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A B S T R A C T   

The effects of osmotic pretreatment assisted by ultrasound in different frequency modes before vacuum freeze- 
drying (VFD) on moisture migration and quality characteristics of strawberry slices were investigated. The 
frequency modes are single-frequency modes under 20, 40 kHz (SM-20, SM-40), and dual-frequency under 20/ 
40 kHz including sequential mode (SeDM) and simultaneous mode (SiDM). The quality characteristics of dried 
strawberry products including rehydration, hardness, color, flavor, total anthocyanins, total phenols, vitamin C 
content, and active antioxidant components (DPPH and –OH) were determined. Results showed that drying time 
of the strawberry slices irradiated by ultrasound was reduced by 15.25%–50.00%, compared to the control 
samples. Besides, dual-frequency ultrasound shortened the drying time more than single-frequency ultrasound. 
The drying time of SeDM was the shortest. In addition to vitamin C content, the quality characteristics including 
rehydration, hardness, color, flavor, total anthocyanins, total phenols, and antioxidant activity of dried straw
berry products pretreated by SeDM were significantly (p < 0.05) better than those of control and other pretreated 
samples. It can be concluded that the SeDM was an effective pretreatment method to produce high-quality 
vacuum freeze-dried strawberry products.   

1. Introduction 

Strawberry is a perennial herb with bright color, tender and juicy, 
rich in anthocyanins, polyphenols, vitamin C, and other nutrients [1]. 
Unfortunately, strawberries are not resistant to storage and trans
portation, and suffer severe losses after harvest. They are highly 
perishable and deteriorate, and the red pulp will quickly soften and 
become brown [2]. These undesirable characteristics limit the devel
opment or storage of processed products from strawberries to a great 
extent. 

Drying is an important processing method to lengthen the shelf-life 
of fruits. However, improper drying methods can lead to a decline in 
dried products’ quality, including color deterioration, shape changes, 
and nutrient loss [3]. Vacuum freeze-drying (VFD) has been widely 
studied in recent years and considered as an appropriate drying method, 
maximizing the retention of color, aroma, taste, shape, and nutrients of 
dried products. However, VFD is energy-intensive and costly. In order to 

overcome this problem, pretreatment is usually carried out before dry
ing, such as ultrasonic [4], osmotic [5], high pressure [6] and micro
wave [7] pretreatment methods. 

In recent years, ultrasound (US) has attracted widespread attention 
due to its numerous advantages over traditional methods. It has been 
widely used in the food processing, such as extraction [8], freezing [9], 
drying [10,11], thawing [12], fermentation [13], as well as cleaning 
[14-16]. As a pretreatment method prior to drying, ultrasonication, 
makes the material shrink and expand continuously, forming a spongy 
structure, which affects the damage of cell wall and the formation of 
micro channels [17]. It has been confirmed that the total drying time of 
okra can be shortened by 10–30% by flat sweep frequency ultrasound 
[18]. Besides, the hardness and brittleness of sweet potato were 
increased by ultrasonic pretreatment, and the β-carotene content was 
increased by 42% [3]. Osmotic dehydration is a method to remove water 
from fruit tissue by immersing fruit in a hypertonic solution [19]. Due to 
the slow soaking process, additional force is needed to increase the mass 
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transfer process. The combination of ultrasonic and osmotic dehydration 
can enhance the mass transfer. Many researchers have studied the 
ultrasonic-assisted osmotic dehydration pretreatment of fruit drying and 
obtained a shorter drying time [20]. 

In the process of ultrasound, the frequency is a significant indicator 
for the sonochemical reaction [21]. It is directly related to the intensity 
of the ultrasonic cavitation. In addition, it also affects the bubble activity 
caused by the bubble rupture, and further affects the product quality 
[22]. Generally speaking, not all bubbles can have a significant bubble 
effect on the ultrasonic cavitation. When the natural resonance fre
quency of the bubble is commensurate with the ultrasonic frequency, the 
coupling of ultrasonic energy reaches its peak [23]. Dual-frequency ul
trasound is one of the forms of ultrasound technology, which is helpful 
to produce higher cavitation effect than single frequency ultrasound, 
and it has been studied in starch and protein now. Xu et al. [24] studied 
the effect of ultrasonic mode on the degradation of gelatinized waxy 
corn starch (GWCS). The results showed that compared with native 
starch, GWCS in all frequency modes was significantly degraded, and 
dual-frequency ultrasound decreased more. Wen et al. [25] investigated 
the dual-frequency ultrasound (DFU, 20 / 28 kHz) pretreatment on 
watermelon seed protein structure. The results showed that the antiox
idant activities and stability of watermelon seed protein hydrolysates 
were increased significantly after DFU pretreatment. To the best of our 
knowledge, the effect of ultrasound-assisted osmotic dehydration pre
treatment with different frequency modes on VFD process and quality 
characteristics of dried strawberry has not been studied. 

In consequence, the present study aimed to: (1) evaluate the effect of 
ultrasound-assisted osmotic pretreatment with different frequency 
modes on moisture migration and microstructure change of strawberry; 
(2) investigated the effect of ultrasound-assisted osmotic pretreatment 
on drying characteristics during VFD; (3) determine the quality attri
butes including color, texture, flavor, total phenolic content, VC and 
oxidation resistances of vacuum freeze-dried strawberry slices pre
treated by ultrasound-assisted osmotic pretreatment. 

