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Modelling menstrual cycle length 
in athletes using state‑space 
models
Thiago de Paula Oliveira1,2,3, Georgie Bruinvels2,4, Charles R Pedlar2,4, Brian Moore2 & 
John Newell1,3*

The ability to predict an individual’s menstrual cycle length to a high degree of precision could help 
female athletes to track their period and tailor their training and nutrition correspondingly. Such 
individualisation is possible and necessary, given the known inter-individual variation in cycle length. 
To achieve this, a hybrid predictive model was built using data on 16,524 cycles collected from a 
sample of 2125 women (mean age 34.38 years, range 18.00–47.10, number of menstrual cycles 
ranging from 4 to 53). A mixed-effect state-space model was fitted to capture the within-subject 
temporal correlation, incorporating a Bayesian approach for process forecasting to predict the 
duration (in days) of the next menstrual cycle. The modelling procedure was split into three steps (1) a 
time trend component using a random walk with an overdispersion parameter, (2) an autocorrelation 
component using an autoregressive moving-average model, and (3) a linear predictor to account 
for covariates (e.g. injury, stomach cramps, training intensity). The inclusion of an overdispersion 
parameter suggested that 26.36% [23.68%, 29.17%] of cycles in the sample were overdispersed. The 
random walk standard deviation for a non-overdispersed cycle is 27.41± 1.05 [1.00, 1.09] days while 
under an overdispersed cycle, the menstrual cycle variance increase in 4.78 [4.57, 5.00] days. To assess 
the performance and prediction accuracy of the model, each woman’s last observation was used 
as test data. The root mean square error (RMSE), concordance correlation coefficient and Pearson 
correlation coefficient (r) between the observed and predicted values were calculated. The model had 
an RMSE of 1.6412 days, a precision of 0.7361 and overall accuracy of 0.9871. In conclusion, the hybrid 
model presented here is a helpful approach for predicting menstrual cycle length, which in turn can be 
used to support female athlete wellness.

The availability of mobile apps developed to track the menstrual cycle is growing as they are becoming increas-
ingly popular for contraception purposes, fertility awareness and exercise planning. These apps can be grouped 
broadly as calendar-based, basal body temperature (BBT), or symptothermal1–3. Calendar apps generally use 
simple algorithms based on empirical measurements to predict cycle phase length4; BBT apps describe a woman’s 
menstrual variation through her basal body temperature rise5 and symptothermal apps measure parameters such 
as cervical mucus changes, bleeding period and so on2.

The mobile app that generated the data used in the study is called FitrWoman. It is a free calendar-based 
app that enables users to track their menstrual cycle and symptoms, and provides relevant information about 
wellness, nutrition and exercise, based on the athlete’s predicted menstrual cycle phases and length. The user 
inputs daily information on 25 symptom variables such as flow, bloating, constipation, injury, illness, irritability 
and weakness. The target audience is female athletes who wish to track their menstrual cycle to improve their 
performance and understanding of their individual cycle.

As a woman’s body may respond and adapt differently throughout their cycle, different planning and prepara-
tion over the menstrual cycle phases6–8 might be required. McNulty et al.9 observed through meta-analysis that 
exercise performance might be trivially reduced during the early follicular phase of the menstrual cycle when 
compared to the other phases.

As few apps are accurate in terms of menstrual cycle length prediction10, the development of an appropri-
ate, exact parametric model for one-step-ahead forecast cycle length is required. Such a model should take into 
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account the between and within-woman variability to identify menstrual cycle patterns and how each symptom 
could affect cycle length, alongside the implications of significant alterations in cycle length.

According to several studies11–14, the menstrual cycle length can be classified into two groups ‘standard‘ and 
‘menstrual dysfunction‘, where a cycle length greater than 35 days is classified as ‘menstrual dysfunction‘ and 
otherwise as standard. Many statistical models have been proposed in the literature to describe these different 
groups of menstrual cycles2,15–18. Generally, cycle length related to the ‘standard‘ group can be analysed using 
classical statistical approaches. In contrast, the mixture of standard and non-standard cycles can be analysed using 
a mixture distribution accounting for the significant symmetric distribution and the component corresponding 
to the heavy right tail14,15. To account for the within-individual variability, we focused on the dynamic aspect of 
menstrual cycles over time, as discussed by Bortot et al. (2010)16, who derived a predictive distribution based on 
individual repeated measurements using a state-space model formulation. According to these authors16, state-
space models under a Bayesian approach have the advantage of incorporating between subject information to 
compensate for the relatively large number of subjects with a low quantity of repeated measurements and to 
make predictions for women not included in the sample.

It is well-established that having a regular menstrual cycle is a ’vital sign‘ demonstrating that the body is likely 
to be in an adaptive state and is tolerating the physical and psychological stressors that are being placed on it19. 
Significant elongations in cycle length are associated with adverse health and fertility outcomes20–23, therefore 
gaining a better understanding of the interrelating risk factors for cycle length extension is important.

