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a b s t r a c t 

With increasing number of COVID-19 cases globally, all the countries are ramping up the testing num- 

bers. While the RT-PCR kits are available in sufficient quantity in several countries, others are facing 

challenges with limited availability of testing kits and processing centers in remote areas. This has mo- 

tivated researchers to find alternate methods of testing which are reliable, easily accessible and faster. 

Chest X-Ray is one of the modalities that is gaining acceptance as a screening modality. Towards this 

direction, the paper has two primary contributions. Firstly, we present the COVID-19 Multi-Task Network 

(COMiT-Net) which is an automated end-to-end network for COVID-19 screening. The proposed network 

not only predicts whether the CXR has COVID-19 features present or not, it also performs semantic seg- 

mentation of the regions of interest to make the model explainable. Secondly, with the help of medical 

professionals, we manually annotate the lung regions and semantic segmentation of COVID19 symptoms 

in CXRs taken from the ChestXray-14, CheXpert, and a consolidated COVID-19 dataset. These annotations 

will be released to the research community. Experiments performed with more than 2500 frontal CXR 

images show that at 90% specificity, the proposed COMiT-Net yields 96.80% sensitivity. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

The COVID-19 pandemic has affected the health and well-being 

f people across the globe and continues its devastating effect on 

he global population. The total cases have increased at an alarm- 

ng rate and have crossed 116 million worldwide [1] . Increasing 

ases of COVID-19 patients raises the concern for effective screen- 

ng of infected patients. The current process of testing for COVID- 

9 is time-consuming and requires availability of testing kits. This 

ecessitates the requirement for alternative methods of screening, 

hich is available to the general population, cost effective, time ef- 

cient, and scalable. 

Dyspnea is a common symptom for COVID-19. Analyzing the 

hest X-ray, radiologists have observed that it introduces specific 
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bnormalities in a patient’s lungs [2] . For instance, COVID-19 pneu- 

onia has a typical appearance on chest radiographs with bilateral 

eripheral patchy lung opacities, lower lung distribution, rounded 

orphology and absence of pleural effusion and lymphadenopa- 

hy. Figure 1 shows samples of chest x-ray images with different 

ung abnormalities including COVID-19. Motivated by this observa- 

ion and the fact that x-ray imaging is faster, cheaper, accessible, 

nd has scope for portability, many recent studies have proposed 

achine learning algorithms to predict COVID-19 using CXRs [3] . 

.1. Literature review 

Researchers have proposed AI-based techniques to detect COVID 

 19 using chest CT and x-ray images. Apostolopoulos and Mpe- 

iana [4] explored transfer learning through various CNNs and 

bserved that MobileNet v2 [5] yields the best results. Narin 

t al. [6] proposed to use three CNN models, namely, ResNet50 [7] , 

nceptionV3 [8] , and InceptionResNetV2 [9] for detecting COVID-19 

sing chest x-ray. The authors fine-tuned these pre-trained deep 

odels for distinguishing COVID-19 from normal x-rays and found 

hat ResNet-50 performed the best. They used 50 chest x-ray im- 
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Fig. 1. Samples of chest x-ray images used as a part of this research. 
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silent on these details. 
ges of COVID-19 patients from Github repository [10] and 50 

ormal chest X-ray images [11] . Nishio et al. [12] used a VGG- 

6 based model for differentiating between COVID-19 pneumonia, 

on-COVID-19 pneumonia, and healthy CXR images. 

Horry et al. [13] proposed a CXR and CT based multi-modal 

lassification for COVID-19 detection. In their work, they propose 

 data pre-processing technique and performs transfer learning 

n various deep learning architectures. Their finding suggests that 

GG16 and VGG19 gives promising results for COVID-19 vs Pneu- 

onia or normal classification. Further, Oh et al. [14] proposed a 

atch-based CNN approach for COVID-19 diagnosis. During test- 

ng, majority voting from multiple patches at different locations of 

ungs is performed for final decision. 

For interpretation and explainability, there are limited studies. 

angal et al. [15] and Jaiswal et al. [16] utilized DenseNet121 

nd DenseNet201 [17] for classification, respectively. They showed 

lass Activation Maps (CAM) for interpretation. With an emphasis 

n explainability, the authors showed CAM and confusion matrix. 

n similar lines, Ghoshal and Tucker [18] showed the application 

f ResNet50v2 [19] for the above four classes. Authors interpret 

he results using CAM, confusion matrices, Bayesian uncertainty, 

nd Spearman correlation. Similarly, Shi et al. [20] and Tsiknakis 

t al. [21] used CAM for better interpretation of COVID detection. 

heir approach aimed to extract relevant features while suppress- 

ng inadmissible ones. 

The problem of small sample size of COVID-19 chest X-ray im- 

ges was tackled by Loey et al. [22] , where they generate new 

OVID-19 infected images using GANs. Wang et al. [23] introduced 

OVID-Net for detecting COVID-19 cases. Further, the authors in- 

estigate the predictions made by COVID-Net to gain insights on 
2 
he critical factors associated with COVID-19 cases. In their work, 

 three-class classification is performed to distinguish COVID-19 

ases from regular and Non-COVID cases. In another work, Af- 

har et al. [24] proposed a capsule-network based framework re- 

erred as COVID-CAPS that uses X-ray images for COVID-19 detec- 

ion. The results from the proposed framework looks promising as 

he capsule networks have few parameters to train and work well 

n small datasets. Similarly, Shorfuzzaman and Hossain [25] pro- 

osed a n-shot meta learning framework. In their work, they use a 

iamese neural network for feature extraction with contrastive loss 

unction in a few-shot learning setting for small dataset. 

