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• SARS-CoV-2 can be transmitted in dif-
ferent environments.

• Viral air surveillance provides insights
for viral spread in highly infected areas.

• Wastewater-based epidemiology (WBE)
is used widely for monitoring viral out-
breaks.

• Artificial Intelligence (AI)-WBE frame-
work could provide accurate viral out-
breaks detection.

• AI synergized with WBE needs further
investigation and research.
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A viral outbreak is a global challenge that affects public health and safety. The coronavirus disease 2019 (COVID-
19) has been spreading globally, affecting millions of people worldwide, and led to significant loss of lives and
deterioration of the global economy. The current adverse effects caused by the COVID-19 pandemic demands
finding new detection methods for future viral outbreaks. The environment's transmission pathways include
and are not limited to air, surface water, and wastewater environments. The wastewater surveillance, known
as wastewater-based epidemiology (WBE), can potentially monitor viral outbreaks and provide a complemen-
tary clinical testing method. Another investigated outbreak surveillance technique that has not been yet imple-
mented in a sufficient number of studies is the surveillance of Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2) in the air. Artificial intelligence (AI) and its related machine learning (ML) and
deep learning (DL) technologies are currently emerging techniques for detecting viral outbreaks using global
data. To date, there are no reports that illustrate the potential of using WBE with AI to detect viral outbreaks.
This study investigates the transmission pathways of SARS-CoV-2 in the environment and provides current up-
dates on the surveillance of viral outbreaks using WBE, viral air sampling, and AI. It also proposes a novel
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framework based on an ensemble of ML and DL algorithms to provide a beneficial supportive tool for decision-
makers. The framework exploits available data from reliable sources to discover meaningful insights and knowl-
edge that allows researchers and practitioners to build efficient methods and protocols that accurately monitor
and detect viral outbreaks. The proposed framework could provide early detection of viruses, forecast risk
maps and vulnerable areas, and estimate the number of infected citizens.

Crown Copyright © 2021 Published by Elsevier B.V. All rights reserved.
Artificial intelligence
Artificial neural networks
Machine learning
Deep learning
Reinforcement Learning
1. Introduction

On 31December 2019, theWorld Health Organization (WHO) office
in China was informed by the Wuhan Municipal Health Commission of
pneumonia cases of unknown etiology (Mostafa et al., 2021; World
Health Organization, 2020c). On 9 January 2020, the Chinese Center
for Disease Control and Prevention (China CDC) declared that a novel
coronavirus (2019-nCoV) was detected in 15 cases who were suffering
from pneumonia (European Centre for Disease Prevention and Control,
2020). On 11 March 2020, the WHO declared 2019-nCoV (later named
COVID-19 or Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) a global pandemic after achieving a widespread in over
110 countries resulting in 118,319 confirmed cases (World Health
Organization, 2020a).

On the 25th of May 2021, the total number of COVID-19 confirmed
cases reached 167.2million, while the total number of deaths exceeded
3.4 million people (World Health Organization, 2020b). The confirmed
cases occurred globally, as follows: 39.6% in America, 18.3% in South-
East Asia, 32.4% in Europe, 5.9% in Eastern Mediterranean, 2.1% in
Africa, and 1.7% in Western Pacific, respectively (World Health
Organization, 2020b). The quick spread of the disease resulted in a
global lockdown to stop the virus spread (Al Huraimel et al., 2020; Lau
et al., 2020). However, this action has adversely affected the economy,
where the International Monetary Fund (IMF) anticipated a 3.5% reces-
sion in the global economy in 2020 due to COVID-19, which outweighs
the 2008's recession (InternationalMonetary Fund, 2020;Wang and Su,
2020). However, the world output is expected to increase by 5.5% and
4.2% in 2021 and 2022, respectively (International Monetary Fund,
2021). It may be caused by reducing people and goods' movement, es-
pecially in countries with the largest world economies (Baldwin and
Mauro, 2020; Fernandes, 2020; Mostafa et al., 2021).

