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Abstract

Background: Recent advances in sequencing technologies have driven studies
identifying the microbiome as a key regulator of overall health and disease in the
host. Both 16S amplicon and whole genome shotgun sequencing technologies are
currently being used to investigate this relationship, however, the choice of
sequencing technology often depends on the nature and experimental design of
the study. In principle, the outputs rendered by analysis pipelines are heavily
influenced by the data used as input; it is then important to consider that the
genomic features produced by different sequencing technologies may emphasize
different results.

Results: In this work, we use public 16S amplicon and whole genome shotgun
sequencing (WGS) data from the same dogs to investigate the relationship between
sequencing technology and the captured gut metagenomic landscape in dogs. In
our analyses, we compare the taxonomic resolution at the species and phyla levels
and benchmark 12 classification algorithms in their ability to accurately identify host
phenotype using only taxonomic relative abundance information from 16S and WGS
datasets with identical study designs. Our best performing model, a random forest
trained by the WGS dataset, identified a species (Bacteroides coprocola) that
predominantly contributes to the abundance of leuB, a gene involved in branched
chain amino acid biosynthesis; a risk factor for glucose intolerance, insulin resistance,
and type 2 diabetes. This trend was not conserved when we trained the model
using 16S sequencing profiles from the same dogs.

Conclusions: Our results indicate that WGS sequencing of dog microbiomes detects
a greater taxonomic diversity than 16S sequencing of the same dogs at the species
level and with respect to four gut-enriched phyla levels. This difference in detection
does not significantly impact the performance metrics of machine learning
algorithms after down-sampling. Although the important features extracted from our
best performing model are not conserved between the two technologies, the
important features extracted from either instance indicate the utility of machine
learning algorithms in identifying biologically meaningful relationships between the
host and microbiome community members. In conclusion, this work provides the
first systematic machine learning comparison of dog 16S and WGS microbiomes
derived from identical study designs.
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Background
The gut microbiome plays a significant role in maintaining the overall health of the

host, nutrient absorption, as well as the overall metabolic homeostasis [1]. Further, dys-

function in the gut microbiome has been associated with host diseases including in-

flammatory bowel disease, obesity, and type 2 diabetes in humans [2–5]. A diverse

landscape of bacteria is commonly found in the gut microbiomes of healthy individuals,

but variations in strain and relative abundance make important functional distinctions.

Some members may be commensal in a healthy microbiome, while others have been

linked to inflammatory conditions such as rheumatoid arthritis [6]. Under certain con-

ditions of omnivorous diets, a few strains have been linked to the enrichment of leuB, a

gene involved in branched chain amino acid biosynthesis, which is a risk factor for glu-

cose intolerance and type 2 diabetes [7, 8]. It has recently been shown that the compos-

ition of dog microbiomes shares significant overlap with human microbiomes when

compared to the observed overlap in other animal models [9, 10]. However, metage-

nomic studies have also shown that dogs’ intestinal microbiota and its modification by

prebiotics, probiotics, and synbiotics reveal that the dysbiosis network underlying in-

flammatory bowel disease in dogs differs from that in humans [11, 12], establishing a

need for further research to understand the microbial communities present in dog

microbiomes.

The most common technology used to analyze microbial composition is 16S rRNA

gene amplicon analysis, which amplifies a 16S rRNA region with PCR and primers that

recognize highly conserved gene regions. 16S amplicon sequencing (16S) has advan-

tages due to its low cost and well-established analysis pipelines, but has limited reso-

lution and low sensitivity compared to whole genome shotgun sequencing [13, 14]. 16S

annotation relies on the association of a specific 16S rRNA gene with a taxon; these as-

sociations are defined as operational taxonomic units (OTUs). Because OTUs are most

commonly analyzed at the phyla or genera resolution, 16S technologies have a limited

scope in analyzing microbial communities at the species and strain levels. Recently,

whole genome shotgun sequencing (WGS) has been adopted to offer several advantages

by extending the range of capture in species and even strain-level resolution, and to

other microbes including viruses [15]. However, with an increased rate of detection, it

is necessary to thoroughly consider the potential for overconfidence and false positives

during interpretation. With ample coverage provided, these methods together provide a

diverse picture of the microbiome.