2. Materials and methods 

2.1. Raw materials 

Fresh strawberries (Fragaria × ananassa Duch, cv. HongYan) were 
obtained from a strawberry farm (Danyang, Jiangsu, China). Ripe 
strawberries with uniform size and color and without mechanical 
damage were selected as the experimental object. After cleaning, the 
pedicels were removed, and the middle part of the strawberry was 
selected for transverse slicing, with a thickness of 5.0 ± 0.5 mm. The 

initial moisture content of fresh strawberries was measured as 92.65 ±
0.83% (wet basis) in a hot air oven at 105 ◦C until the sample reached a 
constant weight. 

2.2. Ultrasound-assisted osmotic pretreatment 

The strawberry slices (50 ± 1 g) were soaked in 10% (W/V) sucrose 
solution with the ratio of 1:4 (W/V), and ultrasonic treatment was car
ried out at the same time. As shown in Fig. 1, the beaker containing 
strawberry slices and sucrose solution was put into the ultrasonic bath 
with the hexagon cylinder ultrasonic bath equipment independently 
developed by Jiangsu University (Zhenjiang, Jiangsu, China). There 
were three different modes of ultrasonic processing: single-frequency 
mode, dual-frequency in sequential and simultaneous mode. In the 
single-frequency mode, the ultrasonic processing was carried out at 20 
kHz (SM-20) and 40 kHz (SM-40). The sequential dual-frequency mode 
(SeDM) signifies that the ultrasonic processing was proceeded at alter
nate 20/40 kHz frequency, and the simultaneous dual-frequency mode 
(SiDM) means that the ultrasonic processing was proceeded at the same 
time at 20 and 40 kHz frequency [24]. During the ultrasonic pre
treatments, the power density, pulse switching time and duration were 
30 W/L, 5 s/5 s, and 30 min, respectively. The ultrasonic temperature 
(25 ± 1 ◦C) was kept constant by water bath circulation. After pre
treatment, the water on the sample surface was removed with absorbent 
paper, and then VFD was carried out. Strawberry slices without ultra
sonic pretreatment were labelled as control samples, and each treatment 
was repeated three times. 

2.3. Vacuum freeze-drying (VFD) 

The VFD process of strawberry slices were performed using a vacuum 
freeze dryer (Epsilon 2-6D LSC+, Martin Ltd., Germany). Firstly, the 
strawberry slices were pre-frozen at − 40 ◦C, then the temperature of 
main drying was set at 25 ◦C with the vacuum degree of 0.518 Mbar and 
cold trap temperature of − 90 ◦C. The temperature of final drying was 
35 ◦C [26]. Until the moisture content was less than 5%, drying process 
was stopped [27]. 

2.4. Analysis of drying characteristics 

2.4.1. Mass transfer determination 
The mass transfer phenomenon of strawberry slices in different ul

trasonic pretreatment process was evaluated by water loss (WL) and 
solid gain (SG), which were calculated according to the Eqs. (1) and (2) 
[28]. 

Fig. 1. The schematic diagram of experiments.  
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WL(%) =
(X0 − x0) − (Xt − xt)

X0
× 100% (1)  

SG(%) =
xt − x0

X0
× 100% (2)  

where X0 is the mass of the initial fresh strawberry (g); Xt is the mass of 
strawberry after pretreatment (g); x0 is the initial dry basis mass of 
strawberry (g); xt is the dry basis mass of strawberry after pretreatment 
(g). 

2.4.2. Moisture content on dry basis 
The formula for calculating the initial moisture content on wet basis 

is shown in Eq. (3). Where m represents the initial mass, and n represents 
the mass after drying to constant, [18]: 

W =
m − n

n
× 100% (3) 

So, the initial dry basis moisture content is according to Eq. (4) [18]: 

Wg = 1 − W (4) 

The dry basis moisture content calculation formula at time t can be 
expressed as follows [19]: 

Mt =
mt − m0 × Wg

m0 × Wg
(5)  

where Mt is the moisture content of strawberry at t time (dry basis, g/g), 
m0 means the initial mass (g), mt means the mass at time t (g), and Wg 
means the mass of dry matter (g/g). 

2.4.3. Moisture ratio (MR) 
Drying kinetics usually expressed by the change of moisture ratio 

over time. The equation of moisture ratio (MR) is given below [29,30]: 

MR =
Mt − Me

M0 − Me
(6)  

where M0 is the initial moisture content of strawberry (dry basis, g/g), 
Mt is the moisture content of strawberry at t time (dry basis, g/g), Me is 
the moisture content at equilibrium (dry basis, g/g). Since Me is much 
smaller than M0 and Mt, it can be ignored. 

2.4.4. Drying rate (DR) 
The drying rate (DR) during drying process is expressed by Eq. (7) 

[2]: 

DR =
Mt1 − Mt2

t2 − t1
(7)  

where DR is the drying rate between t1 and t2 (g/ (g∙min)), Mt1 and Mt2 
are the moisture content (dry basis, g/g) of strawberry at t1 and t2. 

