Skip to main content
. 2021 Aug 21;154:104556. doi: 10.1016/j.ijmedinf.2021.104556

Table 4.

Comparison of currently available Deep learning models for mortality in the inpatient setting.

Current Li et al. (2020)* Zhu et al. (2020)** Vaid et al. (2021)Ø Booth et al. (2021)^ Chowdhury MEH et al. (2021)***
Sample Size (n) 1214 102 181 4029 398 375
Endpoints End of admission ICU admission and mortality End of admission 7-day mortality End of admission End of admission
Clinical setting In-patient Non-ICU and ICU In-patient In-patient In-patient In-patient
Training and Test (set) split 70/30 90/10 85/15 70/30 80/20
Datapoint/Variables 47 15 Top 5 lab features 38 Top 5 lab features Top 5 lab features
Testing accuracy 87.7 85.3 nr 76.2# (median) nr nr
Training accuracy 98.7 89.2 nr nr nr nr
AUROC 0.885 0.844 0.968 0.809# (median) 0.930§ 0.970
Sensitivity 33.3 75 nr 77.8# (median) 91.0§ 89.4–94.6
Specificity 95.3 87.2 nr 69.9# (median) 91.0§ 89.0–95.0
PPV 50.0 52.2 nr nr 62.5§ 9.1#
NPV 91.1 94.9 nr nr 98.4§ 92.9#

nr = not reported.

#

Calculated from data given in paper.

^

Top 5 serum markers for mortality form 26 only lab parameters, with an unbalanced training set.

§

Non-normalized AUROC, sensitivity, specificity, PPV, NPV.

Ø

MLP federated model (best model, median values were calculated from Supplemental Table 6), some variables have large amount of missing data Supplemental Table 1.

*

Mortality data used.

**

Top 5 variables and cut off (very high cutoffs) > 6.7 mg/L for D‐dimer, <94 for O2 index, >10 for NE:LY, >93 mg/L for CRP, and >450 U/L for LDH.

***

Top 5 feature for mortality prediction: lactate dehydrogenase, neutrophils (%), lymphocytes (%), high-sensitivity C-reactive protein, and age score (TP = 160, FP = 16, FN = 14 and TP = 184).