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The results generated from large psychiatric genomic 
consortia show us some new vantage points to understand 
the pathophysiology of psychiatric disorders. We explored 
the potential of integrating the transcription output of the 
core gene underlying the commonality of psychiatric dis-
orders with a clustering algorithm to redefine psychiatric 
disorders. Our results showed that an extended MHC 
region was associated with the common factor of schizo-
phrenia (SCZ), bipolar disorder (BD), and major depres-
sive disorder (MDD) at the level of genomic significance, 
with rs7746199 (P = 4.905e-08), a cis-eQTL to the gene 
ZNF391, pinpointed as a potential causal variant driving 
the signals in the region. Gene expression pattern of 
ZNF391 in the brain led to the emergence of 3 biotypes, 
independent of disorder. The 3 biotypes performed signif-
icantly differently in working memory and demonstrated 
different gray matter volumes in the right inferior frontal 
orbital gyrus (RIFOG), with a partial causal pathway 
arising from ZNF391 to RIFOG to working memory. Our 
study illustrates the potential of a trans-diagnostic, top-
down approach in understanding the commonality of psy-
chiatric disorders.

Key words:  cross-disorder/expression prediction/t-SNE/
biotype/causality

Introduction

Thanks to the concerted efforts from multi-national 
consortia, remarkable progress has been made in the 
field of psychiatric genetics.1–3 However, translating 

the findings from large-scale genome-wide association 
studies (GWAS) to clinical applications remains elusive. 
The 2 main reasons for such a dilemma are the pheno-
typic and genetic heterogeneity in the affected popula-
tions, due to the current lack of understanding of the 
pathogenesis of psychiatric disorders. Both linkage and 
genome-wide association/sequencing studies have ob-
served a notable correlation/ co-segregation of multiple 
psychiatric disorders.4,5 Such findings imply that a cross-
disorder approach could increase statistical power to de-
tect susceptibility genes and provide a fuller picture of 
the genetic relationships between psychiatric disorders.6

Moreover, a large proportion of the SNPs identified 
by GWAS so far are located at intergenic/non-coding 
regions, making direct interpretation of the association 
signals a difficult task.7 However, with the establishment 
of gene expression data repositories, such as GTEx8 and 
psychENCODE,9 it has become possible to link many 
non-coding SNPs, potentially eQTLs (expression quan-
titative trait loci), to the expression levels of their target 
genes. By integrating the genotype information of eQTLs 
with tissue-specific expression data, methods have been 
developed to enable the prediction, in an independent 
sample, of gene expression level in a tissue of interest.10

Motivated by these new trends, this study seeks to (1) 
identify the core causal gene underlying the shared path-
ophysiology (common factor) of schizophrenia (SCZ), 
bipolar disorder (BD), and major depressive disorder 
(MDD), (2) evaluate the expression levels of the core 
gene in the brain regions, (3) define new biotypes by 
re-delineating patients based on the distinctive expression 
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pattern of core gene in the brain regions, and (4) anno-
tate the new biotypes in terms of scalable traits such as 
cognitive functions and gray matter volumes (GMV; the 
schematics of the study design is shown in figure 1).

Methods

Genomic SEM and in silico Fine-Mapping

We leveraged the summary statistics from large-scale 
GWAS of 3 disorders11–13 to carry out a confirmatory 
factor analysis using genomic SEM.14 Genomic SEM 
takes the genetic covariance matrix estimated from 
linkage disequilibrium (LD) score regression algorithm 
and fits a specified model to it; in our study, we specified 
a common factor (CF) which, to different extents, simul-
taneously explain the phenotypic variances and covari-
ances of  the 3 disorders. Following the emergence of the 
common factor (CF) underlying the disorders, we imple-
mented a genome-wide scan to map loci conferring effect 
on CF. In brief, the same SEM model was extended to in-
corporate SNP effects on each disorder based on GWAS 
summary statistics, to estimate the effect of  SNP on the 
CF, with corresponding standard error and P-value. The 
extent to which an SNP’s effect on the 3 disorders is not 
mediated through CF is measured by a heterogeneity Q 
value, with a P-value to indicate the statistical signifi-
cance of heterogeneity. The mapped loci were annotated 

using FUMA15; the estimation of the heritability ex-
plained by SNPs and the genetic correlation analysis be-
tween CF and other phenotypes were performed using 
the LD hub platform.16