Indeed, both technologies are currently being used to study the microbial landscape

of the gut and have been evaluated for their inherent strengths and weaknesses [16].

The choice of shotgun or 16S approaches usually depends on the nature of the study.

16S is well suited for analysis of a large number of samples (multiple patients, longitu-

dinal studies, etc.) due to its low cost per sample, but may offer limited taxonomic and

functional resolution compared to shotgun metagenomics. Shotgun metagenomics of-

fers a greater potential for higher resolution by enhanced detection of bacterial species

and even viruses, but data analysis pipelines are not well established compared to 16S,
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which can lead to inaccurate detection of microbes. To address this technology gap,

new advanced sequencing techniques are continuing to be developed and evaluated in-

cluding shallow shotgun sequencing [17].

The continued advancement in sequencing technologies has generated large quan-

tities of data. In metagenomics a variety of computational tools have been developed to

facilitate the interrogation of these large-volumes of complex metagenomic data, mak-

ing use of cutting-edge computing hardware and flexible infrastructures [18]. QIIME 2

has been used prominently in the analysis of 16S amplicon sequencing data and has re-

cently extended spatiotemporal informatics into other technologies such as metabolo-

mics and shotgun metagenomics [19]. MetaPhlAn2 was developed initially for the

analysis of increasingly large metagenomic datasets such as the Human Microbiome

Project, using clade-specific marker genes to classify microbial reads with high speed

and efficiency and has become a common component in whole genome shotgun meta-

genomic analysis workflows [20]. A variety of tools including taxonomic classification

tools with nucleotide level resolution, de novo assemblers, strain-level profilers, and

functional analysis tools are also intensively used in metagenomics research [21–26].

Moreover, machine learning techniques are now being deployed to analyze metage-

nomic samples and hold a great promise in extracting complex microbial patterns from

samples [27, 28]. These patterns in microbial communities have the potential to deliver

valuable insights in the context of studying the impact of the microbes in human and

pet health and diseases. Here, we employ the QIIME 2 [19] and MetaPhlAn2 [20]

workflows to profile the composition of overweight (OW) and lean (LN) dog micro-

biomes fed high protein low carbohydrate (HPLC), low protein high carbohydrate

(LPHC), and a baseline diet. There have been few studies directly comparing the reso-

lution and information gain inherent within the two technologies [29], and our work

would be the first effort to directly compare the utility of 16S and WGS data from the

same dogs in retrieving the most informative flora features from accurate phenotypic

classification. We identify a disparity in the number of detected taxonomies between

the two sequencing technologies and identify specific strain-level characteristics detail-

ing interesting features within the WGS data. In order to understand how the specific

properties of these two technologies may impact the profile of the dog microbiome and

its influence in phenotypic response to different dietary conditions, we examined mul-

tiple machine learning models to find unique features that characterize the dysbiosis of

dogs.

Results
Analysis of detected bacterial taxonomy

We first compared the detection rate of 16S and WGS technologies at all available

taxonomic levels to determine how these similarities and differences influence the pres-

ence of dominant phyla within the gut microbiome of dogs. For all direct comparisons

between whole genome shotgun and 16S amplicon data sets, the WGS dataset was

downsampled to 1 sequenced run per sample to have the same sample size of 16S data-

set. We analyzed the effects of different technologies on the complexity of microbial

communities by comparing the relative abundance of detected bacterial species belong-

ing to one of 4 predominant phyla in the microbiome (Bacteroidetes, Firmicutes,
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Proteobacteria, and Actinobacteria). In our primary analysis of 16S microbiomes, we

employed a naïve bayes model pretrained with the Greengenes 99% reference database

to classify taxonomies using amplicon sequence variants (ASVs) dereplicated and fil-

tered by DADA2, identifying 40 unique species. For the WGS analysis, we selected

MetaPhlAn2 and 103 species were identified from it. By comparing species detected by