These research demonstrate that AI-driven techniques can diag- 

ose COVID-19 using chest x-ray images. It could potentially over- 

ome the challenges of limited test kits and speed up the screening 

rocess of COVID-19 cases. However, a significant limitation of ex- 

sting studies is that the algorithms work as a black box. These 

lgorithms predict if the input x-ray is affected by COVID-19 or 

ome related disease. Most studies fail to explain the decisions - 

or instance, which lung regions are salient for the specific deci- 

ions. Secondly, existing studies do not focus on radiological abnor- 

alities such as consolidation, opacities, or pneumothorax. With- 

ut a clear emphasis on the lung or the abnormality, it is hard 

o have the explainability of an algorithm in a crucial application 

f COVID-19 diagnosis. Further, most of these studies work with 

 limited number of COVID-19 samples, with around 100 samples 

nder most scenarios. Thirdly, as shown in Fig. 1 (b), the posteroan- 

erior (PA) and anteroposterior (AP) views of CXR images vary due 

o the acquisition mechanisms. While training, samples from both 

lasses need to be considered but existing algorithms are generally 
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.2. Research contributions 

In this research, we propose a deep learning network termed as 

OVID-19 Multi-Task Network (COMiT-Net), which learns the ab- 

ormalities present in the chest x-ray images to differentiate be- 

ween a COVID-19 affected lung and a Non-COVID affected lung. 

or medical applications, the explainability of machine learning 

ystems is of paramount importance [26] . In reality, the black-box 

ature of the deep algorithms refrain us from knowing which re- 

ions are getting focused. Furthermore, these algorithms fail to de- 

iver what and where the disease is, which is essential for radi- 

logists and doctors to back their decision. Hence, the proposed 

etwork incorporates additional tasks of lung and disease segmen- 

ation to provide post-hoc explainability. 

The proposed COMiT-Net simultaneously processes the in- 

ut X-ray for semantic lung segmentation, disease localization, 

nd healthy/unhealthy classification. Incorporating additional tasks 

hile performing the primary task of COVID classification has mul- 

iple advantages. While processing for COVID classification, the 

dditional segmentation tasks enforce the network to focus on 

ung regions and disease-affected areas only. Further, inclusion of 

ealthy/unhealthy classification aids the COMiT-Net to effectively 

dentify a healthy lung. Further, assistance from other tasks re- 

uces dependence on enormous amounts of data required during 

raining. The key research highlights are: 

1. Develop COVID-19 Multi-Task Network (COMiT-Net) for classifi- 

cation and segmentation of the lung and disease 1 regions. The 

COMiT-Net further predicts if lungs are affected with COVID-19 

or Non-COVID-19 disorders and differentiate them from healthy 

lungs. 

2. Inclusion of simultaneous disease segmentation in the COMiT- 

Net helps in making the decisions explainable. 

3. Extensive evaluation and comparison against the existing deep 

learning algorithms for COVID-19 prediction, lung, and disease 

segmentation. 

4. Assemble frontal chest x-rays from various sources, that can be 

used for diverse tasks such as classification and semantic seg- 

mentation of lungs and disease. For the assembled dataset, the 

CXR reports and the CXR were manually verified by a radiolo- 

gist to affirm the presence/absence of COVID-19 related abnor- 

malities. From different sources, a total of 2513 frontal x-rays 

of COVID-19 affected patients are collected. Further, these man- 

ual annotations for lung and disease semantic segmentation for 

healthy, unhealthy, and COVID-19 affected X-ray images will be 

released to the research community. 

. COVID-19 multi-task network (COMiT-Net) 

This section provides the details of the proposed COMiT-Net. 

ulti-task networks are known to learn similar and related tasks 

ogether based on the input data. As shown in Fig. 2 , multi-task 

etworks have a base network with multi-objective outputs. Since 

ach task shares the same base network, the weights are learned 

o be optimal for all functions jointly. The four tasks of COMiT-Net 

re (i) lung localization, (ii) disease localization, (iii) healthy/ un- 

ealthy classification and (iv) multi-label classification for COVID- 

9 prediction. These tasks are accomplished by using five loss func- 

ions: two for segmentation and three for classification. The details 

f these loss functions are described in the following subsections. 

Let X be the train set with n images and X i represent an image.

 i is associated with five labels, { L i , D i , H i , C i , O i } where, L i and D i 
1 In our context, the terms ‘abnormality’, ‘disease’, and ‘radiological finding’ are 

sed synonymously. 

e

t

d

o

3 
epresent the ground truth binary mask for lung and disease lo- 

alization, respectively. H i = { 0 , 1 } , C i = { 0 , 1 } , and O i = { 0 , 1 } rep-

esents the healthy/unhealthy, COVID/Non-COVID, and Non-COVID 

iseases discriminator labels, respectively. Let f be the proposed 

OMiT-Net that performs the four different tasks. The task set T 

s defined as T = { t 1 , t 2 , t 3 , t 4 } , where, t 1 and t 2 represent the task

f lung and disease localization, respectively. t 3 and t 4 represents 

he task of healthy/unhealthy and COVID/Non-COVID classification, 

espectively. 

.1. Segmentation loss 

Chest x-ray of lungs contain peripheral organs along with lung 

egions. The primary objective of this research is to differentiate 

etween COVID and Non-COVID samples. Since the key information 

ies in the lungs, the initial task is that of lung segmentation. The 

econd segmentation loss aims to learn semantic segmentation of 

he diseased regions. 