According to the International Civil Aviation Organization (ICAO),
international air travel has dropped from 4.5 billion passengers taking
flights in 2019 to 1.8 billion in 2020, leading to a drop of more than
50%. Hence, this staggered financial losses of more than $370 billion
(Economic Development, 2021). Also, the sea freight volumes have de-
creased by 11% in theUnited States andby 4% in the EU27 between April
and June 2020 compared to June 2008 (International Transport Forum,
2020). It is essential to find a way to provide an early warning for any
future pandemic to avoid a deterioration in the health and economic
sectors, as happened during the COVID-19 pandemic. The three main
approaches that are applied to provide an early warning include
sewage-based epidemiology, air biosensors, and computer techniques,
such as artificial intelligence (AI) and its related Machine Learning
(ML) technologies (Orive et al., 2020; Ribeiro et al., 2020a; Vaishya
et al., 2020).

Wastewater-based epidemiology (WBE) is a commonly used ap-
proach to provide quantitative and qualitative information about inhab-
itants' usage of drugswithin a givenwastewater catchment (Orive et al.,
2020). Recently, this approach was proposed in the infectious diseases
field (Al Huraimel et al., 2020; Orive et al., 2020). During the SARS-
CoV-1 outbreak, between 16 and 37% of the patients suffered from diar-
rhea (Amoah et al., 2020; Yeo et al., 2020). Also, during the current
COVID-19 pandemic, between 2 and 35% of the patients suffered from
the same symptom (Wang et al., 2020a). Therefore, the study detected
viral ribonucleic acid (RNA) in feces and sewage (Amoah et al., 2020;
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Pan et al., 2020). Many researchers have also detected infectious coro-
navirus virions in feces (Xiao et al., 2020). A recent study detected
SARS-CoV-2 RNA in wastewater samples before reporting any case,
which means that monitoring the virus could be possible before
documenting it via the health surveillance system (Medema et al.,
2020; Sherchan et al., 2020). In another study, researchers collected
sewage samples in Paris during the pandemic, which showed a positive
relationship between the SARS-CoV-2 genome units and the number of
fatal cases registered regionally and nationally (Wurtzer et al., 2020).

Air biosensors are used as analytical devices to detect the respiratory
virus by converting biological material, such as microorganisms, anti-
bodies, tissues, biomimetic, enzymes, or cell receptors, into measurable
signals (Ribeiro et al., 2020a). The biological materials immobilize on a
transducer surface, which produces a biochemical response by
interacting with the analyte in the solution (Nguyen et al., 2019). The
transducer then converts this biochemical response to a quantifiable
signal measured using a digital detection module (Nguyen et al.,
2019). The four main categories of biosensors are electrochemical bio-
sensors, piezoelectric biosensors, thermal biosensors, and optical bio-
sensors (Bukkitgar et al., 2020; Samson et al., 2020; Suleman et al.,
2021). The types of biosensors used for the detection of emerging infec-
tious diseases (EIDs) depends on two main factors: (1) the characteris-
tics of the analyte (i.e., concentration, structure, and size); and (2) the
matrix in which the analyte exists (i.e., liquid, air) (Pejcic et al., 2006).
Different detected viruses include the influenza virus using electro-
chemical bio/immunosensor (Saylan et al., 2019). Also, the Middle re-
spiratory syndrome coronavirus (MERS) was detected using optical
bio/immunosensor (Ravina et al., 2020; Santiago, 2020) and SARS-
CoV-2 using piezoelectric immunosensor or thermal biosensor (Lee
et al., 2018; Woo et al., 2020).

AI and its related ML technologies are computer techniques and al-
gorithms that turn the available data into valuable insights and knowl-
edge to detect and diagnose the infection (Allam et al., 2020). It can also
track the virus; thus, control its spread in real-time (Vaishya et al.,
2020). For the current COVID-19 outbreak, an AI-driven algorithm de-
tected and warned about it on 31 December 2019, seven days before
the WHO's official notice (Allam et al., 2020). Similarly, a company
called "Metabiota (USA)"which is concerned about epidemicsmonitor-
ing, used a predictive tool to detect andwarn some countries like Japan,
Thailand, Taiwan, and South Korea of the coronavirus outbreak in their
countries seven days before it was officially announced (Heilweil,
2020).