2.5. Microstructure analysis 

The microstructure images of different groups of dried strawberry 
samples were obtained by scanning electron microscopy (S-3400N, 
Hitachi Ltd., Japan). The sample section is pasted on the sample table by 
conductive adhesive. The scanning electron microscopy (SEM) imaging 
was performed at an acceleration voltage of 20 kV [31]. 

2.6. Low-field nuclear magnetic resonance (LF-NMR) and magnetic 
resonance imaging (MRI) analysis 

The moisture status and distribution of strawberry samples pre
treated by different ultrasonic methods and after VFD were determined 
by low-field nuclear magnetic resonance analyzer (Niumag Corporation, 
Suzhou, China). About 3 g strawberry samples were put in a cylindrical 

glass tube (diameter 2 cm, height 4 cm), and then inserted into the NMR 
test room. The CPMG pulse sequence measured the T2 (transverse 
relaxation time), and the image information of the sample was collected 
by SE pulse sequence. 

The parameters of CPMG sequence: SF = 21 MHz, O1 = 136363.3 
Hz, P1 = 7 μ s, P2 = 14 μs, SW = 200 kHz, TW = 6000 ms, PRG = 3, RG1 
= 20 db, DRG1 = 1, NS = 64, TE = 0.1 ms, NECH = 15,000. 

The parameters of SE sequence: TR = 2000 ms, TE = 3.02 ms, DRG1 
= 5, NS = 16, Slice Width = 20 mm, Slice Size = 1, FOV Read = 50 mm, 
FOV Phase = 50 mm 

2.7. Quality characteristics of strawberry slices 

2.7.1. Rehydration ratio (RR) 
The determination of rehydration ratio was achieved by soaking 1.5 

g of VFD strawberry slices into 200 mL distilled water at 25 ◦C for 30 
min. After rehydration, the sample was taken out to drain the water, and 
the surface water was wiped with absorbent paper and then weighed. 
The ratio of the sample’s mass after rehydration to that of the initial 
sample was the rehydration ratio [32]. 

2.7.2. Hardness analysis 
Freeze-dried strawberry samples with similar size were selected and 

the hardness was determined by a texture analyzer (TA-XT2i Stable 
Micro Systems Ltd., Vienna 153Court, Surrey, UK). The same sample 
was repeatedly measured for 5 times with the unit of g. Parameter set
tings were as follows [6]: probe model: shear probe P/2; test mode: 
compression; target mode: strain; operation type: return to start; trigger 
mode: stress; pre-experimental speed: 2.0 mm/s; experimental speed: 
1.0 mm/s; post-experimental speed: 10.0 mm/s; test distance: 3 mm; 
trigger stress: 5 g. 

2.7.3. Color analysis 
The color parameters of strawberry slices were measured by a hand- 

held color difference meter (CR-400, Konica Minolta, Inc., Japan). Then 
the color parameters namely L* (brightness), a* (red/green) and b* 
(yellow/blue) of dried strawberry samples were evaluated at room 
temperature. For each pretreatment method, 3 samples were selected, 
and measured 5 times, and the average value was taken. The total color 
difference (ΔE) was calculated according to Eq. (8) [33], where L0, a0 
and b0 are the values of fresh strawberry samples. 

ΔE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(L* − L0)
2
+ (a* − a0)

2
+ (b* − b0)

2
√

(8)  

2.7.4. Electronic nose analysis 
An electronic nose system (PEN3.5, AIRSENSE Analytics GmbH, 

CITY, Germany) equipped with 10 sensors was used to analyze the flavor 
changes of dried strawberry samples. 2.0 g of VFD strawberry slices 
grounded to a coarse powder and put into a 20 mL vial. After capping, 
the vials were incubated in a 40 ◦C water bath for 30 min. For the 
determination of the flavor profile: the chamber flow rate was 400 mL/ 
min, the initial injection flow rate was 400 mL/min, the flushing time 
was 180 s, and the measurement time was 120 s. 3 parallel tests were 
performed for each sample [26]. The sensors’ analytes includes: W1C: 
aromatic, W5S: broadrange, W3C: aromatic, W6S: hydrogen, W5C: 
arom-aliph, W1S: broad-methane, W1W: sulfur-organic, W2S: broad- 
alcohol, W2W: sulph-chlor, W3S: methane-aliph. 

2.7.5. Determination of total anthocyanin content, total phenolic content 
and vitamin C in strawberry slices 

The freeze-dried strawberry powder was weighed (2 g) into a 50 mL 
beaker, and then 20 mL 70% ethanol solution (V/V) was added. Then it 
was extracted using an ultrasonic water bath (KQ-300DE Ultrasound 
Cleaner, Kunshan Instrument Co., Ltd, Kunshan, Jiangsu, China) for 30 
min (100 W, 40 kHz), centrifuged at 6000 rpm (Eppendorf 5084 R 
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centrifuge, CITY, Germany) for 15 min, and the supernatant was 
collected. The filter residue was added with 70% ethanol solution and 
centrifuged in water bath under the same conditions. The supernatant 
was mixed twice, and the strawberry extract was obtained by constant 
volume of 70% ethanol solution to 50 mL. 