The genome-wide scan from above identified an ex-
tended MHC region (CHR6: 262,663,11-293,566,87) to 
be associated with CF. As shown in figure 4 and aligned 
with the GRCh37 coordinate, the region locates many 
overlapped genes with multiple significantly associated 
SNPs. To further pinpoint the potential causal core 
SNP-gene pair, we carried out an in silico fine-mapping 
analysis in the associated region. We chose 2 algo-
rithms (“FINEMAP” 17and “iRIGS” 18) with different 
theoretical bases to ensure robustness. “FINEMAP” is 
a stochastic search algorithm for identifying the casual 
configurations of  SNPs in the genomic region of  in-
terest and generates, for each SNP, a substantial poste-
rior probability (PP). “iRIGs” is a Bayesian framework 
which infers PP for the causal SNP-gene pair by in-
tegrating 2 layers of  information: (1) evidence from 
multi-omics data, and (2) relationships among genes in 
biological networks. In our study, we define the SNP 
that reached a consensus PP of  0.9, obtained by aver-
aging PPs from the 2 algorithms, as being causal. We 
then chose the gene meeting more than 2 of  the fol-
lowing criteria to be causal: (1) the SNP of  interest lo-
cated in the intronic/exonic region thereof; (2) PP for 

Fig. 1. A schematic for data analysis workflow of our study. We started by a genomic SEM modeling of genetic covariance matrix 
generated from the summary statistics of published genome-wide association studies (GWASs); then, we identified the causal gene of the 
common factor underlying 3 psychiatric disorders, followed by the imputation of genetically regulated expression (GReX) of the causal 
gene in the brain. Subsequently, we re-clustered the patient group based on their GReX profile and annotated the clusters in terms of 
epidemiological, cognitive, and neuroimaging indexes.



1353

Spatial Expression Pattern of ZNF391 Gene

the casual gene arising from the iRIGs bigger than 0.9; 
and (3) expression of  the gene regulated by the causal 
SNP as cis-eQTL in the brain according to at least one 
source of  expression data repository.

Prediction of Genotype-Regulated Expression of 
ZNF391 in the Brain and Cluster Analysis

The fine-mapping above identified zinc finger protein 391 
(ZNF391) as a potential causal core gene. To further ex-
plore the spatial expression pattern of this gene in the brain, 
we used PrediXcan19 to predict its expression level in each 
individual of our in-house sample. In brief, the PrediXcan 
first used the gene expression data and the genotype data 
to train the elastic net models, with the expression level of 
the gene as the response variable and the genotypes of each 
SNP as the primary predictor variable. These models gen-
erated, for each SNP, a regularized weight of prediction. 
Subsequently, using genotype data from an independent 
sample, the predictive weights of SNPs within 1MB of the 
gene start or end (according to the GENCODE version 
12) were aggregated using the following formula (1) to yield 
genetically regulated expression level (GReX) for the target 
gene in the target tissue:

’GReX =
∑

k

wkxk + ε (1)

In the equation above, xk is the number of reference al-
leles for SNP k.

In our study, we used the pre-stored predictive weights 
for the expression of ZNF391 in the 11 brain regions 
from GTEx (https://gtexportal.org) and the dorsal lat-
eral prefrontal cortex (DLPFC) from the Common 
Mind Consortium (CMC),20 to predict the expression of 
ZNF391 for the participants in our in-house sample. To 
further guarantee the validity of genotypes we used for 
the GReX prediction of ZNF391, we randomly chose 20 
individuals (5 for each group) for the genotyping of 50 
SNPs included in the GReX prediction using a Sequenom 
MassARRAY platform according to manufacturer’s pro-
tocol, and removed any SNPs the genotype of which 
indicative a inconsistency with genotyping and imputa-
tion. All participants signed the consent form, and the 
study was proved by the ethic committee of West China 
Hospital, Sichuan University.

Using the linear regression in R, we then identified the 
brain regions with differentiated expression of ZNF391 
between the cross-disorder patients and the controls (ref-
erence level), with the first 3 population PCs included as 
covariates.