Lung segmentation can be achieved by learning a model that 

ifferentiates between the background and foreground lung re- 

ions. The COMiT-Net accomplishes this by utilizing a VGG16 

ncoder-Decoder architecture [27] . The encoder has VGG16 as a 

ase network. It has five blocks with 2, 2, 3, 3, and 3 layers of

onvolution + batch norm + ReLu layers, respectively. The decoder 

etwork builds upon the representation obtained from the encoder 

etwork, with a transposed architecture of the encoder network. 

t the final layers, the output is derived from a SoftMax layer. The 

utput dimension equals the input spatial resolution of the X-ray 

mage with the number of channels equaling the number of seg- 

entation classes. Hence, the final layer consists of two channels, 

ung and non-lung . 

Similar to lung localization, the disease localization also builds 

pon the encoder representation. However, the disease localization 

ask has a separate decoder branch and is optimized for localiz- 

ng more than 20+ lung-related disorders. For both the lung and 

isease localization, the gradients are backpropagated via decoder 

etwork into the encoder layers. 

Let f t 1 and f t 2 represent the sub-networks for lung and disease 

ocalization, respectively. For any image X i , the output predicted 

inary masks for lung and disease localization are represented as: 

 

 i = f t 1 (X i ) and 

̂ D i = f t 2 (X i ) (1) 

n this research, binary cross entropy loss is used for lung and dis- 

ase localization. Mathematically, it is represented as: 

 1 i = −
∑ 

x,y 

[
L i (x, y ) log ( ̂  L i (x, y )) + (1 − L i ) log (1 −̂ L i (x, y )) 

]
(2)

 2 i = −
∑ 

x,y 

[
D i (x, y ) log ( ̂  D i (x, y )) + (1 − D i ) log (1 − ̂ D i (x, y )) 

]

(3) 

here, Z 1 i and Z 2 i are the lung and disease loss, respectively for 

mage X i . L i (x, y ) and D i (x, y ) represent the pixel value at location

x, y ) for lung and disease masks, respectively. 

.2. Classification loss 

The two classification tasks are t 3 = Healthy/Unhealthy classifi- 

ation of the lung X-ray, and t 4 = Multi-label classification for the 

resence of COVID-19 or other abnormalities. These tasks are per- 

ormed using three classification loss functions. The lung and dis- 

ase localization provides supervision for the three classification 

asks. For healthy/unhealthy, COVID/Non-COVID, and Non-COVID 

iseases discrimination classification, two branches are derived 

ver the compact encoder representation (after GAP). Each branch 
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Fig. 2. The proposed COMiT-Net to perform multiple related tasks to improve the classification performance for COVID-19 disease diagnostics using frontal x-ray. The figure 

contrasts the multitask network with single task network. 

Fig. 3. Architecture of the proposed COVID-19 Multi-task Network (COMiT-Net), which is based on a Encoder-Decoder architecture (Best viewed in color). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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as three fully connected layers (FC). For both branches, the first 

wo layers use ReLu activation. The healthy/unhealthy branch uses 

oftMax activation at the last FC layer. The multi-label COVID/Non- 

OVID and Non-COVID diseases discrimination classification branch 

ses Sigmoid activation at the last FC layer ( Fig. 3 ). 

Let f t 3 and f t 4 represent the sub-networks for healthy/ un- 

ealthy and multi-label classification, respectively. The output of 

f t 3 for image X i is: 

 (H i | X i ) = f t 3 (X i ) (4) 

here, P (H i | X i ) is the probability of predicting image X i to H i . The

oss function for healthy/unhealthy classification is represented as: 

 3 i = −
∑ 

H i = { 0 , 1 } 
H i log (P (H i | X i )) (5) 

here, Z 3 i represents the healthy/unhealthy loss for image X i . For 

ulti-label classification, the output of sub-network f t 4 for an im- 

ge X i is written as: 

 ̂

 C i , ̂  O i ] = f t 4 (X i ) (6) 

here, ̂ C i and 

̂ O i represent the output predicted score ( ∈ [0, 1]) 

or COVID/Non-COVID and Non-COVID diseases discriminator, re- 

pectively. The radiological findings of COVID-19 pneumonia may 

verlap those of other viral pneumonia and acute respiratory dis- 

ress syndrome due to other etiologies. The network needs su- 

ervision to segregate COVID-19 pneumonia from Non-COVID lung 
4 
iseases. Hence, the joint optimization for COVID/Non-COVID along 

ith Non-COVID diseases discrimination helps differentiate COVID- 

9 affected lungs from lungs affected with diseases other than 

OVID-19. The joint loss for predicting both COVID/Non-COVID and 

on-COVID diseases discrimination is written as: 

 4 i = −
[
C i log ( ̂  C i ) + (1 − C i ) log (1 − ̂ C i ) 

]
−
[
O i log ( ̂  O i ) + (1 − O i ) log (1 − ̂ O i ) 

]
(7) 

verall Loss Function: It is possible that the ground truth labels 

r segmentation masks are not available for all the images dur- 

ng training. In this case, all branches of the networks will not 

e active during training of COMiT-Net. For instance, if the ground 

ruth mask is unavailable for disease segmentation, then the sub- 

etwork f t 2 will remain inactive and the loss Z 2 i for image X i will 

ecome zero. In the same manner, other losses can have a 0/1 

switch”. Therefore, the total loss L is computed as: 

 = 

∑ 

i 

T 1 i Z 1 i + T 2 i Z 2 i + T 3 i Z 3 i + T 4 i Z 4 i (8)

here, T 1 i , T 2 i , T 3 i , and T 4 i are the switches pertaining to the tasks

 1 , t 2 , t 3 , and t 4 , respectively. The values of these switches are

ither 0 or 1 depending on the availability of ground truth la- 

els/masks of the respective tasks for the i th image. 
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Table 1 

Details of the databases used in the experiments. 