Neural networks was used as a tool for the prediction of the number
of COVID-19 cases (Wieczorek et al., 2020a; Wieczorek et al., 2020b).
The results were compared to the actual data obtained in different re-
gions. For instance, in their first study, Wieczorek et al. (2020a) devel-
oped a complex artificial neural networks model composed of
multiple layers to precisely predict the COVID-19 cases count and
spread (Wieczorek et al., 2020a). In addition, this model considered
the geographical conditions, i.e. location, latitude, and longitude, as
input data. The training data was extracted from the actual number of
cases obtained from each region over two weeks before developing
the model. Although it is difficult to obtain accurate predictions using
limited data, this model maintained a high accuracy of spread estima-
tion. Moreover, in the second or further study, the authors introduced
new techniques to their model to make it adaptive, i.e. adjust itself
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automatically according to the new real-time data and pattern
(Wieczorek et al., 2020b). Fortunately, the observed overall prediction
accuracy was as high as 88%, hitting the ceiling of 99% for some specific
regions. Another factor considered by the authors was the time of pre-
diction. Their concern was to minimize this time for a possible fast pre-
diction. Thus, NAdam training model was utilized as it offers the
shortest training time while guaranteeing the highest possible effi-
ciency based on extensive tests conducted by the authors.

Machine learning was also used as a detection tool of the disease it-
self upon evaluating various diagnostic sources such as X-ray, computed
tomography (CT), and ultra-sound images (El-Rashidy et al., 2021).
Convolutional neural network (CNN) based models have been com-
monly used in several studies for detection and prediction purposes
(Jaiswal et al., 2020; Jin et al., 2020; Ozturk et al., 2020; Sedik et al.,
2020). Furthermore, ML and deep learning (DL) models can help fast
drug repurposing or even drug discovery for a novel disease, such as
in COVID-19 (Ivanov et al., 2020; Jain et al., 2021; Mohanty et al.,
2020; Zhou et al., 2020). These examples make it clear that utilizing
ML and DL in real-world applications such as detecting individual
cases, predicting numbers of cases, spreadmodeling, and drug develop-
ment is a must and not a luxurious action.

This comprehensive study aims to review and analyze the primarily
used techniques for viral early detection, focusing on the detection of
the SARS-CoV-2 virus. The investigated methods include WBE, air bio-
sensors, and artificial intelligence. This paper investigates the literature
and analyzes the most commonly applied WBE techniques and the
state-of-art technologies used for air virus surveillance. Moreover, it re-
views the applicability and potential of the AI and ML algorithms for
viral outbreaks. Based on the existing literature reports, a novel frame-
work combining WBE and AI/ML technologies has been proposed in
this paper. This framework exploits an ensemble of ML and DL tech-
niques that can help predict and forecast future viral outbreaks, in addi-
tion to recommending a set of actions to mitigate the spread of the
pandemic. Finally, some remarks and recommendations are provided
for applying the framework proposed in this work and the best AI tech-
nologies. Additionally, the importance of collaboration between re-
searchers/scientific community and the stakeholders to address future
challenges in viral outbreaks is also discussed. The proposed framework
can be tested within a collaborative project using datasets collected
from different organizations, and the results can be disseminated in a
separate study.

2. Modes of environmental transmission

The COVID-19 pandemic is caused by SARS-CoV-2 (Foladori et al.,
2020). Coronaviruses have single-stranded RNA (Dabbish et al., 2021;
Yeo et al., 2020) and usually infect humans and other animals' respira-
tory, gastrointestinal, and nervous systems (Chen et al., 2020b). During
the past decades, coronaviruses have caused many outbreaks. In 2002,
the SARS-CoV started, and in 2012, the Middle East respiratory syn-
drome (MERS-CoV) took away many lives. The symptoms for SARS-
CoV-2 are milder than the symptoms for SARS-CoV and MERS-CoV.
However, SARS-CoV-2 is considered to be more infectious than the
SARS-CoV variant (Chen et al., 2020a).