Following the identification of regions with differential 
gene expression, we employed a method, t-distributed sto-
chastic neighbor embedding (t-SNE),21 for the clustering 
of patients according to their spatial pattern of ZNF391 
GReX (we denoted the clusters as biotypes hereafter). 

T-SNE uses random walks on neighborhood graphs to 
allow the implicit structure of all data to influence how a 
subset of the data is displayed. Compared to many other 
similar nonparametric techniques, t-SNE can better cap-
ture much of the local structure of the high-dimensional 
data while also revealing global structure such as the pres-
ence of clusters at several scales.21 We iterated on different 
values of its super parameter, perplexity (range 50–150) to 
find the most optimal value which can, to the largest extent, 
distinguish between the clusters (biotypes).

Sensitivity Analysis

Following the identification of clusters in our sample, 2 
layers of sensitivity analysis were conducted to ensure the 
robustness: firstly, we used an alternative method, K-means 
clustering, to validate our primary findings; secondly, we ap-
plied t-SNE clustering to an independent dataset including 
84 patients with first-episode schizophrenia and who were 
genotyped using different genome-wide genotyping chip, 
aiming to replicate the biotype numbers identified in our 
primary analysis, with the sample summary, quality control 
and imputation of genomic raw data described in detail in 
the supplementary material.

Comparison of Cognitive Performance and 
Neuroimaging Measures Between Different ZNF391 
Biotypes

Some post-hoc analyses were then implemented to fur-
ther explain identified biotypes. Firstly, a Kruskal-Wallis 

Fig. 2. Pathway diagram of the genomic SEM solution for a 
common factor (CF) underlying schizophrenia (SCZ), bipolar 
disorder (BD), and major depressive disorder (MDD).

https://gtexportal.org
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
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test was used to compare the mean of continuous dem-
ographic features, including age and years of educa-
tion, between 3 biotypes; categorical features, including 
gender and disorder distribution, were compared using a 
Chi-square test. Univariate analysis of variance was con-
ducted for the comparison of cognitive performance and 
GMV, with both cognitive tests and GMV being adjusted 
for age, gender, and years of educations before compar-
ison. The details of cognitive performance evaluation 
and MRI scanning were described in the supplementary 
table S1. All of the statistical analysis was carried out 
in the R, version 3.5.3 (R foundation). Given the high 
correlation between measures of cognitive domains and 

GMV between brain areas, we chose a liberal threshold 
of α = 0.05 as the significance level.

Exploratory Causal Analysis

The previous step uncovered significant differences be-
tween ZNF391 biotypes in GMV of RIFOG, and in 
working memory measures (DMS_TC and DMS_
TC_A). To further test the causal relationship from gray 
matter volume (GMV) in right inferior frontal orbital 
gyrus (RIFOG) to working memory, we carried out a 
MR analysis by setting the ZNF391 biotype as the in-
strumental variable (IV) and using a 2-stage least square 

Fig. 3. (a) The Manhattan plot for the composite results from schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder 
(MDD), and common factor genome-wide association study (CF GWAS); the P_scz: the P values of SCZ GWAS by Pardiñas, A.F. et al., 
P_bd: the P values of BD GWAS by Stahl, E. A. et al., P_mdd: the P values of MDD GWAS by Wray, N.R. et al., P_CF: the P values 
of CF GWAS (b) Manhattan plot of Q value for each SNP. In both plots, each point denotes the −log10 P-value for each included SNPs, 
the black line marks the threshold for genome-wide significance.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
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method.22 The analysis was carried out in the R (package 
“AER”). We set a nominal threshold of α = 0.05 as the 
significance level.

Results

Identification of Common Factor (CF) and ZNF391 as 
its Causal Core Gene

As illustrated by the pathway diagram (figure 2), a con-
firmatory factor analysis of SCZ, BD and MDD using 
genomic SEM revealed a common factor (CF). The 
loadings of CF on the SCZ, BD, and MDD were 0.42, 
0.35, and 0.09, respectively, with a comparative fit index 
(CFI) and a standardized root mean square residual 
(SRMR) indicative of a well-fitted model (CFI  =  1, 
SRMR = 1.62 × 10−9). Besides, consistent with previous 
studies,23 the covariance between SCZ and BD is the lar-
gest among these 3 disorders (0.15).