Database Healthy View Images 

Chest X-Ray-14 [28] Healthy PA 4088 

AP 2688 

Unhealthy PA 3469 

AP 3115 

CheXpert [29] Healthy PA 1331 

AP 2163 

UnHealthy PA 3279 

AP 11305 

3

i

s
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d

t

f

d

f
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a

fi

1

Table 2 

Details for the COVID-19 databases used in the experiments. 

Source AP View PA View Total Images 

GitHub [10] 50 26 76 

Italy [30] 30 39 69 

Spain [31] 0 110 110 

RadioPaedia [32] 9 85 94 

BSTI [33] 3 39 42 

EuroRad [34] 6 18 24 

BIMCV-COVID19 + [35] NA NA 2098 

Total 2513 

Table 3 

Details of train-test split across different parameters. Train set for COVID-19 in- 

cludes augmentation. Cols 1–2 specify number of samples for segmentation tasks. 

Cols 3–5 specify number of samples for classification task. Cols 6–7 specify total 

number of AP/PA view samples in the database. 

Mask Disease-wise Views 

Lung Disease Normal Covid Others PA AP 

Train 8730 1456 8173 1740 16551 10161 16690 

Test 1837 251 2077 2223 4097 2464 3968 

Total 10567 1707 10250 3963 20648 12625 20658 

p

l

d

r

p

t

v

i

t

T

t

l

b

f

a

o

c

t

s

3

p

t

a

w

t

f

M

b

A

m

e

F

e

r

fi

t

g

t

. Experimental details 

We next summarize the databases used for training and test- 

ng, the lung and disease annotations performed as part of this re- 

earch, and the implementation details. 

.1. Database and protocol 

For different tasks of the network, we require a chest X-ray 

atabase with multiple annotations and diverse properties. Thus, 

he database for experiments is created by combining subsets 

rom the ChestXray-14, CheXPert, and COVID-19 infected X-ray 

atabases. We only use frontal X-ray in our experiments from the 

ollowing publicly available databases: 

• ChestXray-14 [28] : The dataset contains healthy and unhealthy 

x-ray images. It has a total of 112,120 chest x-ray images, out 

of which 67,310 are PA view images, and remaining 44,810 are 

AP view. Multiple radiographs of the same patient taken at dif- 

ferent times are also present. From the database, we derive a 

subset of 13,360 images, spanning both PA and AP views. The 

unhealthy X-rays are labeled for one or more classes in a total 

of 14 classes. The 14 classes are: Atelectasis, Cardiomegaly, Con- 

solidation, Edema, Effusion, Emphysema, Fibrosis, Hernia, Infil- 

tration, Mass, Nodule, Pneumonia, Pneumothorax, and Pleural 

Thickening. Additionally, the dataset provides localization infor- 

mation of abnormalities for 880 X-rays. The details of the sub- 

set drawn from ChestXray-14 is illustrated in Table 1 . 
• CheXpert [29] : The CheXpert dataset contains a total of 223,414 

chest x-ray images, out of which 29,420 are PA view, 161,590 

are AP view, and the remaining are lateral or single lung view 

images. Multiple case studies of the same patient are avail- 

able in the dataset. This dataset contains healthy and un- 

healthy X-ray images. We selected a subset of 18,078 images. 

Based on the radiological findings, each X-ray image is labeled 

positive/negative for 14 pre-defined classes (few overlapping 

with ChestXray-14). The 14 classes are: No Finding, Enlarged 

Cardiom, Lung Lesion, Edema, Consolidation, Pneumonia, At- 

electasis, Pneumothorax, Cardiomegaly, Pleural Effusion, Pleural 

Other, Lung Opacity, Fracture, and Support Devices. The details 

of the x-ray images selected from CheXpert database is shown 

in Table 1 . 
• COVID-19: For this study, we collected a total of 415 X-rays 

from various internet sources. The sources have a mixed num- 

ber of PA and AP view frontal chest x-ray. The number of X-rays 

collected from each source has been summarized in Table 2 . 

Further, we have also performed additional experiments with 

2388 images from the BIMCV+ COVID-19 Database [35] . Details 

and experimental results of the BIMCV+ database can be found 

in Section 4.4 . 

ince the above COVID-19 subset has a limited number of im- 

ges, we perform data augmentation. Each image is augmented 

ve ways - clockwise rotation by 10 o , anti-clockwise rotation by 

0 o , translation by 10 pixels in the X, Y, and XY-directions. Since 
5 
neumonia is a closely related pathology to COVID [36] , we se- 

ect all the pneumonia samples of the ChestXray-14 and CheXPert 

atasets. Further, to accommodate the variations in non-healthy x- 

ay samples, about 50% more unhealthy samples are selected com- 

ared to healthy samples. AP view x-rays are prominent compared 

o PA views in the CheXpert dataset. Hence, we select more AP 

iew X-ray images. 

The data is split into training and testing ensuring that there 

s no patient overlap in the train and test sets. The details of 

he train-test data split across different properties are specified in 

able 3 . The first two columns specify the number of samples for 

he task of segmentation, i.e. the samples for which disease and 

ung masks are available. The next three columns specify the num- 

er of samples present in different classes (normal, COVID, others) 

or the task of classification. The last two columns specify the char- 

cteristics of the overall database by subdividing the total number 

f samples into two categories- AP and PA. AP and PA views of 

hest x-rays are substantially different, and we attempt to balance 

he two views to provide balanced training. Note that all the train 

et numbers mentioned in the table are post-augmentation. 