In this paper, the first objective was to develop an appropriate parametric state-space formulation for the 
marginal distribution of standard menstrual cycles for female athletes. In addition, symptom variables were 
included in the model’s linear predictor to evaluate how the individual reported symptoms might affect an ath-
lete’s menstrual cycle duration. The second aim was to develop a one-step-ahead forecasting interval approach, 
based on a state-space formulation, to describe the experimental and state process while considering both 
between and within-woman variability.

Results and discussion
Results from the state-space models, state-space mixed-effects models and linear mixed-effects models (LMM), 
fitted using the available data, are summarised in Table 1. In general, the Bayesian information criteria (BIC) 
suggests that the random walk models fitted better than the LMM when modelling menstrual cycle length, in 
agreement with the results reported by Bortot at al. (2010)16 while contradicting the results of2 who report an 
R2 = 0.99 when fitting a simple linear regression.

The inclusion of rij to model overdispersed cycle lengths was fundamental to describe menstrual cycle dynam-
ics as evidenced by the BIC criteria where a reduction of 56.22% compared to yij = mij + ǫij , and 56.62% com-
pared to yij = β0 + b0i + (β1 + b1i)Ageij + ǫij is evident, as shown in Fig. 1. Additionally, the inclusion of a 
moving average (MA) parameter was necessary to capture the dynamism of shorter cycles followed by longer 
cycles and vice-versa. In summary, a random walk with a random variable to capture overdispersion rij plus a 
MA(1) model demonstrated the best fit to the data.

To assess model performance, we compared the forecasts of these models using the RMSE of one-step-ahead 
predictions, CCC and Pearson correlation coefficient evaluated on the test group. Table 1 demonstrates that bet-
ter forecast predictions were made using a random walk rather than an LMM and that there was little difference 
between the random walk models in terms of forecasting. As a consequence, the BIC criteria can be used to select 
the error structure. After selecting the trend and error structures, the next stage of the analysis was the selection 
of potentially useful explanatory variables. The set of 28 available represented a variety of reported symptoms by 
the i-th woman, including an interval-based variable representing a woman’s body mass index (Kg/m2 ) (Table 2), 
classified as discussed by Corbel at al. (2004)24. In this analysis, underweight classes I and II were classified as 

Table 1.   Model selection criteria for stages I and II; number of parameters (N. Par.), root mean square error 
(RMSE), concordance correlation coefficient (CCC), Pearson correlation coefficient (r) between fitted and 
predicted test data, and Bayesian information criterion (BIC).

Model N. Par.

Forecasting

BICRMSE CCC​ r

yij = mij + ǫij 3 1.6066 0.7327 0.7537 16,886.70

yij = mij + AR(1) 4 1.5956 0.7251 0.7546 17,920.96

yij = mij + MA(1) 4 1.6108 0.7348 0.7533 17,694.21

yij = mij + ARMA(1,1) 5 1.5808 0.7360 0.7603 17,695.83

yij = mij + rij + ǫij 5 1.6449 0.7131 0.7283 7393.54

yij = mij + rij + AR(1) 6 1.6332 0.7136 0.7323 8413.30

yij = mij + rij + MA(1) 6 1.6412 0.7266 0.7361 7381.61

yij = mij + rij + ARMA(1,1) 7 1.6255 0.7203 0.7363 7460.37

yij = β0 + b0i + (β1 + b1i)Ageij + ǫij 5 1.6274 0.7257 0.7457 17,042.26

yij = β0 + b0i + (β1 + b1i)Ageij + AR(1) 6 1.6640 0.7205 0.7374 17,413.73

yij = β0 + b0i + (β1 + b1i)Ageij + MA(1) 6 1.6810 0.7171 0.7326 17,305.01

yij = β0 + b0i + (β1 + b1i)Ageij + ARMA(1,1) 8 1.6832 0.7164 0.7320 17,314.24
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’severely’ and ’very severely underweight’ while obese classes I, II, and III represented moderately, severely and 
very severely obese, respectively. The sample of women had a reported BMI of between 14.44 and 54.25, with a 
mean of 22.85 Kg/m2 ; the absolute frequency is shown as a histogram in Fig. 1.

The selected state-space model summary with posterior means and 95% credibility intervals for the popula-
tion parameters (after predictor selection) is presented in Table 3.As the model parameterisation facilitates the 
interpretation of the role played by the explanatory variables, our analysis reveals important insights on how 
some symptoms affect menstrual cycle length.

We found that the overall menstrual cycle length without any reported symptoms was around 
27.41[27.33, 27.50] days, which is in agreement with Guo et al (2006)15 and Bull et al. (2019)2. Additionally, the 
reporting of injury, stomach cramps and flow amount was associated with increased menstrual cycle length. In 
contrast, the reporting of tender breasts was associated with decreased cycle length. For example, if a woman 
reported tender breasts ten times over her cycle, as a consequence, her predicted menstrual cycle length is esti-
mated to reduce, on average, by 0.154× 10 = 1.54 days.

Self-track symptoms quality depends on both user engagement, app design and unambiguous language to 
describe the level of a symptom. Consequently, to make it more consistent, filtering the original database based 
on the scientific literature is a critical way to reduce bias in the covariates used to fit the model, as described by 
Li et al. (2020)14.