As SARS-CoV-2 is spreading at a faster rate, the mutations of the
virus are also observed at a very high rate. To date, more than 1000mu-
tations for the SARS-CoV-2 have been recorded (Chen et al., 2020a). For
the SARS-CoV-2 to infect someone, the virus has to interact with the
spike glycoprotein (S protein) and the host angiotensin-converting en-
zyme 2 (ACE2) receptor while entering the host cells (Sasaki et al.,
2021; Walls et al., 2020). The SARS-CoV-2 is becoming more and more
infectious as it evolves because the new mutations increase the free
binding energy with the ACE2 receptor (Chen et al., 2020a). In the
United States alone, a study was done by Wang et al. (2021) showed
that the SARS-CoV-2 has four sub-strains and 11 major mutations. The
mutation 23403A>G-(D614G) is the second-highest strain found in
3

the United States and is the most dominant strain worldwide
(Guruprasad, 2021; Wang et al., 2021; Yurkovetskiy et al., 2020).
Toyoshima et al. (2020) found that the two variants, which are
ORF1ab 4715 L and S614G, are associated with high fatality rates in 28
countries. The conventional transmission routes for SARS-CoV-2 are re-
spiratory droplets, direct and indirect contact with contaminated sur-
faces. However, there can be other possible transmission ways
depending on the virus load and the surrounding environmental condi-
tions. These possible transmission paths are as follows: (i) stool and
sewage, (ii) natural water, and (iii) air environments, which can be in-
door and outdoor. Fig. 1 explains how SARS-CoV-2 can be transmitted
through different pathways.

2.1. SARS-CoV-2 in stool and sewage

The National Institute for Public Health and the Environment
(RIVM), a Dutch research institute, detected the SARS-CoV-2 in waste-
water treatment plants in the Netherlands. The SARS-CoV-2 was de-
tected in wastewater from Amsterdam Schiphol airport and in a
wastewater treatment plant in Kaatsheuvel using molecular Polymer-
ase chain reaction (PCR) methods (National Institute for Public Health
and the Environment, The Netherlands, 2020b). Usually, the RNA poly-
merase gene is amplified to detect the existence of SARS-CoV-2 using
conventional PCR techniques (Lau et al., 2003). In a research study con-
ducted by the RIVM, the SARS-CoV-2 virus was detected in 66% of stool
samples taken from patients (National Institute for Public Health and
the Environment, The Netherlands, 2020a). Wastewater monitoring is
a useful approach for detecting viral infections among populations.
The RIVM has used this approach to detect norovirus, poliovirus, and
measles viruses in wastewater. The RNA of the SARS-CoV-2 can be de-
tected in wastewater. These studies show that SARS-CoV-2 detection
in wastewater indicates that the population is infected, however, they
do not confirm that the virus particles present in the wastewater are
contagious.

A study conducted by Wang et al. (2005) showed that SARS-CoV
could survive in wastewater for 14 days at 4oC and for 2 days at 20oC.
During these times, the SARS-CoV can be infectious by fecal-oral trans-
mission. Moreover, the MERS-CoV RNA was detected in the feces of
14.6% of the patients. The MERS-CoV can remain viable in sewers at
lower temperatures than the SARS-CoV-2 (Yeo et al., 2020). These re-
sults confirm that the SARS-CoV-2 and MERS-CoV can be infectious by
fecal-oral transmission. In fact, the SARS-CoV-2 belongs to the same co-
ronavirus family as SARS-CoV and MERS-CoV. It is very likely possible
that SARS-CoV-2 can also be infectious by fecal-oral transmission. A
study done by Zaneti et al. (2021) showed that wastewater treatment
plants could be a transmission pathway for the SARS-CoV-2. However,
more research is needed to assess the viability of the SARS-CoV-2
under different conditions. There is a high risk for transmission of
SARS-CoV-2 through the air when wastewater operators clean the
screensmanually or whenwastewater treatment tanks are not covered.
The risk of transmission of SARS-CoV-2 for wastewater treatment
workers increases as the population infected increases. The reason is
that the lower the infected population is, the higher the dilution of the
virus in wastewater (Zaneti et al., 2021).