.2. Lung and disease region annotation 

The datasets mentioned above lack lung localization details. The 

roposed COMiT-Net requires a ground-truth lung location to iden- 

ify the lung region from the x-ray. For this purpose, we manually 

nnotated a total of about 90 0 0 lung x-rays. These x-rays include 

ell-balanced healthy/unhealthy, AP/PA subsets taken equally from 

he CheXpert and ChestXray-14 datasets. All x-ray images available 

or COVID-19 are also manually annotated for lung segmentation. 

ask for each x-ray image has been created by drawing two solid 

ounding boxes, corresponding to the area covered by each lung. 

s a part of this study, we also plan to release the ground truth 

asks for the manually annotated lung regions. 

The datasets included as a part of this study have only 880 dis- 

ase localization annotation images (from ChestXray-14 database). 

or COVID-19 affected frontal lung x-ray images, we lacked dis- 

ase segmentation masks. Hence, as a part of this study, the x- 

ay images are annotated by a radiologist for various radiological 

ndings. The findings radiologists looked for includes: (i) atelec- 

asis, (ii) consolidation, (iii) interstitial shadows (reticular, nodular, 

round glass), (iv) pneumothorax, (v) pleural effusion, (vi) pleural 

hickening, (vii) cardiomegaly, and (viii) lung lesion. The experts 
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Fig. 4. Annotations provided for COVID-19 affected frontal lung x-ray images as a part of this study: (a) Labeled COVID-19 X-ray for locations of radiological finding, (b) 

Description of the radiological finding, (c) Corresponding binary masks for training deep semantic segmentation algorithms for disease segmentation. 
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2 It is observed that the loss of the model converges around the 30th epoch. To 

make sure the model is trained and does not overfit, we track the training losses 

and early stop at 30th epoch. 
nnotated a total of 200 COVID-19 affected chest x-rays. A few 

ample annotations for the same can be seen in Fig. 4 (a) and the

orresponding description in Fig. 4 (b). While training deep learning 

lgorithms, the model requires binary masks as annotation. Hence, 

e created these masks based on the annotations ( Fig. 4 (c)). We 

ill release the ground truth binary masks to promote the training 

f deep semantic segmentation algorithms for abnormality local- 

zation. 

.3. Implementation details 

The proposed Multi-task network requires input X-ray images 

f size 224 × 224 × 3. The encoder stream is initialized us- 

ng a pre-trained VGG16 model. With a batch size of 16, the 

odel is optimized over binary cross-entropy loss using Adam op- 

imizer (learning rate = 5 × 10 −5 ). Each loss is weighted equally. 
6 
he model is trained for 30 epochs 2 on NVIDIA GeForce RTX 

080Ti and implemented in PyTorch. 

UNet and SegNet models are trained on Nvidia RTX 2080Ti us- 

ng a PyTorch (v.1.4.0) implementation. The input size is kept the 

ame as 224 x 224 x 3 with batch size of 4. The model is trained

or 25 epochs by minimizing binary Cross-Entropy loss using Adam 

ptimizer with an initial learning rate of 0.0 0 01. Other Python li- 

rary requirements include torchvision (v.0.5.0), tqdm (v.4.45.0), 

ensorboardX (v.1.1), and Pillow (7.0.0). Similarly, Mask-RCNN op- 

rates on same sized images with a training batch size of 16. The 

odel is trained for 25 epochs by minimizing binary Cross-Entropy 

oss using SGD optimizer with a learning rate of 0.001 and mo- 

entum 0.9. The model is trained on Google Colab with Nvidia 
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Fig. 5. Samples of lung segmentation output for existing algorithms and the proposed COMiT-Net. 
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esla T4 as the GPU accelerator using a PyTorch (1.6.0+cu101) im- 

lementation. 

The comparitive algorithms include DenseNet121 [15–17] , Mo- 

ileNetv2 [4,5] , ResNet18 [6,7,37] , and VGG19 [13,38] . For each of 

hese networks, the ImageNet pre-trained version is selected. The 

odel is then fine-tuned with the dataset and protocol used for 

he proposed COMiT-Net. The input size, batch size, and epochs are 

ept same as COMiT-Net, i.e., 224 × 224 ×3, 16, and 30 respectively. 

. Results and analysis 

We next evaluate the performance of the proposed COMiT-Net 

or classification and localization tasks. The performance is com- 

ared with existing deep learning algorithms for COVID-19 chest 

adiograph studies. Further, to study the effectiveness of the pro- 

osed COMiT-Net, we perform experiments by selecting differ- 

nt combinations of sub-networks from the COMiT-Net in sub- 

ection 5.3. Lastly, subsection 5.4 specifically tasks about predic- 

ion of COVID-19 affected CXR. The predictions are presented on 

 large COVID-19 positive CXRs database, validated against predic- 

ions from radiologists. 

.1. Lung and disease localization 

In this subsection, the segmentation results of the pro- 

osed COMiT-Net are compared against region predictions from 

Net [39] , Mask RCNN [40] , and SegNet [27] . For lung segmenta-

ion, sample predictions of the proposed and existing algorithms 

re shown in Fig. 5 . Inferring the sample prediction, we observe 

hat all four algorithms perform well and give comparable results. 

owever, the proposed COMiT-Net yields the most precise bound 

or lung segmentation. To support the visual results presented in 

ig. 5 , we additionally report the Intersection over Union (IoU) 

or lung segmentation. The IoU scores corresponding to the U-Net, 

ask-RCNN, SegNet, and COMiT-Net are 0.82, 0.85, 0.83, and 0.85, 

espectively. The reported IoU for COMiT-Net is same as the state- 

f-the-art segmentation method Mask-RCNN. We can also visually 

bserve in Fig. 5 that COMiT-Net provides the tightest bound for 

ungs. Since lung and disease localization tasks are performed si- 

ultaneously, and diseases are present within the lungs, the lung 

ecoder network learns to focus more on the lung regions rather 

han the outside the lungs. 