The estimated value of π suggests that the probability of a non-standard (overdispersed) menstrual cycle 
length occurring in this population of interest is 0.2636. Consequently, we can infer that 26.36% [23.68%, 29.17%] 
of cycles in the sample are overdispersed. Furthermore, while a non-overdispersed cycle had a standard devia-
tion (SD) of ση = 1.0417 [0.9971, 1.0875], the SD of an overdispersed cycle increases where σw = 4.7803 
[4.5738, 5.0007], which represents a 4-fold increment. According to Najmabadi et al. (2020)25, between and 
within-variability in cycle characteristics should be emphasised as an important health indicator to assess behav-
ioural, metabolic, and environmental factors. Therefore, the inclusion of θ and σw play an essential role in the 
proposed model, as illustrated in Fig. 2. This Figure shows the probability that the proposed model (3) considers 
an observation as overdispersed where the results clearly demonstrate that rij = �ijwij is capturing menstrual 
cycles with overdispersion.

Using this model, knowledge and understanding can be gleaned as to how symptom variables affect the men-
strual cycle, which is essential for individual athletes, coaches and healthcare professionals. Furthermore, these 
results can improve the forecasting intervals, helping women to know more about their bodies and cycles based 
on symptoms during a particular phase of their cycles. Further work is needed to translate these findings into 

Table 2.   Histogram of BMI and body mass index (BMI) classification.

Category

BMI 
(

Kg /m2
)

From To

Underweight II 15

Underweight I > 15 16

Underweight > 16 18.5

Normal > 18.5 25

Overweight > 25 30

Obese Class I > 30 35

Obese Class II > 35 40

Obese Class III > 40

Figure 1.   Histogram of Body Mass Index (BMI) classification.
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recommendations. Although information relating to follicular and luteal phases was not available in the data, a 
strong linear correlation between menstrual cycle length and follicular phase has been reported26–28. Where the 
correlation tended to increase with age. To predict ovulation time, further studies, which include both luteal and 
follicular phases and basal body temperature (BBT), are needed to extend the proposed model2.

Although an ARMA(1,1) model was not needed in this analysis, we have demonstrated that some women 
have a positive lag-one autocorrelation while others have a negative lag-one autocorrelation. These results con-
tradict the findings of16,29 who report a small general negative autocorrelation for a woman’s profile. In order to 
better investigate the variability of an autoregressive coefficient, we modified the state-space formulation to 

Table 3.   Posterior means and 95% Bayesian credibility interval for �.

Parameter Estimate SE

95% Credible 
Interval

Lower Upper

β0 27.4141 0.0440 27.3283 27.4996

π 0.2636 0.0142 0.2368 0.2917

θ0 − 0.0915 0.3160 − 0.1563 − 0.0320

α1 (Injury) 0.2965 0.1038 0.0554 0.4768

α2 (Stomach Cramps) 0.1682 0.0585 0.0567 0.2835

α3 (Tender Breasts) − 0.1540 0.0457 − 0.2443 − 0.0624

α4 (Flow Amount: Heavy) − 0.0816 0.0861 − 0.2492 0.0882

α5 (Flow Amount: Medium) 0.0290 0.0196 − 0.0094 0.0675

α6 (Flow Amount: Light) − 0.1320 0.0560 − 0.2414 − 0.0239

α7 (Flow Amount: Spotting) 0.0589 0.0712 − 0.0792 0.2012

α8 (Flow Amount: None) 0.0093 0.0208 − 0.0314 0.0492

ση 1.0417 0.0231 0.9971 1.0875

σw 4.7803 0.1096 4.5738 5.0007

σǫ 1.5407 0.0449 1.4504 1.6259

Figure 2.   Example of six women profiles showing the probability that the proposed model considers an 
observation as overdispersed, where � represents the probability of �ij being equal 1 for a given observation.
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accommodate this source of random variation by assuming that φi = φ0 + φ0i , with φ0i ∼ N
(

0, σ 2
φ

)

 . However, 
the normality assumption for φ0i was not justified as the normal Q-Q plot suggested a distribution with heavy 
tails and asymmetry; as a consequence, 80% of points were outside of the 95% simulated envelopes for this ran-
dom effect (Figure S1).

We also observed that some women had a long cycle followed by a short cycle and vice versa, as observed 
by Bortot et al. (2010)16. However, we found while θ̂ = −0.0915 with CI95% : [−0.1563,−0.0320] the estimate 
of the same parameter described by Bortot et al. (2010)16 was −0.61 [−0.77,−0.45] . It appears that the sample 
of female athletes that these analyses are based on had more regular menstrual cycles than a sample of 1,798 
women observed from clients of the Catholic Marriage Advisory Council of England and Wales. Although we 
have a higher number of women in our sample than in16, the time series in their sample were longer (up to 109 
measurements) compared with up to 55 measurements in this sample. In order to account for the between-
subject variability, we included a random effect in the moving-average coefficient given by θi = θ0 + θ0i , with 
θ0i ∼ N

(

0, σ 2
θ

)

 . However, we observed the same problem as reported when considering the autoregressive coef-
ficient where more than 70% of points were outside of the 95% simulated envelopes, lower asymmetry compared 
with φ0i and heavy tails (Figure S2). Therefore, to avoid bias in individual forecasting predictions, these random 
effects were dropped from the model. Further work is needed to accommodate individual estimation for the 
autocorrelation and moving-average coefficients to improve model performance at the individual level.