2.2. SARS-CoV-2 in natural water

Since fecal-oral can be a pathway for SARS-CoV-2 transmission, sur-
face water can be a potential transmission way for SARS-CoV-2, espe-
cially in places where there are inadequate sewage facilities and
drinking water is contaminated with fecal sludge (Al Huraimel et al.,
2020). SARS-CoV-2 pollutes the water bodies by several pathways.
One way can be through bypassing the untreated wastewater, which
is contaminated by SARS-CoV-2, to rivers, lakes, or other water streams.
Another way can be via the treated wastewater effluents contaminated
with SARS-CoV-2 due to the inefficient removal of viruses from the
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wastewater (Bhowmick et al., 2020). Themost likely pathway is the dis-
charge of raw sewage directly into water bodies without treatment in
areas with low basic sanitation (Al Huraimel et al., 2020). The SARS-
CoV-2 has to be active before reaching the water bodies so that the
water can be considered as a transmission pathway for the virus. As pre-
viously mentioned, the activity of the virus depends on the viral load
and the surrounding environmental conditions (Wang et al., 2005).
Therefore, the water bodies can be considered as a potential transmis-
sion pathway for SARS-CoV-2 when the prevailing environmental con-
ditions can favorably maintain the activity of the infectious virus.

A study conducted on urban rivers of Quito, Ecuador, where waste-
water was discharged directly to river streams without any treatment,
evaluated the presence of SARS-CoV-2 in river streams. The samples
were taken from three different locations along the Quito rivers during
the peak of SARS-CoV-2 cases in Ecuador on June 5th, 2020. The results
show that the SARS-CoV-2 nucleocapsid protein genewas present in the
three sampled locations along the Quito rivers (Guerrero-Latorre et al.,
2020). However, it is not confirmed yet that natural water is a transmis-
sion pathway for SARS-CoV-2. For SARS-CoV-2 to be transmissible via
water, the virus needs to get concentrated enough to persist for long
times in water bodies (Bilal et al., 2020). Moreover, the existing acti-
vated sludge wastewater treatment plants and drinking water treat-
ment plants need to be more efficient in removing viruses, including
the SARS-CoV-2. Treatments like ultraviolet (UV) disinfection and chlo-
rination are expected to kill the SARS-CoV-2 present in contaminated
water (Al Huraimel et al., 2020; Pecson et al., 2020). Chlorine doses for
removal of bacteria and viruses (including SARS-CoV-2) will change de-
pending on the contact time, chlorine demand, water characteristics,
and discharge requirements. However, the chlorine dose often varies
between 5 and 20 mg/L (Environmental Protection Agency, 1999). Dis-
infection using UV radiation is sufficient to inactivate the SARS-CoV-2.
Published data suggests that UV doses less than 5 mJ/cm2 are enough
to ensure that the effluent water stream is free from coronaviruses
(Pecson et al., 2020).
4

2.3. SARS-CoV-2 in the air environment (indoor and outdoor)

According to the WHO, the primary method for SARS-CoV-2 spread
is direct contactwith an infected person (Sohrabi et al., 2020). However,
airborne transmission of SARS-CoV-2 is a possible pathway since the
other coronaviruses like MERS-CoV and SARS-CoV were transmitted
via airbornedroplets (Hadei et al., 2020;Morawska and Cao, 2020). Sev-
eral studies were conducted to assess the likelihood of the spreading of
the SARS-CoV-2 via aerosol transmission. A study done by Faridi et al.
(2020) did not detect any positive SARS-CoV-2 readings from the sam-
ples taken 2 to 5 m away from patients' beds at the Imam Khomeini
Hospital complex in Tehran, Iran. Another study conducted at the
SARS-CoV-2 center in Singapore showed negative results for the aerosol
transmission of the SARS-CoV-2 (Ong et al., 2020a).