The genome-wide scanning mapped one genomic 
region in chromosome 6 (262,663,11-293,566,87) con-
taining 39 SNPs to the common factor (CF) at a genome-
wide significant level (5 × 10−8, the Manhattan plot 
displayed in figure  3a. The top SNP, rs2232429, is lo-
cated at an intronic region of ZSCAN12 (P =2.06 × 10−8

, figure 4). Besides, no SNP was found to have significant 
heterogeneity, with the Manhattan plot of Q values for 
each SNP displayed in figure 3b. The tissue enrichment 
analysis using MAGMA in FUMA exhibited a remark-
able enrichment of the associated genes in the brain re-
gions (supplementary figure S1). In addition, the SNP 
heritability of CF was estimated to be 0.2071 (0.0144) 

and the subsequent partitioned heritability analysis de-
tected the Bonferroni-adjusted (0.05/75  =  6.66 × 10−4

) significant enrichment of heritability in 4 cell types 
(figure  5): Nucleotide_Diversity_10kbL2_0 (P_en-
richment  =  3.39 × 10−10), GERP.NSL2_0 (P_enrich-
ment  =  9.51 × 10−7), MAF_Adj_LLD_AFRL2_0 
(P_enrichment  =  1.73 × 10−5) and Backgrd_Selection_
StatL2_0 (P_enrichment  =  5.79 × 10−5) . The genetic 
correlation analysis using LDSC indicated that the CF 
was mainly correlated with psychiatric, cognitive and be-
havior traits (supplementary figure S2).

The results arising from in silico fine-mapping 
are summarized in table  1. The rs7746199 
(β = 0.081, P = 4.905 × 10−8) was prioritized 
with the highest consensus PP (0.96); in particular, 
iRIGS showed that ZNF391, 95 kb upstream from which 
rs7746199 was located according to, as the potential core 
gene. Based on the calculation and visualization from a 
centralized platform using S-PrediXcan (https://phenviz.
navigome.com/gene_phenotypes/ENSG00000124613.
html),24 the predicted expression of ZNF391 decreases by 
at least 2 standard deviations in the mental and behav-
ioral traits (supplementary figures S3 and S4).

Brain Regions Indicative of a Differentiated ZNF391 
Expression and Novel Biotypes Arising From 
Differentiated Expression Pattern

After the sample quality control, population structure 
analysis, and imputation, we included 501 patients (118 
SCZ, 224 BD, 159 MDD) and 250 healthy controls, 

Fig. 4. A regional association plot of the top SNPs and their linkage disequilibrium, the diamond denotes rs2232429, which showed the 
strongest signal of association in CF GWAS.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
https://phenviz.navigome.com/gene_phenotypes/ENSG00000124613.html
https://phenviz.navigome.com/gene_phenotypes/ENSG00000124613.html
https://phenviz.navigome.com/gene_phenotypes/ENSG00000124613.html
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
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each with 6  230  803 high-quality SNPs, in our subse-
quent expression prediction of ZNF391 GReX (consort 
diagram for the quality control of genotypes shown in 
supplementary figure S5; demographic characteristics of 
the included sample in table 2). In total, 50 SNPs were 
included for the prediction of ZNF391 GReX, with 
the imputation details listed in supplementary table S2. 
According the MAF information from 1000 Genomes, 
the MAF of these 50 SNPs is significantly correlated be-
tween European and East Asian populations (ρ = 0.95, P 
< .001), validating the use of expression weights derived 
from brain sample of European ancestry in our in-house 
data. A further genotyping of 50 SNPs identified 7 SNPs 
to fail the genotype consistency between imputation and 
genotyping, we therefore removed these 7 SNPs from the 
further analysis, leaving 43 SNPs for the prediction ex-
pression of ZNF391.

As demonstrated in table 2, significant difference existed 
among different diagnostic groups in age and years of ed-
ucation. Further population structure analysis indicated, 

displayed in supplementary figure S6, that no population 
stratification was detected in our sample, all included in-
dividuals clustering in the East Asian population.

The result of the comparison of ZNF391 GReX was 
illustrated in figure  6 and the supplementary table S3; 8 
brain regions showed significantly differentiate GReX (P 
< 0.05) between cross-disorder patient group and controls, 
but not between groups of SCZ, BD and MDD, indicative 
a shared pathology underpinned by these brain regions.