The analysis workflow was as follows: we initially checked the Bayesian assumptions and the posterior dis-
tribution using suitable plots of the Markov Chain Monte Carlo (MCMC) draws from the posterior distribution 
and Gelman-Rubin diagnostic and autocorrelation plots of all model parameters. Figure 3a shows the iterates of 
β0 , π , θ0 , ση , σw , and σǫ after a burn-in of 10,000 simulated iterations, which indicates convergence of the chains 
and stationary distributions, as the samples appear to be randomly sampled from the same region of the y-axis 
rarely venturing outside that area. The autocorrelation and Gelman-Rubin statistics30 were used to assess model 
convergence. The results suggest that the autocorrelation does not drop dramatically from lag 0 to 50 (Figure S3), 
indicating a moderate to high autocorrelation among samples. To reduce the impact of this problem, we stipulated 
a thinning of 50. On the other hand, the Gelman-Rubin statistic based on three chains showed all upper 95% 
confidence intervals were exactly equal to 1, meaning the chains had converged. Figure 3b shows the posterior 
densities obtained for estimated parameters derived from 3 Markov chains with 3000 samples per chain, lead-
ing to a computational time of around 23 hours executed on Dell Inspiron 17 7000 with 10th Generation Intel� 
Core TM i7 processor, 1.80GHz × four-processor speed, 16GB random access memory (RAM) plus 20GB of swap 
space, 64-bit integers, and the platform used is a Linux Mint 19.2 Cinnamon system version 5.2.2-050202-generic. 
In summary, the posterior distribution has been well characterised by the drawn samples as no unexpected 
peaks or strange shapes in the posterior density were observed that could signify poor model convergence. As a 
final assessment, the autocorrelation function, as well as the standardized residual against the athlete’s age, were 
checked (Fig. 4). No serious discrepancies nor patterns that warrant attention were observed in both graphs.

Once the assumptions were verified, we evaluated the agreement between the fitted and observed values and 
forecast intervals. Figure 5 shows the fitted curves for menstrual cycle length of six women, their 95% credible 
interval, and the one-step-ahead point forecast with 80%, 95% and 99% forecast intervals. We observed that 
the random walk with overdispersion parameter and MA(1) model performed well in describing the complex 
dynamics of menstrual cycle length over time. This conclusion is underpinned by CCC’s residual diagnostic 
and high values and Pearson correlation between fitted and observed values by the woman. These results also 
show that linear or linear mixed-effects models should not be applied to explain the variability of menstrual 
cycle length. They generally do not follow the necessary assumptions of linearity–however, a study done in 2019 
by Bull et al. (2019)2 appears to use linear models to explain cycle length observed from an extensive database 
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Figure 3.   (a) Trace plots of Markov chains and (b) Markov chain Monte Carlo (MCMC) draws from the 
posterior distribution of the parameters β0 , θ0 , π , ση , σw , and σǫ based on a sample of length 3000.
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Figure 4.   (a) Residual autocorrelation plot, and (b) residual versus age.

Figure 5.   Age versus fitted menstrual cycle length for six women with more than 40 repeated measurements 
with addition of 95% credible interval (dashed line), 80%, 95%, and 99% forecast intervals for the next cycle, 
and observed menstrual cycle length as points. The estimated concordance correlation coefficient (CCC), and 
Pearson correlation coefficient (r) between fitted and observed values are described for each woman. Accuracy 
( Cb ) can be obtained using C b = CCC /r.
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of cycles collected through an app. The authors show an R2 = 0.987 without any discussion as to whether the 
model assumptions are likely to be fulfilled; a high R2 value does not necessarily imply that a regression model 
provided an adequate fit to the data31.

The necessity of including rij = �ijwij in our model to describe cycle length is demonstrated in Fig. 6 where 
the improvement in the point estimates, credible and forecasting intervals when rij = �ijwij was and was not 
included in the model is given.

The results show that the improvement in the Pearson and concordance correlation coefficients when rij was 
included in the model was mainly for women who had more overdispersed cycles, resulting in better forecast 
predictions, and narrower corresponding credible intervals.

Finally, to evaluate the one-step-ahead point forecast prediction we generated prediction using a test set 
comprised of 1,029 women, each of whom had at least 3 repeated measurements. The results are shown in Fig. 4.