16S rRNA amplicon sequences and WGS reads, we identified species that were present

in both or only one of the two technologies. The observed overlap of detected species

between the two technologies was 10.2%, where 78 species were unique to WGS and

15 were detected exclusively by 16S amplicon sequencing (Fig. 1A). We further investi-

gated the shared taxonomies identified between the two technologies with respect to

four predominant phyla that are commonplace in the gut microbiome. Both methods

shared 14.3% of the Bacteroidetes, while 2.9% of the Actinobacteria species were over-

lapping between the technologies. Additionally, WGS and 16S taxonomies shared 8.1%

and 3.9% of detected phyla belonging to the Proteobacteria and Firmicutes groups, re-

spectively (Fig. 1B). Overall, WGS shows a higher detection of taxonomies at the spe-

cies level and at any level across four predominating phyla groups. We also observed a

similar difference in detection rates when comparing 16S to WGS at full coverage (Sup-

plemental Figure S1).

In order to evaluate alternative methods for assigning taxonomies in 16S and WGS

analyses, we also examined different taxonomic assignment approaches. For the 16S

analysis, we performed OTU dereplication and clustering with VSEARCH followed by

BLAST with a minimum conservation threshold of 90% using both Greengenes and

SILVA 99% references (Supplementary Table 1A). With this approach, we identified 25

unique species using the Greengenes reference and 28 unique species using the SILVA

reference. The combined results from both references yielded 27 of the 40 unique spe-

cies identified in our primary analysis, underscoring greater species detection using the

ASV-based approach while limiting false positives through the error model fitted by

DADA2. For the alternative WGS taxonomy assignment, we have run Kraken 2 [26],

Fig. 1 A. Comparing the sensitivity of microbial detection between 16S amplicon and WGS sequencing
technologies reveals whole genome sequencing captures considerably more unique members at the
species level. B. The detected members of each predominant phylogenetic group at any level. The highest
membership across the four predominant phyla in 16S (red) and WGS (blue) was identified in WGS
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which identified 3247 unique members at the species level. Compared to the MetaPh-

lAn2 results reported in our primary analysis which identified 103 unique species the

species detection rate by Kraken 2 is nearly 30 times greater, thus Kraken 2 provides

high sensitivity at the risk of low specificity and a greater rate of false positives. In all

primary analyses, we used MetaPhlAn2 results for post taxonomy identification to pro-

vide a more conservative estimate of taxonomy assignment.

Functional gene orthologs

In order to profile the orthologous gene groups and pathways present in 16S and WGS

dog metagenomic data, we identified KEGG orthologs (KOs) used PICRUSt2 [30] and

HUMAnN2 [31] respectively. Among the detected species, we tested for significance of

differential abundance between dietary groups (Kruskal-Wallis H-test) and identified a

reduced abundance of Prevotella copri in WGS samples of dog microbiomes fed the

HPLC diet (Fig. 2A). We also report the abundance of leuB is significantly enriched in

the microbiomes of dogs that were fed the HPLC diet and is strongly associated with B.

coprocola, rather than P. copri. (Fig. 2B). Bray-Curtis Dissimilarity of detected WGS mi-

crobial communities and gene families projected by metric multidimensional scaling

shows many of the samples with high B. coprocola and leuB abundance originate from

HPLC or LPHC diets. Additionally, these samples show dissimilarities from those with

lower B. coprocola and leuB relative abundance (Supplemental Figures S2 and S3).

Comparison of gene orthologues

Comparing the gene orthologs from detected 16S and WGS taxonomies, we character-

ized a remarkable overlap (Fig. 2C). This was a somewhat surprising result, considering

Fig. 2 A. Bacteroides coprocola is more abundant in carbohydrate-rich diets. The relative abundance is
greatest in base diet conditions and significantly lower in the microbiomes of high-protein diets (p < 0.05,
Kruskal-Wallis H). B. The striated output of individual contributions to leuB abundance in the different diet-
phenotype groups (baseline diet (BASE), high protein low carbohydrate (HPLC) and low protein, high
carbohydrate (LPHC) with overweight (OW) and lean (LN) phenotypes) reveals leuB is the most abundant in
HPLC diet groups and B. coprocola is largely contributing to this abundance. C. Comparing the detected
gene orthologues between WGS (yellow) and 16S (blue) data sets indicates the majority are conserved
between the two technologies (green)
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functional annotations enabled for 16S amplicon sequencing are inference based, while