Three clusters (denoted as biotypes henceforth) arose 
from the clustering analysis of the spatial profile of 
ZNF391 GReX in the 8 brain regions; as indicated in 
figure 7, the most optimal inter-cluster distance could be 
achieved by setting the hyper-parameter, perplexity, as 96 
(supplementary figure S7). For these 3 newly identified 
biotypes, a χ2 test did not find significant difference in the 
distribution of disorders between them(figure 7b).

Using genotyping, 6 out of  50 SNPs sensitivity 
analyses using K-means clustering and the analyses 
using an independent sample confirmed the primary 

Fig. 5. The analysis result of heritability enrichment in different cell types; the four largest dots (Nucleotide_Diversity_10kbL2, 
MAF_Adj_LLD_AFRL2_0, GERP.NSL2_0, and Backgrd_Selection_StatL2_0) represent the cell type contributing significantly to the 
heritability of CF, with the significance surviving a Bonferroni correction for multiple comparisons.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
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 clustering findings (perplexity  =  9, supplementary 
figure S8).

Following the identification of new clustering pat-
terns (biotypes) existing in the patient group, we compare 
the biotypes in terms of demographic characteristics, 
cognitive performance and GMV. While no significant 
difference was found in age and gender between 3 bio-
types, significant difference in the working memory cap-
abilities, measured by using Delay-matching-to-sample 
(DMS), was detected between biotypes. As demonstrated 
in figure  8a and 8b, biotype 3 performed significantly 
better than other 2 biotypes (biotype 3 > biotype 2 > bi-
otype 1)  in the total correct rate (DMS_TC, F = 4.691, 
P = 0.00969), and the total correct rate-all delays (DMS_
TC_A, F = 4.659, P = 0.01). Further, the comparison of 
GMV identified the GMV in RIFOG to be significantly 
different between 3 biotypes, in the same order as that of 
DMS comparisons (F = 9.697, Panova = .002, figure 8c).

A Partial Causal Relationship Existing Between GMV 
of RIFOG and Working Memory

GReX is mainly derived from genotype information, 
which makes GReX a potential instrumental vari-
able (IV) in exploring the causal relationship between 
phenotypes. Indeed, with ZNF391 biotypes as an IV, 
a causal path, albeit a partial one, could be drawn 
from RIFOG GMV to working memory (causal 𝛃 DMS_

TC = 4.12, P = 0.044; causal 𝛃 DMS_TC_A = 4.51, P = 0.036). 
As demonstrated in figure 9, intriguingly, the signal of 
association with ZNF391 GReX decreased gradually 
from gray matter volume to working memory; while 
the hypothetical total effect of  pathway (ZNF391 
GReX ↬ RIFOG ↬ working memory) was estimated 
to be 2.24% on average, the empirical estimation based 
on a linear model implied an effect around 8.3%, em-
phasizing the complexity of  the biological mechanism 
linking gene to the complex trait (figure 9).

Table 2. Demographic Characteristics of the Participants Involved in the Inference of ZNF391 GReX

SCZ BD MDD HC Statistics* P*

N 118 224 159 292 NA NA

Age 22.32 ± 7.26 25.43 ± 8.48 29.43 ± 10.17 26.82 ± 8.27 52.744 <0.001
Gender (%male) 49.15% 43.30% 36.48% 40.40% 4.88 0.18
Years of education 11.81 ± 2.82 13.24 ± 3.09 13.39 ± 3.37 14.97 ± 2.82 91.28 <0.001

Note: SCZ, schizophrenia; BD, bipolar disorder; and MDD, major depressive disorder.
*Denotes the statistics and P-values derived from the comparison between the patients from 3 disorder groups (SCZ + BD + MDD) and 
controls.