As there are not the same number of repeated measurements for each woman, this makes the forecasting 
prediction evaluation difficult as the number of women who drop out of the test set increases over time. With 
this in mind, we found that RMSE values could be two times higher than those presented in Table 1, suggesting 
that these models are not working well for some women in the test group. The same conclusion is evident when 
considering the CCC and Pearson correlation coefficients. As the CCC can be written as CCC = r × C b , where 
r represents a measure of precision and C b a measure of accuracy32, we can conclude that our model has high 
accuracy, with the potential to increase as the number of women with repeated measurements increases. The 
lower precision reported for the test set suggests that the explanatory variables used in the model may not be 
enough to explain the variability in the data. Including additional variables such as those that capture information 
on polycystic ovary presence, daily diet, country of origin,may improve model forecasts in general.

Limitations
The limitation of this study is that it is based on observational data which depends on users logging their infor-
mation on the app. As a consequence, the models proposed are not intended to elucidate the causal pathway of 
reported symptoms on cycle length.

Conclusion
State-space models, incorporating a probability π as a random effect at the subject level in the random walk 
component. are a valuable approach for predicting menstrual cycle length. They could be used to support female 
athlete wellness and optimize performance. For this reason a random walk with an overdispersion parameter 

Figure 6.   Age versus fitted menstrual cycle length for six women with more than 40 repeated measurements 
with addition of 95% credible interval (dashed line), 80%, 95%, and 99% forecast intervals for their next cycle, 
and observed menstrual cycle length (points) using the model yij = mij + γij + cij , when dropping the term rij 
from the model. The estimated concordance correlation coefficient (CCC), and Pearson correlation coefficient 
(r) between fitted and observed values are reported for each woman. Accuracy ( Cb ) can be obtained using 
C b = CCC /r.
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and an MA(1) model was selected to describe the complex dynamics of menstrual cycle length over time, 
which resulted in high values of CCC and Pearson correlation between observed and fitted values. Moreover, 
the importance of incorporating an overdispersion parameter to capture the variability of non-standard cycles 
was demonstrated. The data suggested that 26.36% [23.68%, 29.17%] of cycles are overdispersed. The random 
walk standard deviation for a non-overdispersed cycle is ση = 1.0417 [0.9971, 1.0875] days which increased to 
σw = 4.7803 [4.5738, 5.0007] days for non-standard cycles.

We also found that reporting injury, stomach cramps, tender breasts, and flow amount had a significant effect 
on menstrual cycle length amongst female athletes using the FitrWoman app. Although accurate forecast predic-
tions are reported, improvements in the variables collected and enhancements to the model are still needed, such 
as considering a random effect for the moving-average coefficient θ0 , to improve forecast precision.

Methods
Data characteristics.  The sample was comprised of female athletes using the FitrWoman app33 who had 
given their consent for the use of their data for research purposes. The sample size contains data on 16,524 cycles 
collected from 2,125 women (Fig. 7a), whose mean (sd) age was 34.38 (7.05) years (range 18 to 47 years); mean 
(sd) weight 62.75 (9.16) Kg (range 42.18 to 100.23 Kg); mean (sd) height 165.88 (6.89) cm (range 152.4 to 186.0 
cm); with several repeated measurements per woman ranging from 4 to 53 cycles. There was approximately 60% 
of information missing for height and weight where the 95% quantile of the sample distribution, based on 893 
women, was between 153.0 and 180.0 cm for height and 48.3 and 86.11 Kg for weight. A bivariate density plot 
for weight and height given age is shown in Fig. 7b in order to visualise the relationship between anthropometry 
and age in the sample.

Menstrual cycle length is assumed to be normally distributed as the data represent standard cycles15, where the 
shortest cycle length record was 18 days and the longest was 43 days. The sample mean and variances are 27.62 
and 3.51 days, respectively. As some women contributed more than one sequence to the database, we decided to 
consider only the first sequence available because we don’t know the reasons that caused this temporary drop-
out. The inclusion of the following sequences might bias the analysis, as also discussed by Bortot et al. (2010)16.

Figure 7c shows profiles for six women with a blue line representing a fitted mixed-effects linear regression 
model. It can be observed that the inclusion of a random intercept and slope plays an essential role as each 
woman’s cycle can be affected by different non-observed explanatory variables. However, the conditional R2 was 
equal to 0.40, implying that the linear mixed-effects regression is a good approximation for some profiles, but 
not for all of them, differing from the results presented by Bull et al. (2019)2, who used a simple linear regres-
sion model and obtained an R2 = 0.99 . This may have happened because the number of linear profiles observed 
by Bull et al. (2019)2 is suppressing the non-linear profiles in their sample. It is clear, based on our sample, that 
each woman’s specific trend must be accounted for in terms of their within-subject temporal dependence and 
the between subject variability across women.

Figure 7c,d show that for some women a short cycle can be followed by a long cycle and vice-versa, suggesting 
the need for a moving-average model. Furthermore, Fig. 7d shows that cycle length for some women has a posi-
tive autocorrelation. In contrast, others have a negative autocorrelation suggesting the need for an autoregressive 
moving-average model incorporating individual random effects for the autocorrelation and the moving-average 
coefficients. Finally, Fig. 7e shows a table containing the reported proportion of reported symptoms, where in 
most cases symptoms did not happen or were not reported.