functional annotations for WGS sequences use gene-level features directly. Neverthe-

less, ubiquitous or overlapping annotations may be primarily driving this observation,

which is a common issue in many gene ontology databases. While many of the same

gene orthologs were shared between the microbiomes captured by 16S and WGS, the

differential abundances of many of these gene orthologs were not mutually significant

between the data sets (data not shown). Notably, leuB was only significantly enriched

in the WGS microbiome profiles of samples in the HPLC diet groups (Fig. 2B). With

respect to the stratified WGS relative abundance, the specific contributions to leuB

relative abundance were made predominantly by members of the Bacteroides genus,

with the exception of the second most abundant species, Streptococcus lutetiensis.

Overall, B. coprocola was the most abundant species contributing to leuB enrichment

in HPLC microbiomes.

Strain-level analysis

Analysis of strain-level cladistics revealed 200 distinct markers for B. coprocola present

in 123 samples after gap corrective filtering. We constructed a phylogenetic tree from

these sequences along with a reference genome from the RefSeq database (GCF__

000154845.1) using Randomized Axelerated Maximum Likelihood (RAxML) with and

without bootstrapping. The strains identified across samples from all phenotypes

showed minimal segregation between clusters with respect to phenotype, suggesting

that there are minimal differences in B. coprocola at the strain-level in the microbiomes

of overweight or lean dogs fed the base, HPLC, or LPHC diets (Fig. 3A). We further

Fig. 3 A. The phylogenetic tree generated by RAxML (Randomized Axelerated Maximum Likelihood) of B.
coprocola genomes present in all WGS samples. The reference genome (GCF_000154845.1) is shown in
pink. Strains between samples labelled by phenotype (baseline diet (BASE), high protein, low carbohydrate
(HPLC) and low protein, high carbohydrate (LPHC) with overweight (OW) and lean (LN) phenotypes) show
minimal preferential clustering. B. The corresponding multiple sequence alignment represents the leuB
gene sequence for each member of the phylogenetic tree. The sequence is largely conserved across all
clusters with the exception of SNPs at positions 28028 and 28033, suggesting the increase in leuB relative
abundance in HPLC diets is driven by the abundance of B. Coprocola
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investigated the single nucleotide polymorphisms (SNPs) present in the region of the

multiple sequence alignment composed of the species-specific marker sequences that

corresponded to leuB (NZ_DS981457.1) (Fig. 3B). With the exception of SNPs present

at positions 28028 and 28033, the sequences encoding leuB are largely conserved be-

tween strains. We also report the mean and quantile distribution of the percent poly-

morphic sites of identified strains for all body weight groups (Fig. 4). We note that on

average, dog samples from phase 2 diet groups had higher percentages of polymorphic

sites than samples from dogs that were fed the base diet. We tested this difference with

a Wilcoxon rank sum test with continuity correction and found the difference between

ranks of the phase 1 and phase 2 diets groups to be statistically significant (p < 0.01).

Overall, the results of these analyses suggest that there is a significant enrichment of

polymorphic sites in phase 2 diets, although the attributes of significant diet specific

abundance enrichment differ in taxonomic composition.

Phenotype classification

For phenotypic classification, we used samples from the phase 1 cohort that were fed

the base diet for training with 30% of these samples set aside to be used as a validation

set while developing each classification model. We initially used the multiple sequen-

cing runs available in the WGS data set as individual samples for training. After an ex-

haustive grid search for optimal hyperparameters, our random forest model produced

an overall accuracy score of 97% at the file-level (Table 1). While this method rendered

Fig. 4 The mean and quantile distribution of the percent polymorphic sites for each sample with respect to
the diet-weight phenotype. On average, samples from phase 2 that were fed the HPLC or LPHC diets
showed a significantly (p < 0.01) higher percentage of polymorphic sites than samples from dogs fed the
base diet in phase 1. Significance was tested using the Wilcoxon rank sum test with Bonferroni correction
for multiple comparisons
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a high accuracy score, this was likely due to the model recognizing overlapping run

profiles derived from the same dog sample in the validation set. To remove the overlap

between training and validation sets, we pooled runs to their respective samples before

splitting the profiles into training and validation sets. In total, we evaluated the per-

formance of 12 different machine learning classification algorithms in classifying the

weight phenotype (overweight or lean) of the host, using only relative abundances of

genus and species level taxonomy from QIIME 2 and MetPhlnAn2 output as training.

