation vector (length, 4539) Mc of c, and   M c  

 g   1    and   M c  
 g   0    

represent the mutation vectors of c with a 1 (mutated) and 0 (wild type), 
respectively, at gene g. Here, we only considered mutation-DepOI 
pairs with a negative SE score, which represents a stronger essentiality 
in a CCL carrying a mutation than the wild type.
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For the identification of SE interactors of a gene mutation (e.g., 
KRAS) in each CCL, we used two criteria: (i) at least 5% of change 
in the predicted dependency score associated with a gene mutation 
as compared to the baseline prediction and (ii) an SE score ranked 
among the top 5% of all mutation-DepOI pairs in the CCL.

Definition of dependencies driven by each genomics in TCGA
We defined an M-Dep event when a gene mutation is associated with 
a stronger (positive) or weaker (negative event) dependency across 
TCGA samples (t test with Benjamini-Hochberg FDR, <10−20). All 
mutation-DepOI pairs were tested for M-Dep. Similarly were E-Dep 
(FDR for correlation coefficient, <10−50), Me-Dep (FDR, <10−50), 
and C-Dep (FDR, <10−100) defined to yield similar numbers of events 
among the four categories. A DepOI was called to be “dominated” 
by M-Dep if it had more M-Dep events than any other events; E-, 
Me-, and C-dominant Dep were defined similarly.

Association analyses of gene dependencies with clinical data
Clinical data of TCGA were downloaded using the R/Bioconductor 
package TCGAbiolinks (72). For the analysis of chemoresponse, 
we considered only primary tumors and excluded samples with 
multiple records of chemotherapy that were assigned to different 
response groups. We collected the MSI status of pan-cancer tumors 
that were experimentally determined by TCGA [curated by (73)] or 
predicted by the MANTIS algorithm (74). For the former, we only 
considered the MSI-high (MSI-H), MSI-low (MSI-L), and micro-
satellite stable (MSS) categories that were available in five MSI-prone 
cancers: colon adenocarcinoma, esophageal carcinoma, rectum 
adenocarcinoma, stomach adenocarcinoma, and uterine corpus 
endometrioid carcinoma. The MANTIS algorithm examined the 
whole-exome sequencing data of TCGA and used mutation burden, 
mutation signatures, and somatic variants to predict a continuous 
MSI score for each tumor. A score greater than 0.4 was indicative of 
the MSI-H status.

Gene dependency scores of each DepOI were analyzed for the 
association with OS in individual cancers by a univariate Cox pro-
portional hazards regression model. Here, dependency scores of each 
gene were z-transformed before being fed into the Cox model. A gene 
was defined as a protective dependency when tumors with more nega-
tive predicted dependency scores (indicating stronger dependency) had 
significantly better OS (i.e., the hazard ratio of dependency score > 1) 
with an FDR of <0.2 (Benjamini-Hochberg adjustment with respect to 
the number of DepOI-cancer pairs). Kaplan-Meier curves and log-
rank tests were conducted by a median cutoff on the gene depen-
dency scores. For the multivariate Cox analysis, we included age, 
gender (female/male), and tumor stage (discrete classes, 1 to 4) in 
addition to the dependency score. For each cancer type, the tumor 
stage was determined by either the pathological or clinical stage that 
gave a larger sample size. The multivariate analysis was performed on 
nine cancers that had at least 300 samples with available clinical data.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabh1275/DC1

View/request a protocol for this paper from Bio-protocol.
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