As a consequence of possible missing data due to non reporting of symptoms, the effect of symptoms on cycle 
length may be biased towards the null hypothesis of no association between symptom and cycle length (i.e. a 
type II error). Despite this possible bias and loss in power, the p values obtained from statistical methods fitted 
to data subject to random error or misclassification are still valid34–36.

Table 4.   Evaluation of one-step-ahead forecast prediction based on root mean square error (RMSE), 
concordance correlation (CCC), Pearson correlation (r), and accuracy ( C) b ) coefficients between the predict 
and observed values of a new group with N women whom have ni observed cycles.

N ni  RMSE

CCC​

r C bEst Lower Upper

1029 3 5.2349 0.2213 0.1825 0.2610 0.2953 0.7490

760 4 5.3515 0.2254 0.1710 0.2784 0.2800 0.8048

603 5 5.4332 0.2078 0.1374 0.2760 0.2281 0.9108

434 6 5.5019 0.2102 0.1221 0.2951 0.2182 0.9634

324 7 5.6496 0.2069 0.1015 0.3078 0.2089 0.9905

248 8 6.3264 0.1047 − 0.0190 0.2252 0.1055 0.9928

199 9 6.1774 0.0778 − 0.0602 0.2129 0.0786 0.9901

160 10 5.1351 0.2632 0.1132 0.4015 0.2633 0.9998

124 11 5.1964 0.1421 − 0.0335 0.3093 0.1428 0.9954

99 12 4.8562 0.2713 0.0801 0.4433 0.2726 0.9953

78 13 4.6067 0.1970 − 0.0185 0.3951 0.2028 0.9716
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Statistical analysis.  Let Yij be a random variable, representing the length of menstrual cycle, where yij 
represents the observed cycle length for the i-th woman, i = 1, 2, . . . , I for her j-th menstrual cycle where 
j = 1, 2, . . . , Ji . The main objective is to derive the one-step ahead predictive distribution given by

Consequently, we are interested in evaluating Fi,Ji+1

(

Yi,Ji+1

)

 under a parsimonious parametric model, that is,

where Mi,Ji+1

(

yi,Ji+1

)

 is fully specified and � is a vector of unknown fixed-effect and variance components 
parameters. In order to accommodate the within-subject temporal correlation between repeated measures and 
the between-subject variability a random walk state-space model and mixed-effects state-space model was used, 
incorporating a Bayesian approach for process forecasting to predict the duration, in days, of the next menstrual 
cycle. Each prediction is accompanied by a corresponding interval forecast as point prediction is of limited 
value without an accompanying measure of uncertainty37. We assumed that cycle length are independent and 
that menstrual cycles tend to decrease over time as a woman ages15,16. In addition, we combined the Bayesian 
approach and forecasting proceses to include covariates where model validation procedures were used to com-
pare model adequacy.

State space models for cycle length.  The state-space formulation is an attractive choice due to its flexibility to 
work with discrete response variables and temporal dependency amongst observations. At the same time, the 
mixed-effects model can be used to account for between-subject variability. As the observed event is the differ-
ence, in days, between the interval from the first day of one bleeding episode up to and including the day before 
the next bleeding episode, observed cycle lengths can be modelled as discrete random variables. Let Yij be a 
continuous random variable, where yij is a realisation of Yij , which represents the observed cycle length. Further-
more, let Oij be a discrete random variable, where oij is a realisation of Oij which represents the cycle length in 
days as a continuous process, that is, yij = oij + εij . As we have no way to estimate the error term εij (observation 
process), we assume that oij = ⌊yij⌉ is a good approximation for yij , where ⌊.⌉ indicates rounding. Thus, the true 
non-observed continuous cycle length yij can be generated by the random walk state-space model:

(1)FiJi+1

(

Yi,Ji+1

)

= P
(

Yi,Ji+1 ≤ yi,Ji+1|yi1, yi2 . . . , yiJ
)

.

P
(

Yi,Ji+1 ≤ yi,Ji+1|yi1, yi2 . . . , yiJ
)

= Mi,Ji+1

(

yi,Ji+1|yi1, yi2 . . . , yiJ ,�
T
)

,

Figure 7.   (a) Individual profiles of 2125 women over time; (b) Bivariate density plot of weight and height given 
age; (c) Individual profiles for a sample of six women with linear trend superimposed; (d) autocorrelation plot; 
(e) Proportion of symptoms reported, where the label “Yes” is related with “the event was reported at least one 
time” and “No” otherwise.
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where yij is the menstrual cycle length for the i-th woman at j-th cycle; mit is a random walk model that allows 
an individual trend in the series with ηij assumed to be normally distributed with mean 0 and variance σ 2

η  . We 
assumed an ARMA(1,1) model for γit , where φ is the autoregressive parameter; θ is the moving average param-
eter; and ǫij is assumed to be normally distributed with mean 0 and variance σ 2

ǫ  (process error). Furthermore, cij 
captures the information provided by additional symptoms predictors ( Cij ) that may have useful roles in under-
standing and forecasting cycle length, where αk represents the k-th fixed effect parameter. Finally, rij is a random 
effect term used to account for extra-variability (overdispersion) of some menstrual cycle lengths measured on 
i-th woman at cycle j, which could be classified as outliers. Consequently, under model (2), yij has probability π 
of being an overdispersed menstrual cycle (non-standard) for the j-th cycle measured on i-th woman, where its 
additional magnitude is given by rij (Fig. 8).