2.7.5.1. Total anthocyanin content (TAC). The content of total antho
cyanins in dried strawberry was determined by pH differential method 
[34]. First, 2 mL of extraction solution was mixed in 8 mL of pH 1.0 
buffer solution (0.1 M KCl) and pH 4.5 buffer solution (0.5 M NaAc). 
Then the absorbance values were determined at 510 nm and 700 nm of a 
spectrophotometer (T6NC, Beijing PUXI General Instruments Co., Ltd, 
Beijing, China), respectively. Distilled water was used as the standard. 
The total anthocyanin content was calculated according to equation (9). 
The result was expressed as mg cyanidin 3-glucoside (C3G) / g dry 
weight. 

TAC =
ΔA × V × M × DF

ε × L × m
(9)  

where ΔA = (A510 − A700)pH1.0 − (A510 − A700)pH4.5, V is the volume of 
the extract, M = 449.2 g/mol, DF is the multiple of the extract diluted by 
the buffer solution, ε = 26,900 L/ (mol∙cm), L = 1 cm, m is the weight of 
the sample. 

2.7.5.2. Total phenolic content (TPC). 0.5 mL of extract was transferred 
to 10 mL brown centrifuge tubes, and 2.5 mL of 5% (V/V) Folim- 
Ciocalfen reagent was added respectively. Then, after 2 min of dark 
reaction, 2 mL of 7.5% (W/V) Na2CO3 was added and waited for 5 min to 
maintain the reaction at 50 ◦C. Finally, the absorbance was determined 
at 760 nm, and 3 parallel tests were carried out for each sample. The 
result was expressed as mg gallic acid equivalent (GAE) / g dry weight 
[35]. 

2.7.5.3. Vitamin C. 0.2 mL of sample extract was put into colorimetric 
tubes filled with 0.4 mL of 10% HCl, and then 9.4 mL of distilled water 
was added to shake evenly. The absorbance was measured at 243 nm 
with distilled water as a reference, and the result was expressed as mg 
ascorbic acid equivalent (AA)/g dry weight. 

2.7.6. Analysis of antioxidant capacity of strawberry 
The DPPH (2,2-diphenylpicrylhydrazyl) radical scavenging ability of 

strawberry was determined according to Tan et al. [5] with some 
modifications. 3.5 mL DPPH (0.14 mM) solution and 0.5 mL strawberry 
extract were mixed. After 30 min of dark reaction at room temperature, 
the absorbance value was determined at 517 nm, and 70% ethanol so
lution was used as blank. 

The scavenging capacity of hydroxyl radical was measured according 
to the method of Zhang et al. [17]. 1 mL FeSO4 (9 mM) solution, 1 mL 
salicylic acid ethanol (9 mM) solution, 1 mL sample extract and 1 mL 
H2O2 (8.8 mM) were added into the brown centrifuge tube. After mixing 
well, they were placed in a water bath at 37 ◦C for 30 min. The absor
bance value was determined at 510 nm wavelength using distilled water 
as blank. 

2.8. Statistical analysis 

All the experiments were carried in triplicate. SPSS 20.0 software 
(IBM, Chicago, IL, USA) was used to analyze variance and the Duncan 
test. The difference was statistically significant (p < 0.05). Statistical 
analysis was performed using Origin Pro software version 8.0 (Origin 
Lab Corporation, Northampton, MA, US). The correlations between the 
quality parameters of samples were statistically tested by Pearson’s 
correlation procedure and the principal component analysis. 

3. Results and discussion 

3.1. Effect of pretreatments on the drying process of strawberry slices 

3.1.1. Drying characteristics 
The effects of pretreatments on the water loss (WL) and solid gain 

(SG) of strawberry slices are shown in Fig. 2. Due to the presence of 
sucrose solution, there was a concentration gradient inside and outside 
of the strawberry cells, which promoted the mass transfer of soluble 
solids from liquid medium to strawberry slices and the mass transfer of 
water from strawberry slices to the liquid medium. This process was a 
dynamic equilibrium process [36]. Both osmotic dehydration and ul
trasonic pretreatment will cause the WL and SG of strawberry samples. 
However, due to fragile peel and soft tissue characteristics, it was easy to 
cause the loss of pulp during the pretreatment process. Compared with 
control samples, the values of the WL and SG of the sample irradiated by 
ultrasound with different frequency modes were significantly higher (p 
< 0.05). This is probably because the “sponge effect” produced by ul
trasonic treatment leads to the formation of micro pores in the straw
berry tissue, promoting the discharge of water [24]. The results showed 
that ultrasonic pretreatment could promote the water removal of 
strawberry slices during the process of osmotic dehydration. Similar 
results were found in persimmon [37], plum [20] and kiwifruit [38]. 
Besides, the ultrasound pretreatment in different frequency modes had 
significant effect on the values of the WL and SG values of strawberry 
slices. The values of strawberry slices irradiated by dual-frequency ul
trasound were significantly higher (p < 0.05) than those irradiated by 
single-frequency ultrasound. Similar results were also found in the 
degradation of waxy corn starch [24] and enzyme hydrolysis of casein 
[12]. 