The overall percent accuracy, log loss, and area under the curve (AUC) of selected

models is reported in Table 2. Out of all models tested, the random forest algorithm

achieved the best performance across all metrics in classifying the weight phenotype of

both WGS and 16S amplicon taxonomic profiles (Supplemental Figure S4). We also

evaluated the top performing random forest model on 2 permutations of the phase 2

cohort resulting from the HPLC and LPHC dietary groups in both the 16S and WGS

data sets to investigate taxonomies that contributed the most information gain during

classification. One advantage of the random forest model is that important features that

were used to split samples traversing a node can be extracted. We leveraged this char-

acteristic of tree-based learning methods to extract the features that were most import-

ant during classification. Specifically, we looked at which genera or species were most

important in classifying the weight phenotype of dogs fed the HPLC diet (Fig. 5). In

addition to B. coprocola being the primary driver for leuB enrichment in HPLC diets, it

was the most important feature for classifying weight phenotype in WGS samples (Fig.

5B). With respect to 16S HPLC samples, the Megamonas and Lachnospira genera were

among the most important features for classifying taxonomic profiles from overweight

and lean dogs (Fig. 5D). We note that the most important features derived from whole

genome and 16S amplicon sequencing weight profile classifications had little overlap,

although both collections of important features support the influence of specific micro-

biome profiles on host body fat composition previously described in the literature.

Table 1 Classification metrics for the top performing random forest model with optimization at
the file-level, without merging technical replicates into respective sample bins

Table 2 Classification metrics of model performance classifying samples sequenced in their
respective technology. The random forest model achieved the highest percent accuracy with
minimal log loss and maximal AUC in classifying taxonomic profiles derived from either
sequencing technology
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Discussion

In this study, we have compared the resolution of taxonomic profiles rendered by 16S

amplicon and WGS technologies. By comparing the microbiomes of samples sequenced

with these technologies, we have shown that the resolution of functional taxonomy

groups detected by whole genome shotgun sequencing is greater at the species level as

well as in members at any level belonging to four predominant phyla. This difference

in resolution may have the potential to inform future metagenome-scale studies. Mega-

monas and Lachnospira genera were among the most important features for classifying

taxonomic profiles from overweight and lean dogs in 16S and WGS samples, which is

supported by previous studies that show these genera are associated with obesity and

metabolic disorders [32]. From 16S amplicon sequenced samples, the two most import-

ant genera for weight phenotype classification were Blautia (Blautia producta) and

Catinibacterium. Little is known about the role of the Catinibacterium genus in regu-

lating fat composition in the host, however previous findings suggest that the presence

of the Blautia genus in adult gut microbiomes is associated with visceral fat accumula-

tion [33]. Interestingly, the majority of the most important features for classifying 16S

samples were genera while the most important features for classifying WGS samples

were detected at the species level.

The annotation of orthologous groups is essential in comparative genomics and is

used to model a number of applications in disease, nutrition, and aging-related studies.

In the context of microbiome communities, gene orthologs provide insight into func-

tional pathways. However, the sensitivity, specificity, and resolution of orthologous gene

sequence profiles at different taxonomic levels has the potential to influence these path-

ways. Although we report differences in the captured metagenomic landscape between

the two technologies, we observed the number of reported orthologous genes is com-

parable between the two technologies. Although these results indicate many of the

same gene ortholog groups may be conserved between the two sequencing methods,

there may be species-level insights that are better assessed with WGS sequencing

Fig. 5 The ROC curve of the random forest model’s performance and most important features used in
classifying weight phenotype for WGS (A, B) and 16S (C, D). The importance score for a feature is the
fraction of samples across all trees that traverse a node and split on that feature. Notably, B. coprocola was
the most important feature for classifying the weight phenotype in WGS samples
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technologies, as demonstrated by the unique significant enrichment of leuB detected in

the WGS taxonomy data.