Fig. 6. The brain regions indicating the difference in ZNF391 GReX between patients and controls; The brain regions correspond to the 
ones from the human brain transcriptome (HBT) database; FL, frontal lobe; CB, cerebellum; CAU, caudate; AMY, amygdala; HTH; 
hypothalamus; SN, Substantia nigra.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbaa167#supplementary-data
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Discussion

Consistent with previous studies,5 our study detected a 
common factor (CF) underlying 3 psychiatric disorders 
(SCZ, BD, and MDD), and the CF was associated with 
a segment at the extended major histocompatibility com-
plex (MHC) region. Multiple large-population GWASs 
of major psychiatric disorders, to a different extent, all 
pinpointed to the implication of the major histocom-
patibility complex (MHC) region in the pathogenesis of 
disorder.13,25 MHC plays an active role in immune func-
tion, especially the adaptive one. Studies using various 
methods such as cytokines and gene expression of post-
mortem brains also indicated a critical role that immune 
components play in psychiatric disorders.26,27 One seminal 
study by Sekar et al identified the variations of C4 in the 
MHC region as the driving signal of association with 
schizophrenia; when looking beyond the MHC region, 
Sekar et al detected a pattern of bimodal associations in 
the sense that 2 peaks of association existed in this region, 
one was C4, another was the extended region harboring 
the signal of interest in our study, ZNF391.28 However, 
due to its complex variation pattern and LD structure, 
it still remains a challenge to investigate, at a large popu-
lation scale, the association between the genetic variants 

in the region hereof and complex diseases. In contrast, 
the methods, such as Predixcan and FUSION, predict 
the gene expression level by integrating the in-house gen-
otype information and external tissue expression data, 
circumventing the pitfalls facing the genetic association 
study in the highly polymorphous region.

The tissue expression enrichment analysis using 
MAGMA in FUMA showed a notable enrichment of 
associated genes in the brain areas, especially the ones 
essential to the cognitive capacity, such as frontal cortex 
BA9, cortex and cerebellar hemisphere. It has been widely 
recognized that cognitive impairment is the core feature 
of schizophrenia, BD and depression.29,30 The project, 
like Research Domain Criteria (RDoC), aimed to rede-
fine psychiatric nosology to better reflect the cognitive 
commons and differences of mental disorders. Our study 
utilized both results from consortia-based studies and 
in-house data to link the ZNF391 to working memory ca-
pacity as a potential standard pathophysiological change 
underlying the 3 disorders herein. Although future 
studies are still required to validate our current findings, 
our study provides another vantage point to the molec-
ular mechanism driving the cognitive deficits in major 
psychiatric disorders.

Fig. 7. (a) t-SNE results on the transformed 2-dimensional dataset with a perplexity parameter of 120; (b) the distribution of patients 
with each disorder in each ZNF391 biotype.
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ZNF391 is highly expressed in the brain, was impli-
cated in depressive phenotypes,25 schizophrenia,31 neu-
roticism.32 Of 8 brain regions showing difference between 
ZNF391 biotypes, 6 are subcortical regions, 2 are cortical 
regions, which corroborates the previous findings that 
psychiatric disorders implicated many brain regions.33 It 
is worth noting that the ZNF391 GReX did not differ sig-
nificantly between many diagnostic groups, indicative a 
potential role ZNF391 might play in the shared patho-
physiology of 3 disorders. In the light of current findings, 
our study took the results to the next level by defining new 
biotypes in the patient group based on the spatial profile 
of ZNF391 GReX in these 8 brain regions. To date, we 
believe our study is the first one to explore the role of 
ZNF391 biotypes in refined phenotypic levels with results 
showing a significant difference between the biotypes 
in working memory measures and GMV of RIFOG. 
Although future replication using an independent sample 
is needed, our study provides another piece of evidence 
for the mechanism by which ZNF391, even MHC confers 
risk for major psychiatric disorders.

In the terms of  study design, we argue that our 
top-down approach could both reduce the risk of 

false-positive discovery existing in the multiple com-
parisons (“Winner’s curse”) and provide the robustness 
for subsequent investigation of  the biological mech-
anism at a higher level of  granularity. PredixCan chose 
a sparse algorithm, elastic net, which could improve 
predictive efficacy. Further, Mogil et al.34 showed that 
best population-specific predicted gene has a highly 
correlated performance across populations, echoing 
the findings from another study that 83% of  genes dif-
ferentially expressed among individuals, and 17% dif-
ferentially expressed among populations, with the most 
variation coming from within-population.35 All these 
studies justify the application of  expression-level data 
in the across-population studies.