In this way, mij can be interpreted as the trend for a standard cycle. In contrast, mij + rij can be interpreted 
as the trend for a non-standard cycle, where rij is an overdispersion parameter at the subject level for measures 
which induce extra-variability, as discussed in38 when modelling the reported number of cases of COVID-19 
where the inclusion of rij allowed for the flexible modelling approach needed.

The state-space representation of the model (2) using the definition described by Brockwell & Davis (2002)39 
is given by

with initial value mi1 ∼ N
(

β0, σ
2
η

)

 for the local level model and γij =
∑j−1

t=0 φ
tǫi,j−t , with j ≥ 1 . The linear 

Gaussian state-space model defined by equation 3 are generated efficiently using the Kalman filter recursions40.

(2)

yij = mij + γij + cij + rij ,

mij = mi,j−1 + ηij , with ηij ∼ N(0, σ 2
η ),

γij = φγi,j−1 + θǫi,j−1 + ǫij , with ǫij ∼ N(0, σ 2
ǫ ),

cij =

K
∑

k=1

αkCijk

rij = �ijwij ,wij ∼ N
(

0, σ 2
w

)

, �ij ∼ Bernoulli (π),π ∼ Uniform (0, 1)

(3)

yij = mij + γij + θxij + cij + rij ,

mij = mi,j−1 + ηij , with ηij ∼ N(0, σ 2
η ),

γij = φγi,j−1 + ǫij , with ǫij ∼ N(0, σ 2
ǫ ),

xij = ǫi,j−1,

cij =

K
∑

k=1

αkCijk

rij = �ijwij ,wij ∼ N
(

0, σ 2
w

)

, �ij ∼ Bernoulli (π),π ∼ Uniform (0, 1)

Figure 8.   Representation of residuals ( residualij = yij − m̂ij ) over time considering with probability 1− π 
of Y being a standard cycle (non overdispersed) and π being a non-standard cycle (overdispersed), with 
Var

(

Y | standard cycle
)

< Var
(

Y | non-standard cycle
)

.
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Fitting a separate linear regression for each woman will result in a subject-specific intercept that may account 
for variability due to non-observed variables likely to affect their first observed menstrual cycle. In contrast, a 
mixed model incorporating random slopes assumes that each woman has a different menstrual cycle length trend 
relative to her age. To verify if the random walk model proposed has the necessary flexibility to capture differing 
trends, it was compared to a linear mixed-effects model16. In that case, mij = β0 + b0i + (β1 + b1i)Ageij , where 
β0 and β1 are the (marginal) intercept and slope, respectively; b0i and b1i are the random effects for the intercept 
and slope for the i-th woman at Ageij , respectively, where it is assumed that

and Ageij represents a woman’s age.

Bayesian implementation and choice of prior distribution.  A Bayesian analysis combines information from 
observed data with prior distribution for the model’s parameters in order to generate a posterior distribution. 
In this analysis the inverse-gamma(κ , κ) is a natural candidate for the prior distributions and are often used for 
random walk state-space models and variance components of mixed effect models. Such a choice of prior is 
attractive as it can be considered as non-informative within the conditionally conjugate family, when κ is set to 
a low value such as 0.13:

A likelihood ratio test was used to test whether the presence of correlations between the random effects in 
these models played a crucial role. Based on a 95% credible interval for the variance component σb01 for the 
proposed mixed-effects model there was sufficient evidence that the random effects are plausibly mutually 
independent and a term to capture the correlation structure between the intercept and slope could be removed 
from the model.

The choice of Prior distribution for fixed effect parameters is given by β0 ∼ N
(

µβ0 , σ
2
β

)

 , with 
µβ0 ∼ Uniform (24, 32) ;  β1 ∼ N

(

µβ1 , σ
2
β

)

 ,  with µβ1 ∼ Uniform (−2, 2) ;  φ0, θ0 ∼ N
(

µar , σ
2
ar

)

 ,  with 
µar ∼ N (0, 100) ; and we assumed αk ∼ N (0, 100) , which is a vague normal density prior. All assumptions were 
checked to make sure that results were not sensitive to specific choices of prior parameters.

Model selection procedure.  The model selection procedure used to compare candidate models involved a bal-
ance between forecast accuracy and the Bayesian Information Criterion (BIC). Forecast accuracy was calculated 
based on RMSE, CCC and Pearson Correlation Coefficient while the BIC was calculated using the following 
formulation41:

where N is the total number of observations; and p is the number of parameters estimated by the model. The 
procedure was split into three steps namely the time trend component, the autocorrelation component, and an 
additional linear predictor as a function of available explanatory variables.