It has previously been shown in human microbiomes that strains of P. copri regulate

leuB relative abundance differently, with possible strain-specific selection in omnivor-

ous diets that are higher in protein and branched chain amino acid content [7]. We

found that in dogs, P. copri abundance is influenced by diet, and is specifically enriched

in diets that are higher in carbohydrates, which contrasts previous findings in human

samples. Further, a different bacterium (B. coprocola) is predominantly contributing to

differences in leuB levels between diet groups instead. Strain-level analysis of WGS data

revealed minimal SNP sites between leuB encoding sequences in different strains of B.

coprocola, suggesting the enrichment of leuB in HPLC diets is likely driven by abun-

dance rather than the strain specific differences in this gene. In addition, these results

indicate that there may be a positive selection mechanism leading to increased leuB

relative abundance when available nutrient composition is high in protein and low in

carbohydrate content. Overall, this mechanism has the potential to promote insulin re-

sistance in a different way than what has previously been observed in human samples.

These results suggest that diet remains an important factor for the regulation of leucine

biosynthesis by the microbiome, however the bacteria that are predominantly contrib-

uting to this process in dogs show a distinct pattern from what has previously been ob-

served in humans. Further comparison of the average percentage of polymorphic sites

between different diet-weight groups revealed that the most significant difference

existed between phase 1 samples from dogs that were fed the base diet, and phase 2

samples from dogs that were fed the HPLC or LPHC diets. Interestingly, phase 2 sam-

ples had a significantly higher percentage of polymorphic sites on average. This signifi-

cant difference in polymorphic sites indicates a possible strain-level diversification by

diet. Although phylogenetic analysis revealed few differences in the aligned leuB se-

quence from B. coprocola genomes between samples across all diet and weight condi-

tions, there may be other community members that show specific genetic

diversification as a function of dietary change that could be of interest in future studies.

Conclusions
Machine learning has proven to be a powerful tool for extracting useful patterns from

large and complex data sets. The algorithms we evaluated in this study achieved highly

variable accuracy in all metrics while the random forest, our best performing model,

identified key functional taxonomies that support biologically meaningful insights into

regulatory mechanisms driven by microbiome compositions specific to the diet and

weight phenotypes of host samples. Moreover, the support for feature extraction by su-

pervised learning methods allowed for the initial discovery of B. coprocola as an import-

ant feature that distinguishes the microbial composition of overweight and lean dog

phenotypes in WGS samples, and Megamonas in 16S samples. While predictive taxon-

omies identified in both technologies provided biologically meaningful insights, these

taxonomies were mutually exclusive in many instances, underscoring fundamentally

different potential applications for 16S and WGS. The 16S amplicon sequencing

method provides a robust, but limited modality for investigating the taxonomic diver-

sity of bacterial communities through reference-based annotations and well-established

analysis pipelines. A primary limitation of the 16S amplicon method is that it captures
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a limited region of the bacterial genome, while WGS is capable of detecting broad re-

gions of bacterial, fungal, and viral genomes. Here, we quantified a greater number of

unique community members at the species level, as well as in four predominant phyla

in WGS. Through the ability of WGS to detect gene enrichment within specific com-

munity members, we identified a potential mechanism for B. coprocola in mediating

predisposition to insulin resistance and glucose intolerance associated with type 2 dia-

betes in response to a high-protein, low-carbohydrate diet in dogs. Thus, WGS pro-

vides enhanced detection of bacterial species and a greater utility in implicating specific

community members through quantified enrichment or depletion of genetic and meta-

bolomic elements, as well as taxonomies with undefined roles in disease pathogenesis.

Deeper mechanistic insights into the link between B. coprocola enrichment and diet

may be of great interest to future studies addressing environmental risk-factors contrib-

uting to type 2 diabetes. More broadly, this study has provided necessary insights into

the strengths and weaknesses of 16S amplicon and WGS sequencing technologies. Fur-

ther, the computational and statistical methods used in supervised classification algo-

rithms will be a powerful asset to future metagenomic studies addressing biological

pattern discovery and the validation of analysis pipelines.