Limitations

The current study should be interpreted in light of the fol-
lowing limitations: (1) the present study used the largest 
available gene expression project, GTEx, to infer GReX, 
and we are fully aware that most of the donors in GTEx 
are of European ancestry, which could potentially bias the 
prediction accuracy in the trans-ethnic samples. Although 

Fig. 8. The comparisons of cognitive measures in delay-matching-to-sample (a,b) and gray matter volume (GMV) of right inferior 
frontal orbital gyrus (RIFOG, c) between 3 ZNF391 biotypes.
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studies of population-specific genetic expression hinted at 
a minor genetic and expression differentiation of ZNF391 
in studied populations,36,37 the limited conclusion empha-
sizes the need to include more ancestrally diverse indi-
viduals in publicly accessible -omic database to enhance 
the interpretation accuracy of precision medicine. (2) In 
the current study, we defined one gene, the expression of 
which is regulated by the casual SNP as the core gene. 

When Prichard et al. first proposed the term “omnigenic 
model”,38 Prichard et  al refers to the gene which tends 
to have biologically interpretable roles in disease and 
the damage of which by loss of function can have the 
strongest effect on the disease risk as a “core gene.” Unlike 
some other complex diseases, such as hypertension, cancer 
and diabetes, it is far more exclusive for psychiatric dis-
orders, due to the lack of biomarker in their diagnosis, 

Fig. 9. Application of Mendelian randomization for identifying the causal relationship between gray matter volume (GMV) of RIFOG 
and working memory.
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to demarcate between core genes and peripheral genes. 
Arbitrary as our definition may sound, we argue that it is 
probably the most scientific way to pinpoint a gene for the 
further exploration of its role in the pathogenesis of psy-
chiatric disorders and a future study in a larger population 
with more enrich phenotype profiles is warranted. (3) We 
chose a lenient threshold of nominal significance to report 
our findings. While we argue it is a more appropriate ap-
proach when phenotypes are highly correlated with each 
other, we fully recognize the risk of false-positive findings. 
Future repliactions in a larger sample with more refined 
information are required. (4) Meanwhile, the weights we 
used to predict the gene expression of ZNF391 are derived 
from the postmortem samples with multiple underlying 
conditions, including psychiatric ones (CMC); although 
the original paper developing the prediction model has 
shown reliable prediction accuracy both across the ethnic 
groups and across clinical diagnoses, we fully acknowl-
edge the possible selection bias existing in analysis and 
future replication by using weights generated from large-
scale, highly homogenous tissue samples is required.

Conclusion

Taken together, in our current study, we tried to define 
new cross-disorder biotypes by using a cross-disorder 
top-down approach. The findings of  this study sug-
gest a common pathological mechanism may underlie 
the 3 disorders. Our results showed that a general li-
ability underlies SCZ, BD and MDD, with ZNF391 
being a potential causal core gene conferring risk of 
such a general liability. Moreover, we redefined patient 
group into 3 biotypes based on their expression pro-
files of  ZNF391 in the brain. The subsequent analysis 
led to the linkage between ZNF391, working memory 
and gray matter volume (GMV) of  RIFOG. Although 
future studies are required to delve deep into the bi-
ological mechanism linking them together, our study 
provides an example vis-à-vis how to increase the gran-
ularity of  genetic study to further our understanding 
of  etiology of  psychiatric disorders by incorporating 
the knowledge from the big data and prediction algo-
rithm into the real-world data.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
Figure S1. The results of tissue expression enrichment 
using MAGMA in FUMA; the red bars are the tissues 
significantly enriched by the genes associated CF and the 
black dashed line indicates the Bonferroni-corrected sig-
nificant threshold
Figure S2. The genetic correlation between common 
factor and the relevant traits in LD hub database

Figure S3. Multi-tissue plot for effect of rs7746199 on 
ZNF391 and corresponding posterior possibility, down-
loaded from https://gtexportal.org/home/snp/rs7746199
Figure S4. Inferred ZNF391 GReX in the brain re-
gions using the summary statistics of traits of different 
categories, downloaded from https://phenviz.navigome.
com/gene_phenotypes/ENSG00000124613.html
Figure S5. Quality control steps to filter genotyped 
individuals
Figure S6. Population scatter plot of PC1 and PC2, strat-
ified by disease status (a), and in the context of popula-
tions in the 1000 Genomes (b)
Figure S7. Clustering pattern using different perplexity 
value in the t-SNE analysis
Table S2. Summary of 50 SNPs included in the expres-
sion of ZNF391 GreX
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