On the other hand, at the University of Nebraska Medical Center
(USA), thirteen SARS-CoV-2 patients were examined for viral shedding
by collecting air samples from each individual. Viral contamination was
detected in all samples showing that airborne transmission can be a
pathway for SARS-CoV-2 spreading (Santarpia et al., 2020). Moreover,
Kenarkoohi et al. (2020) examined the aerosol dispersion of SARS-
CoV-2 in a hospital in Iran that treats patients diagnosed with SARS-
CoV-2. Two viral RNA air samples were tested and detected positive
out of six samples collected from the intensive care unit. Kenarkoohi
et al. (2020) indicated that indoor environments can be a potential
place for the aerosol transmission of the SARS-CoV-2. Aerosols trans-
mission can be through coughing, sneezing, deep breathing, or talking.
As the loudness of voice increases during talking, the rate of particle
emission increases; therefore, the risk of aerosol transmission becomes
higher (Santarpia et al., 2020).

In outdoor environments, apart from the human-to-human trans-
mission, the SARS-CoV-2 can be transmitted through respiratory drop-
lets of an infected person; while talking, sneezing, breathing, or
coughing (Freeman and Eykelbosh, 2020). Particles emitted from the in-
fected person can settle quickly if their size is larger than 5 μm;
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however, if the particle size is smaller than 5 μm, it can stay suspended
in the air. The aerosol transmission of large particles (> 5 μm) is limited
to a distance of 1 to 2m. On the other hand, the small particles (< 5 μm)
can travel longer distances and get inhaled by another person
(Bourouiba, 2020). The risk of infection by aerosol droplets in outdoor
environments depends on the aerosols particle size and the virus's abil-
ity to contain aerosols to be concentrated enough to cause an infection
when inhaled by another person (Freeman and Eykelbosh, 2020). In
general, outdoor environments have a lower risk of SARS-CoV-2 trans-
mission than indoor environments (Weed and Foad, 2020).

2.4. Indirect effects on the air quality due to SARS-CoV-2 (indoor and outdoor)

Air pollution has been increasing worldwide, affecting public health
(Amin, 2019). However, with the SARS-CoV-2 pandemic, people stayed
in their homes, and businesses started to decrease their workload. As a
result, air quality improved, and air pollution had reduced; however,
this effect is expected to be only temporary (Zambrano-Monserrate
et al., 2020). Mostafa et al. (2021) conducted a study to see how the
lockdown measures for combating SARS-CoV-2 affected Egypt's air
quality, focusing on the two most populous cities Cairo and Alexandria,
between the 15th of March and the 1st of May. They compared noise
levels, nitrogen dioxide, carbon monoxide, greenhouse gases, and
ozone levels before the pandemic (2015–2019) and during the pan-
demic (2020). The results showed a 75% decrease in the noise level, a
5% decrease in carbon monoxide emissions leading to an average con-
centration of 120 ppb. Greenhouse gases have decreased by 4%, while
a 15% and 33% reduction in nitrogen dioxidewas achieved lead to a con-
centration reduction estimated by 1.5 × 1015 molecules/cm2 over Cairo
and Alexandria. On the other hand, the results showed a 2% increase in
the ozone levels over Cairo and Alexandria.

Another study conducted by Zambrano-Monserrate et al. (2020)
also showed decreased greenhouse gas emissions, nitrogen dioxide
emissions, and noise levels during the pandemic. The decrease of nitro-
gen dioxide emissions and the increase of ozone levels during the pan-
demic was also documented by Sicard et al. (2020) and Siciliano et al.
(2020). Also, it was found that as a result of the lockdown in China,
NO2 and PM2.5 emissions in Wuhan city were reduced by 22.8 μg/m3

and 1.4 μg/m3, respectively (Zambrano-Monserrate et al., 2020). As a
conclusion of that study, a decrease in PM2.5 and NO2 emissions were
observed during the pandemic in several countries, including Italy,
Spain, China, Germany, France, and Egypt (Mostafa et al., 2021;
Zambrano-Monserrate et al., 2020).