Materials & Methods
Data acquisition and study design

In this study, we reanalyzed two dog microbiome data sets, 16S amplicon (NCBI Se-

quence Read Archive accession number SRP095473) [9] and WGS (European Nucleo-

tide Archive accession number PRJEB20308) [10]. The data sets share a conserved

treatment and sampling interval, starting with the same 64 dogs (Labrador retrievers

and Beagles). Specifically, 64 overweight and lean dogs were fed in two phases: a base-

line diet for 4 weeks (phase 1), followed by 4 weeks of assignment to a diet treatment

group (phase 2) where dogs were fed either a high protein, low carbohydrate (HPLC)

diet or a low-protein, high-carbohydrate (LPHC) diet. Fecal samples were preserved

within 15 minutes of defecation and sequenced with their respective technologies at

the end of each phase. Dog weight phenotype was determined by host body fat percent-

age at the end of each phase.

In the WGS study, each sample’s DNA was extracted and sequenced (12 runs per

sample) in paired-end mode with 125 bases per read. Overall, the WGS dataset con-

tains 1,548 paired-end files that we analyzed at the file-level (after merging paired-end

reads), and the subject-level, where files were combined to the resolution of the dogs

they originated from. 1.9 terabasepairs were represented across all samples, and the

average number of reads per metagenome was 117 million pared-end reads. Samples

from the 16S study had an average of 48,092 ± 1,772 sequences per metagenome, a me-

dian sequence length of 422 base pairs, and a range between 57 and 449 base pairs. All

direct comparisons between WGS and 16S amplicon data sets where made after down-

sampling the WGS dataset to 1 sequenced run per sample.

Preprocessing

Prior to the analysis, all files were inspected for quality control. Representative ampli-

con 16S amplicon sequence variants (ASVs) were identified within the DADA2
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workflow, which has proven to be a powerful method for denoising, dereplicating, and

filtering chimeric sequences, thereby identifying high quality ASVs and reducing false

positives [34]. 16S forward and reverse reads were truncated at positions 288 and 220

with respect to the 3’ end of the sequence, where bases were added in the final cycles

of sequencing. The 5’ end of forward reads were trimmed at position 15 as additional

quality control. The error correction method employed by DADA2 was based on train-

ing from 1 million reads to ensure a robust error model used in identifying ASVs.

WGS sequence quality was ensured by trimming nucleotide positions with a quality

score of less than 15, removing low-quality reads (mean quality < 25), and discarding

reads shorter than 80 nucleotides. For both data sets, paired-end reads were merged

prior to taxonomy assignment. The WGS data set contained multiple paired alignment

files for the same sample and as an initial analysis, we did not merge reads to the

sample-level and instead treated each merged paired-end file as an individual sample.

For all subsequent metrics reported, we used merged paired-end reads that were pooled

to the sample level from multiple files of sample replicates.

Analysis and taxonomy assignment

16S taxonomies were assigned in QIIME 2 [19] (Version: 2019.7) by a Naïve Bayes clas-

sifier pretrained on the Greengenes 99% sequence cluster identity OTU database. Tax-

onomies from WGS were assigned using the MetaPhlAn2 (Version: 2.7.7) [20] clade-

specific marker gene database that was generated from 17,000 reference genomes. To

prepare relative abundances of taxonomies for machine learning, all taxonomic profiles

were filtered to include only features that were at the species level. Functional gene

orthologs were assigned from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[35] using PICRUSt2 [30] (Version: 2.14 beta) for 16S data and HUMAnN2 [31] for

WGS data. Statistical testing for differential abundances between taxonomies and gene

orthologs was performed using the Kruskal-Wallis H test, a rank-based nonparametric

test.

Alternative methods for 16S taxonomy assignment were evaluated by OTU dereplica-

tion and clustering with VSEARCH followed by BLASTn with maximum accepted hits

per query of 20 (using QIIME 2 option --p-maxaccepts), a 90% minimum conservation

threshold (using QIIME 2 option --p-min-consensus), and a default E- value threshold

of 0.001. We evaluated this approach using both SILVA, and Greengenes 99% databases

in order to relate this comparison to our primary results and evaluate two of the most

widely used reference databases in the field (Supplementary Table 1A). Alternative

methods for WGS taxonomy were evaluated with Kraken 2 using the same raw data

preprocessing previously described (Supplementary Table 1B).