The first step was to account for a possible trend, by identifying the most appropriate error structure for the 
model, which in our case consisted of a comparison of a random walk model or a linear mixed effect model 
(Fig. 9). The second step involved the inclusion of temporal dependence among observations, as evident in some 
women in the sample, where an ARMA model was considered as shown in the Fig. 9. The third and final step 
involved the inclusion of explanatory variables to account for their (possible) relationship with cycle length. This 
was achieved using the posterior distribution on the parameter αk to select all those variables that did not have 
the null value for their parameter contained in their corresponding 95% credibility interval.

A novel use of train and test set data was used to validate model performance and to estimate the one-step 
ahead forecasting prediction accuracy as a function of the number of cycles reported. The complete sample 
of 2125 was used for model validation by treating the last observed cycle length as test data. The procedure is 
illustrated in Fig. 10 where the last observed cycle length (red dot) is ‘held back’ as test data and the remaining 
data (blue dots) were used as training data. The forecast performance was calculated using the RMSE and CCC 
between the observed and predicted cycle lengths and used jointly with the BIC criteria in the model selection 
process.

Once the model was selected, it was then sequentially tested using i) the complete data as training data and ii) 
a random sample of 1029 (approximately half the complete data) as test data. As the number of cycles reported 
varied from 2 to 12, one-step ahead forecasting prediction accuracy was calculated for each of these scenarios by 
treating the last observed cycle in each scenario as test data. As the number of athletes in the test set decreased 
with increasing reported cycle lengths, individuals that had fewer observed cycle lengths for the cycle length 
scenario under consideration were included in the training set to account for this attrition.

The forecast error for an observed value and its forecast was computed as

bi =

[

b0i
b1i

]

∼ N2

([

0
0

]

,G =

[

σ 2
b0

σb01
σb01 σ 2

b1

])

,

σ−2
ǫ , σ−2

η , σ−2
w , σ−2

b0
, σ−2

b1
, σ−2

φ , σ−2
θ , σ−2

β , σ−2
ar ∼ Gamma

(

0.13, 0.13
)

.

BIC =
�

N − p
�

log

�

Nσ 2
ǫ

N − p

�

+ p log





�

�I
i=1

�Ji
j=1 y

2
ij

�

− Nσ 2
ǫ

p





ǫi,Ji+h = yi,Ji+h − ŷi,Ji+h|Ji



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16972  | https://doi.org/10.1038/s41598-021-95960-1

www.nature.com/scientificreports/

where the training data are given by 
{

yi1, yi2, . . . , yiJi
}

 and the test data by 
{

yi,Ji+1

}

 (i.e. one-step ahead predic-
tion for each woman), see Fig. 10. The forecast accuracy was measured by the root mean square error (RMSE), 
concordance correlation coefficient32, and the Pearson correlation coefficient between the observed response in 
the test data and corresponding predicted cycle length value.

Posterior computation.  Markov Chain Monte Carlo (MCMC) was used to generate samples from the posterior 
distribution for the random walk and mixed-effects state-space models using a Gibbs sampler algorithm40, as 
this approach is widely used to obtain parameter estimates from a posterior distribution. The convergence of 
the MCMC algorithm was checked by multiple comparisons of MCMC chains with different starting points. 
The normality assumptions were checked using suitable residual plots and quantile-quantile plots with simulate 
envelopes42. The one-ahead predictive distribution of Fi,Ji+1

(

Yi,Ji+1

)

 was derived through draws from the pos-
terior distribution. Consequently, the κ-step ahead predictive distribution was obtained by running the Kalman 
filter sequentially. All analysis were implemented in R including runjags43, coda44, hnp42, and ggplot245 
packages.

Ethics approval.  This publication has emanated from research supported in part by a research grant from 
Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289, co-funded by the European Regional 
Development Fund in partnership with Orreco. All methods were carried out in accordance with relevant guide-
lines and regulation. In particular the data that support this study were made available by ORRECO. Upon 
first use, all FitrWoman app users provide informed consent by agreeing to their anonymised data being used 
with third parties for research purposes. However, restrictions apply to the availability of these data used under 
license for the current study. In order to use the Fitrwoman app each participant must agree to the following 
conditions: Without prejudice to the foregoing, ORRECO shall have an exclusive, royalty free, perpetual licence 
to use and retain the User Data and all other information arising from the provision of the Services:- (i) for 
research purposes, (ii) in order to improve the standard of service provided by ORRECO in the future; (iii) in 
order to validate ORRECO’s proprietary algorithms or intervention programmes; (iv) to analyse and report 
anonymously on patterns in User Data by reference to their age, sex, ethnicity, discipline, field, training sched-
ule, performance, results or such other data sets as ORRECO may decide; and (v) in order to develop similar 
or new services, provided that in each case the identity of the User and any personal data comprised within the 

Figure 9.   Stages 1 and 2 of the model selection procedure. LMM: linear mixed effect model; rij : overdispersion 
parameter at observational level; ARMA(p, q): Autoregressive moving average model of order p and q.

Figure 10.   (a) One-step-ahead procedure for evaluation of the forecasting accuracy of training data; (b) time 
series cross validation for the test data as a function of cycle length. Training and test data are represented by 
blue and red circles respectively.
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