The curves of moisture ratio (MR) and drying rate (DR) of strawberry 
slices under different pretreatments during VFD are also shown in Fig. 2. 
With the drying time increasing, the MR of strawberry slices decreased 
gradually. Compared with the control samples, the MR of strawberry 
slices pretreated by ultrasound decreased significantly faster. In the 
process of VFD, when the moisture ratio of strawberry slices was 0.05 g/ 
g, the control group’s drying time was 11.8 h, and the drying time of SM- 
20, SM-40, SeDM and SiDM pretreated samples decreased by 15.25, 
32.20, 40.68 and 50.00%, respectively. The DR increased rapidly 
initially and then decreased slowly when the critical moisture content 
was reached. This may be due to the fact that the moisture migration 
rate inside the material is less than the evaporation rate on the surface, 
so the constant speed stage is never reached [4]. After ultrasonic pre
treatment, the drying efficiency of strawberry slices was significantly 
improved, which can be explained by the cavitation effect of ultrasound 
to accelerate the formation of fine pores in the material, facilitate the 
elimination of water, promote the sublimation of ice crystals, and thus 
improve the mass transfer rate [39]. The curves of MR and DR under 
different ultrasonic frequency modes showed apparent changes. The 
drying efficiency of dual-frequency ultrasound was significantly higher 
than that of single-frequency ultrasound, especially in the sequential 
mode. Among them, the MR of SeDM was the lowest and the drying rate 
was the highest. The reason behind this may be due to the higher 
working frequency of dual-frequency US, overcame single-frequency 
ultrasound disadvantages, such as uneven energy consumption per 
volume unit and directional sensitivity [40]. Moreover, the dual- 
frequency ultrasound can generate more cavitation bubbles and a 
“combined resonance” phenomenon, and produce higher sonochemical 
energy [41]. Amami et al. [42] also found similar results, where ultra
sonic infiltration pretreatment improved the drying rate, and the drying 
coefficient of strawberry convection drying shortened the drying time. 
Therefore, ultrasonic infiltration pretreatment can be applied to raise 
fruits’ drying efficiency. 

3.1.2. Microstructure 
The SEM results of strawberry samples are shown in Fig. 3. In the 
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control group, due to the infiltration of sucrose solution and water loss, 
the main manifestations were cell shrinkage, tight structure, cell wall 
distortion and cell collapse, which may also be the reason for the 
inadequate rehydration of the control sample [43]. After pretreated with 
different ultrasonic frequency modes, the porous structure was formed, 
and there was a phenomenon of cell rupture, and unwanted cracks were 
observed at the cell boundary [32]. Different frequencies of ultrasound 
led to different porosity and irregular arrangement or separation of cells. 
The SEM images of SeDM showed that the holes were the largest, which 
indicated that this mode had the maximum damage to the 

microstructure of fresh strawberry. The microstructural changes of 
freeze-dried strawberry slices may be connected with water migration 
and cell rupture, affecting the changes in water state [17]. 

3.2. Effect of pretreatments on water state of strawberry slices 

In NMR measurement, the length of transverse relaxation time (T2) 
can reflect the hydrogen proton’s chemical environment. Therefore, it is 
widely used to evaluate water fluidity. As shown in Fig. 4, there are three 
peaks in the T2 curve of strawberry slices, which are T21 (bound water) 

Fig. 2. Effect of different pretreatment methods on the drying characteristics of strawberry during VFD. A: Effect of different pretreatments on the water loss (WL) 
and solid gain (SG) of strawberry; B: Effect of pretreatments on the change of moisture ratio with time during the VFD process of strawberry; C: Effect of pre
treatments on the drying rate of strawberry during the VFD; D: Effect of pretreatments on the total VFD time of strawberry. 

Fig. 3. Microstructure image of dried strawberry with different pretreatments. Magnification: 100×. Control: no-ultrasound; SM-20: single-frequency mode of 20 
kHz; SM-40: single-frequency mode of 40 kHz; SeDM: sequential dual-frequency mode of 20/40 kHz; SiDM: simultaneous dual-frequency mode of 20 and 40 kHz. 
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with strong hydrogen bond and water content in the cell walls, T22 
(semi-bound water) with water content in the cytoplasm and in the 
extracellular spaces, and T23 (free water) with fluidity and water content 
in the vacuole [33]. 

Fig. 4A shows the relaxation time distribution of strawberry slices 
after different pretreatments. After pretreatment, the transverse relax
ation time of free water is significantly shortened (except T21). Undried 
strawberries were mainly free water. After pretreatments, the area of 
bound water (A21) was significantly reduced or even disappeared, the 
area of free water (A23) also kept decreasing, while the area of bound 
water (A22) increased. This showed that ultrasound makes the water 
with higher degree of freedom and unstable water move to the water 
with lower degree of freedom and relatively stable state, which was 
consistent with the change trend of the mushrooms in the initial stage of 

drying [44]. This is probable reason that ultrasonic pretreatment can 
speed up the drying rate to a certain extent. The osmotic effect of ul
trasound and sucrose solution enhanced the diffusion of free water in 
cells, and the osmotic solution will also enter plant tissues, which was a 
two-way process [42]. 

For strawberry slices after VFD, the pretreated sample’s transverse 
relaxation time was significantly shorter than that of the control, and the 
three main peaks shifted to the left (Fig. 4B). Compared with the non- 
dried samples, the relative peak area had a significant change 
(Table 1), which indicated that most of the semi-bound water and free 
water in the samples were removed during freeze-drying, resulting in 
the change of moisture composition of the dried samples. SM-20, SM-40 
and SiDM were similar to the control group and showed the largest 
proportion of semi-bound water, while SeDM showed the largest 

Fig. 4. Typical distribution of T2 relaxation time and MRI images of different pretreatment methods VFD strawberry slices before and after drying. A: Distribution of 
T2 relaxation times of pre-dry strawberry slices; B: Distribution of T2 relaxation times of dried strawberry slices; C: MRI images of different pretreatment methods 
VFD strawberry slices before and after drying. 