To characterize strain-level composition of WGS data, we used the StrainPhlAn2

[25] (Version: 1.0) workflow with default settings. Prior to analysis, samples and clade

markers were filtered by removing consensus markers with a rate of ambiguous nucleo-

tides greater than 20% and clades for which less than 80% of markers could be identi-

fied. Only clades supported by two or more samples were retained. Further, only

samples containing full clade marker sequences with a percentage of gaps less than

20% were used for multiple alignment and phylogenetic tree construction. Phylogenetic

trees were visualized using the ggtree package [36] in R. The filtered marker sequences
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from each sample were used as input to construct phylogenetic trees using the Ran-

domized Axelerated Maximum Likelihood (RAxML) algorithm, with and without boot-

strapping (10 iterations). The alignment of these sequences was accomplished using

MUSCLE [37] (Version: 3.8.31).

Assessments of alpha and beta diversity in microbial communities were accomplished

using the QIIME 2 [19] (Version: 2019.7) workflow and PhyloSeq [38] (Version: 1.32.0)

in R using Faith's PD and the Bray-Curtis Dissimilarity index, respectively.

Classification algorithms

We evaluated the performance of 12 different machine learning algorithms to classify

the weight phenotype (overweight or lean) of the host, using the relative abundance of

genus and species level taxonomies from QIIME 2 and MetPhlnAn2 results as training.

Those machine learning models were developed through scikit-learn [39] (Version:

0.21.3), with exhaustive grid search to discover optimal hyperparameters. We chose to

use a decision tree as a base model as well as a random forest (an ensemble of decision

trees) to avoid overfitting. We later make use of these methods’ support for extracting

important features used for classification, a characteristic of tree-based learning

methods. We also evaluated the potential of gradient boosting, which builds on an

additive model in a forward stage-wise fashion, allowing for the optimization of arbi-

trary differentiable loss functions. For this model, we used deviance as the loss param-

eter for classification with probabilistic outputs. Because our classification problem was

binomial (overweight or lean), our gradient boosting model uses a single regression tree

to fit at each additive stage to the negative regression of the binomial deviance loss

function.

The support vector machine (SVM) model was optimized by evaluating the optimal

combinations of hyperparameters for the starting kernel of a radial basis function.

These parameters include C, the regularization parameter where the strength of

regularization is inversely proportional to C. A large value of C will make the decision

boundary for classification more rigid in order to accommodate the specific characteris-

tics of the training data. We also assessed different values of γ, the influence that a sin-

gle training example will have on the overall classification, where for higher values of γ

samples must be closer to be affected. Our final values for our SVM classifier were C =

0.001 and γ = 0.001, using the radial basis function kernel. These parameters have the

advantage of maintaining a model that generalizes well to new data without overfitting

to any overly discriminatory subsets present within the training set.

Linear discriminant analysis (LDA) is another useful model for reducing the dimen-

sionality of input classes, by projecting to the most descriptive directionalities. Our

LDA model used a singular value decomposition (SVD) solver, due to the large number

of features in the microbiome profiles used as training. The SVD solver does not com-

pute a covariance matrix, therefore our model made no assumptions about the covari-

ance profile when fitting gaussian density to each class.
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HPLC: High protein, low carbohydrate diet; LPHC: Low protein, high carbohydrate diet; OW: Overweight body fat
phenotype; LN: Lean body fat phenotype; WGS: Whole genome shotgun sequencing; 16S: 16S amplicon sequencing;
OTU: Operational taxonomic unit; ASV: Amplicon sequence variant; Faith’s PD: Faith’s Phylogenetic Diversity index;
RAxML: Randomized Axelerated Maximum Likelihood algorithm; LDA: Linear discriminant analysis; SVM: Support vector
machine; SVD: Singular value decomposition; AUC: Area under the curve; ROC: Receiver operating characteristic
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classifying WGS samples. The random forest ties with the gradient boosted regression tree for the highest percent
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