The results of disease segmentation are shown in Fig. 6 . The 

rst two rows of Fig. 6 illustrate abnormalities in COVID-19 af- 
7 
ected lungs while last two rows have abnormality localization in 

nhealthy but Non-COVID affected lungs. For disease localization, 

 more relevant metric is True Positive Rate (TPR). When localiz- 

ng a disease, we would not want to miss detection of diseased 

egions (even if some non-diseased regions get predicted as dis- 

ased). Hence, the reported TPR corresponding to the U-Net, Mask 

CNN, SegNet, and COMiT-Net are 0.42, 0.51, 0.31, and 0.87, respec- 

ively. The masks for all the four algorithms are predicted at a con- 

tant threshold of 0.5 (disease treated as foreground; label = 1). Us- 

ng the predicted mask, we calculate the TPR for the foreground 

isease classification. From the perspective of shape, Mask-RCNN 

ends to provide well-defined shape boundaries for Non-COVID un- 

ealthy lungs. SegNet and COMiT-Net provide irregularly shaped 

redictions, localizing the radiological findings compactly. Overall, 

e observe that each of the four algorithms predict additional re- 

ions for the abnormalities. The detected abnormalities have false 

ositive regions when compared to the ground-truth. As shown in 

ig. 7 (c) and (d), these false positives sometimes arise due to better 

ocalization by SegNet and proposed COMiT-Net. The comparative 

round-truth provided with the database is shown for reference in 

ig. 7 (a). 

Further, we observe that for certain abnormalities in ‘Unheathy’ 

ase, deep models fail to localize the abnormality. One of the rea- 

ons for this is the limited training data for abnormality localiza- 

ion with large variations in the diseased regions. The unhealthy 

on-COVID lung abnormalities are derived from ChestXray-14, 

hich has 700 samples corresponding to 14 labels. As a result of a 

mall sample size for each abnormality, the networks cannot local- 

ze diseases properly. However, the proposed COMiT-Net has as- 

istance from other tasks. For instance, the lung prediction task 

ould implicitly reinforce COMiT-Net to predict diseases within 

he lung. Hence, of the four algorithms, the proposed COMiT-Net 

rovides the most overlapping prediction with the ground truth. 

Compared to 700 samples for 14+ different radiological find- 

ngs (approx. 50 images per abnormality), there are 290 COVID- 

9 affected lung x-rays (prior to augmentation). A majority of the 

OVID-19 affected chest radiographs demonstrate consolidations, 

hich tend to be bilateral and more common in lower zones [41] . 

ence, deep models have more samples to learn the localization 

f COVID-19 specific abnormalities than other diseases (290 vs. 50). 

n retrospection, the first two rows of Fig. 6 illustrate that all four 

odels perform relatively better for COVID-19 localization than the 

ast two rows of “unhealthy” localization. In most cases, each of the 

our models predict affected regions in the lower lung zones bilat- 
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Fig. 6. Samples of semantic disease segmentation for existing algorithms and the proposed COMiT-Net. The x-ray images and corresponding abnormality localization for 

“Unhealthy” are derived from ChestXray-14 database [28] . 

Fig. 7. Non-COVID affected unhealthy lung, with (a) ground-truth annotation from ChestXray-14 database, (b) abnormality manually marked by a radiologist (as a part of 

this study), (c) disease prediction from SegNet, and (d) disease prediction from the proposed COMiT-Net. 
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3 The overall test classification accuracy is = 

T P+ T N 
rally. However, the proposed COMiT-Net outperforms other algo- 

ithms. For instance, in the first row of Fig. 6 , both Mask-RCNN 

nd SegNet tend to leave out the darker region in the right lung, 

hile ground-truth and COMiT-Net have that region marked as 

iseased. Further, in the low contrast x-ray in row two, the less 

paque part of the right lower lung looks darker (though being 

iseased). Hence, UNet fails to detect any finding in the right lower 

ung, while Mask RCNN and SegNet detects a few small region(s). 

evertheless, the proposed COMiT-Net can detect such faint differ- 

nces in lung density. 

.2. Classification 

Next, we evaluate the COMiT-Net’s performance for 

ealthy/unhealthy (Task 3) classification and multi-label clas- 

ification of COVID-19 and other diseases (Task 4). For COVID/Non- 

OVID classification, a branch is derived from the last layer of the 

ncoder network i.e., GAP which outputs the embedding of the 

nput samples. The branch has three fully connected layers (FC) 

here the first two layers use ReLu activation and the last FC 

ayer uses sigmoid activation for classification. The results of the 

OMiT-Net are compared against popular deep networks. These 

nclude DenseNet121 [15–17] , MobileNetv2 [4,5] , ResNet18 [6,7,37] , 

nd VGG19 [13,38] . Further, we draw a comparison with Ran- 

om Decision Forest (RDF) [42] and Support Vector Machines 
8 
SVM) [43] with three different kernels- sigmoid, gaussian, and 

adial basis function (RBF). In the COMiT-Net Embedding + RDF, 

he embeddings of the input samples are obtained from the GAP 

ayer of the encoder network and are further used to train the 

DF classifier. Similarly, for the COMiT-Net Embedding + SVM (Sig- 

oid), COMiT-Net Embedding + SVM (Gaussian), and COMiT-Net 

mbedding + SVM (RBF), the output embeddings are used to train 

VM classifier with sigmoid, gaussian, and rbf kernels. 

The results for classification performance are presented in 

able 4 . In the Table, the sensitivity results are reported at two 

xed specificities, i.e., 90% and 99%. At these fixed specificity val- 

es, the observed sensitivity is 96.80% and 87.20%, respectively. 

urther, for COVID classification, we observe an overall test classifi- 

ation performance 3 of 98.79%. Lastly, we also computed precision 

nd recall for the proposed method. At 99% specificity, the preci- 

ion is 64.12% and recall is 87.20%. Additionally, using precision and 

ecall, the F1 score is found as 73.90%. 