Table 1 
The relaxation time (T21, T22 and T23) and relative peak area (A21, A22 and A23) of strawberry samples pretreated before and after drying.  

Mode T2 (ms) Area of T2 (%) 

T21 T22 T23 A21 A22 A23 

Pretreatment Control 0.43 ± 0.05c 265.61 ± 5.01a 1072.27 ± 3.35b 2.19 ± 0.10a 39.26 ± 0.20d 58.55 ± 0.51a 

SM-20 1.75 ± 0.09b 256.23 ± 4.20b 925.26 ± 5.02e 0.91 ± 0.07b 48.78 ± 0.21b 50.31 ± 0.32c 

SM-40 10.11 ± 0.10a 231.01 ± 4.51c 936.60 ± 3.71d 0.72 ± 0.08c 58.90 ± 0.15a 40.38 ± 0.15e 

SeDM — 200.92 ± 4.24d 1232.85 ± 6.02a — 57.79 ± 1.65a 42.21 ± 0.25d 

SiDM — 206.02 ± 3.62d 1065.07 ± 7.65c — 46.71 ± 0.22c 53.29 ± 0.51b  

Vacuum freeze drying Control 0.43 ± 0.05a 7.06 ± 0.13a 75.65 ± 0.15a 29.33 ± 0.15c 39.62 ± 0.14b 31.05 ± 0.50a 

SM-20 0.22 ± 0.02bc 6.14 ± 0.15c 68.27 ± 0.21c 32.24 ± 1.07b 40.08 ± 0.45b 27.68 ± 0.33c 

SM-40 0.38 ± 0.08a 6.77 ± 0.20b 70.83 ± 0.12b 30.70 ± 0.25bc 39.83 ± 0.18b 29.47 ± 0.18b 

SeDM 0.14 ± 0.04c 4.64 ± 0.15d 49.77 ± 0.15e 42.33 ± 1.12a 38.55 ± 0.31c 19.12 ± 0.14d 

SiDM 0.25 ± 0.05b 4.82 ± 0.21d 65.79 ± 0.12d 24.33 ± 0.70d 48.17 ± 0.20a 27.50 ± 0.29c 

Note: Values are means ± SD, n ≥ 3. Different letters in the same column mean significant difference at p < 0.05. T23 refers to the the free water’s transverse relaxation 
time; T21 and T22 refer to the transverse relaxation time of the bound water and the immobilized water, respectively. A21 represents the corresponding water fraction to 
T21, A22 represents the corresponding water fraction to T22, and A23 represents the corresponding water fraction to T23. Control: no-ultrasound; SM-20: single- 
frequency mode of 20 kHz; SM-40: single-frequency mode of 40 kHz; SeDM: sequential dual-frequency mode of 20/40 kHz; SiDM: simultaneous dual-frequency 
mode of 20 and 40 kHz. 
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proportion of bound water and the smallest proportion of free water. 
The proportion of free water and bound water can reflect the degree of 
drying to a certain extent. Therefore, the less the proportion of free 
water, the better effect of drying. 

The MRI images of strawberry samples pretreated by different modes 
of US and VFD are shown in Fig. 4C, which more intuitively reflects the 
moisture change of the strawberry slices. The signal intensity of MRI is 
directly proportional to the water content of the sample. The red color in 
the image indicates high signal intensity and high water content. We can 
find that a large amount of water in the control group was evenly 
distributed in the strawberry. After ultrasonic pretreatment, the red area 
was significantly smaller than that in the control group. This phenom
enon was because of the destruction of cell structure caused by US, so 
that the water migrated from strawberry to osmotic solution at a faster 
rate, which is also verified by the WL in the process of mass transfer 
(Fig. 2A) and the reduction of the peak area of free water (Fig. 4A). After 
drying, there was only a weak signal around the edge of the sample. 
Compared with the sample without drying, the signal of the VFD sample 
decreased sharply. Among them, the signal of freeze-dried strawberry 
samples by sequential ultrasonic frequency mode treatment was the 
least, which hardly be detected and identified in the MRI image. This 
indicated that the moisture content in the SeDM dried strawberry sam
ple is lower, and the results in the MRI image were consistent with the 
transverse relaxation time. 

3.3. Effect of ultrasonic pretreatments on quality attributes of dried 
strawberry slices 

3.3.1. Rehydration ratio 
The rehydration ratio provides an idea of the the rehydration ability 

of dried products. In Fig. 5A, the rehydration ratio of strawberry samples 
pretreated with different ultrasonic treatments increased noticeably (p 

< 0.05). The dried strawberry samples pretreated with sequential ul
trasonic treatment had the highest rehydration ratio (3.47 g/g), being 
27.57% greater than that of the control group. This is due to the 
microchannels formed by ultrasonic waves, which facilitated the pene
tration of external moisture into the material [45]. Moreover, the vac
uum effect in the drying process could also change the strawberries’ 
microstructure and promote mass transfer, thus improving the rehy
dration of materials [27]. Similar results were found in okra [18], carrot 
[46] and pumpkin [47]. 

3.3.2. Texture 
Hardness is the resistance of samples to compression under a specific 

deformation rate, directly related to fruits and vegetables’ structure. It is 
an important indicator of fruits and vegetables’ texture quality [48]. As 
shown in Fig. 5A, the hardness values of SM-20, SM-40, SeDM and SiDM 
were 226.79 g, 265.16 g, 442.10 g and 301.52 g respectively, which 
were significantly higher than that of the control group (142.50 g). The 
hardness of dried strawberry slices after different ultrasonic frequency 
modes showed significant difference (p < 0.05). Similar results were 
obtained when yam was ultrasonically penetrated for 10 min at 1600 W 
[49], mainly because the long-term ultrasonic penetration caused the 
cells to collapse and shrink(Fig. 3), and the solid matter increased after 
penetration, so the overall hardness increased after VFD. Among them, 
the hardness of the sample processed in the sequential ultrasonic mode 
(SeDM) was the highest, and the moisture content of the sample was the 
lowest. Similar results were also observed by Song et al. [50], they 
attributed the pretreated samples’ high hardness to the product’s low 
moisture content. 

3.3.3. Color 
The color of dried products is the most intuitive indicator of product 

quality, and it is one of the main factors affecting consumers to buy 

Fig. 5. Effect of pretreatments on the quality of strawberry subjected to VFD. A: Effect of pretreatments on rehydration ratio (bar graph) and hardness (line graph) of 
strawberry after VFD; B: Effect of pretreatments on the color of strawberry after VFD; C: Radar chart of the effect of pretreatments on flavor substances of strawberry 
after VFD; D: Effect of pretreatments on main components of flavor substances of strawberry after VFD. 
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products. As shown in Fig. 5B, after freeze-drying treatment, the L* 
value (light and dark value) of strawberry slices decreased significantly, 
whereas a* (red value) and b* (yellow value) values increased. This 
indicates that a certain degree of browning occurred in the process of 
freeze-drying, or the red pigment was condensed after a water loss, 
leading to surface darkening. Besides, previous studies have shown that 
the shrinkage and structural deformation during drying may transfer 
photons or absorb more brightness, thereby reducing the L* value [51]. 
The a* value is the most crucial reference index for strawberry slices. 
Compared with fresh strawberry samples, the a* value of the control 
group and freeze-dried strawberry slices pretreated with different ul
trasonic frequency modes increased significantly, and the a* value of 
SeDM was the highest. This was probably due to the destruction of the 
cell fluid and anthocyanin of the strawberry during the pretreatment 
process, which were released into the interstitial spaces, producing a 
stronger red on the surface of the strawberry. ΔE > 3 means that there is 
a significant difference between dry and fresh samples. The ΔE value of 
the pretreated samples was less than that of the control group, which 
may be connected with the drying time. VFD was more conducive to 
maintaining the original color of dried fruits. 

3.3.4. Electronic nose 
The aroma is an important index to measure the dried strawberry. 

The electronic nose formed a radar fingerprint through the response 
values of 10 sensors (Fig. 5C). The response values of the five samples 
were similar, but the signal strength was slightly different. The sensor 
W2W, W1W and W5S had the greatest influence on the odor charac
teristics of freeze-dried strawberry slices. A similar result was also found 
in TianXianZui strawberry [17]. The response signals of W2W, W1W and 
W5S represent the aromatic compounds, organic sulfides and nitrogen 
oxides, respectively [30]. The higher the W2W value, the better the 
flavor of dried strawberry. But sulfide and nitrogen oxides have negative 
effects on the flavor [33]. Compared to the control group, the W2W 
response values of SeDM pretreatment group were higher. This indicates 
that the appropriate ultrasonic pretreatment played a certain role in 
inhibiting the loss of volatile compounds during drying. However, it is 
difficult to discriminate different samples only from the observed sensor 
response values (radar figure); thus, the internal relationships and dif
ferences of the signal information of ten sensors needs to be further 
explored. 

The principal component analysis (PCA) diagram (Fig. 5D) de
termines whether the electronic nose data vary between the dried 
samples. The contribution rates of PC1 and PC2 were 86.43% and 
11.24%, respectively. The cumulative contribution rate of the two main 
components was 97.67%, which indicated that the electronic nose could 
reflect the difference of samples. The close distance between the control 
group, SM-40 and SiDM indicated that their odor characteristics were 
similar, while SM-20 and SeDM were distributed on the upper side. 
There was a significant difference in the first principal component, but 
no significant difference in the second principal component. This trend 
is consistent with the radar chart, and the results showed that the odor 
characteristics of SeDM samples are significantly different, which may 
be related to the specific frequency of ultrasound reduced the damage of 
some chemical components. 

3.4. Effect of ultrasonic pretreatments on the chemical composition of 
dried strawberry slices 

Anthocyanins are the main colorants of strawberry fruits, responsible 
for their red color [17]. As shown in Table 2 that the total anthocyanin 
content of freeze-dried strawberry samples pretreated by ultrasound was 
significantly higher (p < 0.05) than that of the control, which was 
consistent with the changing trend of a* value (Fig. 5). These results 
show that ultrasound-assisted sucrose penetration was more beneficial 
to the retention of anthocyanin than sucrose penetration alone. Antho
cyanin instability is mainly affected by light, heat, oxidation and other 

physical and chemical factors during processing and storage. In the 
process of ultrasound, the samples were far away from the light. The 
inhibition of the anthocyanins degradation in the strawberries was 
probable due to the reduction of the oxygen content and inactivation of 
the endogenous enzyme. Zhang et al. [17] also confirmed that ultrasonic 
treatment increased the anthocyanin content of dried strawberry. 