The proposed COMiT-Net achieves the highest TPR and lowest 

ER compared to the existing algorithms. With the implicit su- 

ervision from lung and disease localization tasks, the proposed 

OMiT-Net outperforms all other existing algorithms. To show the 

tability of different algorithms with different initialization, the 

etworks are three-times trained with different initialization pa- 
T P+ T N+ F P+ F N 
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Table 4 

Evaluation and comparison of the proposed COMiT-Net with existing algorithms for 

COVID-19 prediction (FC = Fully Connected Classification Layers). Y denotes varying 

specificity values. Col 1 with Y = 99% denotes the sensitivity of the network at 99% 

specificity. 

Sensitivity @ Y Specificity EER (%) 

Y = 99% Y = 90% 

DenseNet121 + FC 60.80 90.40 9.82 

MobileNetv2 + FC 67.20 93.60 8.04 

ResNet18 + FC 56.00 81.60 13.78 

VGG19 + FC 50.40 82.40 13.70 

COMiT-Net Embedding + RDF 79.20 95.20 7.34 

COMiT-Net Embedding + SVM (Sigmoid) 6.40 24.00 41.46 

COMiT-Net Embedding + SVM (Gaussian) 82.40 88.80 11.38 

COMiT-Net Embedding + SVM (RBF) 82.40 88.80 11.38 

COMiT-Net (Proposed) 87.20 96.80 7.30 

Fig. 8. Standard deviation ( ±) of Sensitivity (at 1% FAR) for different algorithms. 

The performance is computed for different initialization of deep networks. The re- 

sults show the stability in sensitivity for COMiT-Net, delivering consistent results 

for different initializations. 
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Table 5 

An ablation study on reducing the number of 

tasks and observing its effect on COVID-19 pre- 

diction. 

COVID-19 (Sensitivity %) 

All 4 Tasks 96.80 

Task 4 Only 84.40 

Task 1 and 4 94.40 

Task 2 and 4 57.60 

Task 3 and 4 67.80 

Task 1, 2 and 4 92.80 

Task 1, 3 and 4 87.20 

Task 2, 3 and 4 54.40 
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ameters. Across different training initializations, we report the 

tandard deviation in Sensitivity to evaluate the stability (lower 

tandard deviation implies higher stability). As shown in Fig. 8 , 

he proposed COMiT-Net is the most stable algorithm across dif- 

erent initializations. Classifiers that use embeddings from COMiT- 

et also report lower standard deviation. Hence, it can be inferred 

hat COMiT-Net consistently provides a discriminative representa- 

ion, resulting in a stable performance. Fig. 9 further shows the 

omparison using the ROC curves of the proposed COMiT-Net and 

xisting algorithms. 

The COMiT-Net’s classification performance for the COVID-19 

amples into the healthy and unhealthy class is also analyzed. 

he proposed network classifies 97.25% of COVID-19 samples into 

nhealthy class and 2.75% in healthy class. The high TPR of the 

OVID-19 class and the majority of the COVID-19 samples being 

lassified into unhealthy class showcase the effectiveness of the 

roposed network for COVID-19 detection. Overall, the classifica- 

ion performance of healthy/unhealthy classification is 75.17% for 

ll the test samples, while for Non-COVID disease classification is 

3.87%. Based on the proposed COMiT-Net, Fig. 10 shows some 

f the misclassified samples where the network predicts COVID- 

9 positive instances (as per the RT-PCR test) into healthy (Task 

). Correspondingly, the same samples are also predicted as Non- 
9 
OVID by Task 4 of the proposed COMiT-Net. In retrospection, we 

elieve that minimal opacities in the lung region could be the 

robable cause of misclassification. This led us to check the ground 

ruth for the hospitalization day. Of the four misclassified samples 

hown in Fig. 10 , three turned out to be the early days of the pa-

ients hospitalization (up to day 3). Based on these observations, 

e believe that the COMiT-Net predicts an x-ray being affected 

hen there is presence of symptoms such as opacities and con- 

olidations. 

.3. Ablation study 

To study the importance of different tasks in the proposed 

OMiT-Net, we perform an ablation study by choosing different 

ombinations of tasks. The four tasks in the COMiT-Net are Task 

: Semantic lung segmentation, Task 2: Semantic disease segmen- 

ation, Task 3: Healthy/Unhealthy classification of the lung X-ray, 

nd Task 4: Multi-label classification for the presence of COVID- 

9 or other diseases. We perform eight different ablation exper- 

ments, presented in the Table 5 . It is observed that for COVID- 

9 prediction, each task (loss function) has an important role. Re- 

oving either of the three assisting tasks deteriorates the perfor- 

ance. Of all these three assisting tasks, the lung segmentation 

ask holds a pivotal role. In a COVID-19 affected x-ray, a com- 

on trait is that the lungs get affected bilaterally. Hence, a com- 

rehensive view provided by the lung segmentation task provides 

ore weight to lung regions, resulting in better performance with 

ask 1 than any other task. We perform disease segmentation 

nd healthy/unhealthy classification since their efficacy improves 

n conjunction with lung segmentation and has a positive impact 

n the Non-COVID disease classification prediction. As validated by 

he ground-truth t-SNE feature space plot (shown in Fig. 11 (a)), the 

redictions of the test COVID-19 samples ( Fig. 11 (b)) are well sep- 

rated from Non-COVID samples. It shows that the model can dis- 

inguish COVID-19 affected sam ples and can predict unseen test la- 
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Fig. 9. ROC curves summarizing the performance for COVID-19 classification. 