Vitamin C is highly oxidative, and the drying process causes the loss 
of VC. The content of VC in freeze-dried strawberry slices subjected to 
different ultrasonic treatments was significantly lower than that in the 
control group (p < 0.05), which indicated that ultrasonic pretreatment 
had no positive effect on the content of VC, because VC was unstable 
during food processing and easily decomposed due to the influence of 
light, heat and other factors. Long-time ultrasound could also lead to the 
considerable accumulation of free radicals in strawberries, thus accel
erating the oxidation of VC [52]. 

Table 2 also showed TPC, DPPH and –OH radical scavenging ca
pacity after different ultrasonic treatments. Compared with the control, 
strawberries’ antioxidant capacity after pretreatment was significantly 
improved (p < 0.05). Among them, the SeDM sample had the highest 
total phenolic content (31.83 mg/g), followed by the SiDM sample 
(28.97 mg/g), and the control sample had the lowest (24.32 mg/g). It 
might be due to the fact that the ultrasonic treatment reduced dissolved 
oxygen, thereby preventing the oxidative decomposition of phenols 
[53]. Similar results were also found by Zhang et al. [17], which ul
trasonic (US) and ultra-high pressure (UHP) pretreatment increased the 
total phenol and flavonoid content of vacuum-freeze dried strawberries. 
Some studies demonstrated that ultrasound can promote the extraction 
of phenolic substance, which may associated with the cavitation effect of 
ultrasound, leading to the release of phenolic compounds or inactivation 
of phenol degrading enzymes [18]. On the contrary, the total phenolic 
content of persimmon dried at 60 ◦C with hot air decreased significantly 
after ultrasonic assisted osmotic dehydration [19]. Therefore, ultrasonic 
treatment had both positive and negative effects on the retention of 
bioactive compounds in fruits and vegetables, depending on the char
acteristics of raw materials and dry methods [24]. Compared to the 
others, the scavenging rates of DPPH and –OH in SeDM samples were 
63.11% and 102.32%, respectively, which were the highest. The DPPH 
content in control sample was 3.49, 7.19, 17.79 and 8.92% lower than 
those in SM-20, SM-40, SiDM and SeDM, respectively. The changing 
trend of DPPH and –OH radical scavenging ability was similar, and it 
was consistent with the changing trend of total phenolic content. The 
results were consistent with previous research outcomes [54], where the 
antioxidant capacity and the phenolic content exhibited a clear corre
lation. Studies have shown that ultrasonic treatment can increase the 
content of hydroxyl groups, and hydroxyl can improve the antioxidant 
activity [55]. 

Table 2 
Total anthocyanin content, total phenolic content, vitamin C and antioxidant 
capacity of the dried strawberry samples.   

Control SM-20 SM-40 SeDM SiDM 

TAC (mg 
C3G/g) 

0.88 ±
0.02d 

0.95 ±
0.03c 

1.02 ±
0.01b 

1.10 ±
0.02a 

1.04 ±
0.02ab 

TPC (mg 
GAE/g) 

24.32 ±
0.12e 

25.84 ±
0.09d 

27.28 ±
0.14c 

31.83 ±
0.07a 

28.97 ±
0.11b 

VC (mg 
AA/g) 

2.38 ±
0.06a 

2.22 ±
0.08b 

2.12 ±
0.05bc 

2.08 ±
0.02c 

1.77 ±
0.04d 

DPPH (%) 53.58 ±
0.66e 

55.45 ±
0.29d 

57.43 ±
0.52c 

63.11 ±
0.74a 

58.36 ±
0.87b 

–OH (%) 93.17 ±
0.14d 

99.67 ±
0.32b 

98.94 ±
0.37c 

102.32 ±
0.76a 

102.20 ±
0.21a 

Note: Values are means ± SD, n ≥ 3. Different letters in the same column mean 
significant difference at p < 0.05. Control: no-ultrasound; SM-20: single- 
frequency mode of 20 kHz; SM-40: single-frequency mode of 40 kHz; SeDM: 
sequential dual-frequency mode of 20/40 kHz; SiDM: simultaneous dual- 
frequency mode of 20 and 40 kHz. 
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4. Conclusions 

The results showed that the ultrasonic pretreatment with different 
frequency modes significantly influenced the drying process and quality 
attributes of strawberry slices. All kinds of ultrasonic frequencies 
significantly shortened the drying time, among which the effect of 
sequential dual-frequency mode (SeDM) assisted sucrose infiltration was 
the best. It reduced drying time greatly by changing the moisture status 
and microstructure of strawberry slices. The rehydration capacity, 
hardness, and flavor of the freeze-dried strawberry slices irradiated by 
ultrasound were improved. Therefore, ultrasonication combined with 
osmotic pretreatment can increase the VFD process of strawberries and 
improve strawberries’ quality attributes. 
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