Fig. 10. COVID-19 positive case misclassified as both healthy and Non-COVID by the 

proposed COMiT-Net. 

b

t

d

(

b

f

f

a

h

r

p

d

i

t

4

t

d

r

d

f

p

o

d

n

t

t

n

1

W

x

f

l

c

1

els correctly. Further, we use Grad-CAM [44] which is a popular 

ool for producing visual explanations for decisions obtained from 

eep learning architectures. As observed in the Grad-CAM analysis 

 Fig. 12 ), the proposed COMiT-Net focuses on diseased regions, in 

oth COVID-19 and unhealthy test samples, to make its prediction. 

In the real-world scenario, annotating disease and lung masks 

or chest x-rays is a time consuming and challenging task. The per- 

ormance of the proposed COMiT-Net is dependent on the available 

nnotated data for the different tasks. It might not be feasible to 

ave an adequate amount of disease and lung masks for the X- 

ay images in the training set. Moreover, the performance of the 
10 
roposed model for the task of COVID/Non-COVID classification is 

ependent on the task of lung and disease segmentation. Remov- 

ng either of these assisting tasks deteriorates the performance of 

he COMit-Net. 

.4. Prediction on unseen COVID X-ray database 

Recently, BIMCV-COVID19+ database has been released by 

he Medical Imaging Databank in Valencian Region (BIMCV). To 

emonstrate the performance of the proposed COMiT-Net in a 

eal-world scenario, we report the results on the BIMCV-COVID19+ 

atabase as well. At the time of download, the database had 2388 

rontal x-ray images. The x-ray is captured from COVID positive 

atients during hospitalization. For each patient, the database has 

ne or more x-ray along with the report of one or more COVID-19 

iagnostics tests (RT-PCR, IGM, IGG) with its timestamps. It is to be 

oted that the timestamp of the x-ray does not coincide with the 

imestamp of the diagnostics test. Hence, if an x-ray is taken closer 

o a negative diagnostics test or is at least 14 days away from the 

earest positive diagnostics test, the x-ray is considered as COVID- 

9 negative. Otherwise, we label the x-ray as COVID-19 positive. 

ith this procedure, there are a total of 2,098 COVID-19 positive 

-rays which are used for testing purposes only (no training is per- 

ormed on this dataset). For reproducibility, we will release these 

abels along with filenames of the radiographs. 

Out of 2,098 COVID-19 positive x-rays, the trained COMiT-Net 

orrectly classifies 1,793 samples and misclassifies 305 samples (at 

0% FAR). Hence, at 90% specificity, the COMiT-Net has a sensitiv- 
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Fig. 11. Interpretation of feature representation based on (a) ground-truth and (b) 

predicted labels using t-SNE plot for COVID/Non-COVID classification. 

Fig. 12. Interpretation of regions focused by COMiT-Net using Grad-CAM. As seen 

from heat maps, the supervision from disease and lung annotation helps the 

COMiT-Net to focus on unhealthy regions. 

Fig. 13. Few instances of semantic disease segmentation from the proposed COMiT- 

Net for the BIMCV+ COVID-19 database. 
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Fig. 14. Sample instances that were labeled by BIMCV-COVID19+ as p

11 
ty of 85.46%. Sample instances of disease segmentation from the 

orrectly classified 1,793 samples are shown in Fig. 13 . Similar to 

revious disease segmentation instances, COMiT-Net is able to lo- 

alize abnormalities bilaterally. 

To further understand the behavior of the 305 misclassified in- 

tances, each of these samples is verified by radiologists to affirm if 

ny radiological abnormality is present or not. Of these 305, there 

re 115 instances where radiologists confirmed the absence of any 

bnormality. Few sample instance of these cases where the COMiT- 

et and radiologists predicted negative yet BIMCV-COVID19+ la- 

elled positive is shown in Fig. 14 . 

Lastly, we show additional results on COVID-19 subsets of the 

OVID-19 Radiography dataset 4 . Of the six COVID subsets pre- 

ented in the dataset, our proposed method had already used four 

BIMCV, EuroRad, Github, SIRM). For the remaining two subsets, at 

0% specificity threshold, the sensitivity is 98.75% for the ARMIRO 

ubset (400 images) and 99.45% for the ML-workgroup subset (183 

mages). 

. Conclusion and future work 

In the face of the SARS-CoV2 pandemic, it has become essen- 

ial to perform mass screening and testing of patients. However, 

any countries around the world are not equipped with enough 

aboratory testing kits or medical personnel for the same. At the 

ame time, X-rays are amongst the most popular, cost-effective and 

idely available imaging technology across the world. This paper 

resents an “explainable solution” for detecting COVID-19 pneu- 

onia in patients through chest radiographs. We propose COMiT- 

et which performs the tasks of classification and segmentation 

imultaneously. Experiments conducted on different chest radio- 

raph datasets show promising results of the proposed algorithm 

n COVID prediction. The ablation study supports the utilization of 

ifferent tasks in the proposed multi-task network. We believe that 

he proposed COMit-Net can be used as an attractive alternative 

olution that can assist the doctors and the research community to 

peed up the screening process of COVID cases. 
4 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database 

ositive but the COMiT-Net and radiologists predicted negative. 

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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In future, we plan to extend this work and use the proposed 

ramework for the task of COVID-19 prediction using modalities 

ther than X-ray such as CT and ultrasound. Since these modal- 

ties provide complementary information such as nature and for- 

ation of abnormalities present in the diseased region, incorporat- 

ng them will help in crafting a robust solution. Further, we need 

o understand distinguishable traits between COVID-19 pneumonia 

nd non-COVID viral pneumonia. Learning these traits can be use- 

ul in detecting COVID-19 pneumonia. 
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