It is well-known that indoor air quality has a significant effect on
human health. Each year, 3.8 million people die from diseases related
to indoor air pollution (Nwanaji-Enwerem et al., 2020). The sources of
indoor air pollution include, but are not limited to, cooking, cleaning,
candle burning, smoking, insulation, and personal care products
(Habre et al., 2014). During the pandemic, people stayed at their
homesmost of the time, which led to an increase in indoor air pollution.
In houses, individuals were aware of the risk of SARS-CoV-2, increasing
the usage of cleaning products, especially disinfectants with hazardous
chemicals, which negatively affected indoor air quality in households
(Nwanaji-Enwerem et al., 2020). The components of household
cleaning products are terpenes, sodiumhypochlorite, acetic acid, or am-
monia. These chemicals can undergo various reactions leading to an ad-
ditional pollution source at homes (Weschler and Carslaw, 2018).
Furthermore, the prolonged stay at home increased the indoor pollut-
ants associated with cooking (Nwanaji-Enwerem et al., 2020). These
pollutants include nitrogen dioxide, nitric oxide, polycyclic aromatic hy-
drocarbons, acrolein, and nitrous acid (Weschler and Carslaw, 2018).

3. Wastewater-based epidemiology and surveillance

Surveillance and monitoring programs for COVID-19 at wastewater
treatment plants are encouraged to be established to assess its
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abundance (Naddeo and Liu, 2020). Wastewater provides an opportu-
nity for virus surveillance since the viruses excreted by patients can be
traced in a wastewater treatment plant from a plant that serves a pop-
ulation. Additionally, this technique can be adequate to estimate the
number of infected people during the early stage of the outbreak
(Ahmed et al., 2021; Mallapaty, 2020; Wu et al., 2020b). The early trac-
ing of the SARS-CoV-2 can help the health entities and politicians to
adopt policies that can ensure the persistence of healthcare systems
against its collapse and overwhelming (AlHuraimel et al., 2020).Waste-
water plants usually serve large populationswithmore than onemillion
inhabitants (Mallapaty, 2020). Hence, wastewater surveillance can act
as a supplementary approach to clinical testing campaigns to estimate
the spread of SARS-CoV-2 in a community (Wu et al., 2020b).

WBE can providemore opportunities than clinical testing, especially
for developing countries with limited resources and a lack of clinical
testing equipment. However, it still cannot take over the clinical testing,
which is still the optimum choice for the infected patients' determina-
tions (Al Huraimel et al., 2020). Additionally, clinical testing is challeng-
ing, especially for large populations where testing is time and labor-
intensive (Mao et al., 2020). Besides that,WBE can estimate the total in-
fected citizens, including those asymptomatic and presymptomatic
(Lodder and Husman, 2020; Mallapaty, 2020). One of the advantages
of the WBE is that it can detect viruses at a very low level, which is es-
sential during the beginning of an outbreak or the end of the stationary
phase after the healthcare systems interventions (Ahmed et al., 2020).

It can be noticed that most of the viral detection techniques are
molecular-based. Additionally, the time required, costs, and sensitivity
of those techniques varies significantly. The abundance of coronavirus
in a population is tracked by wastewater samples determined by the
amount of viral RNA excreted in feces per capita. Thereafter, this num-
ber can be extrapolated to determine the number of infected people
using the concentrations of viral RNA in wastewater (Mallapaty,
2020). To determine the RNA concentration, the sampling preparation
process demonstrated in Fig. 2.

The WBE has several challenges, especially when building quantita-
tive predictions from the viral RNA, which leads to significant inaccura-
cies in estimating infected cases. These uncertainties are due but not
limited to (i) the complexity of wastewater matrices and the dilute na-
ture of biomarkers inwastewater; (ii) inabilities in pinpointing the suit-
able sample locations; (iii) non-adequacy of current sampling
techniques; and (iv) the need for effective concentrating virus methods
(Al Huraimel et al., 2020).

Table 1 demonstrates a summary of the commonly used methods
used for viral detection in wastewater. The following subsections pres-
ent these methods in more detail, alongwith the testing challenges. Be-
sides, Table 2 illustrates the various approaches used by different
countries to detect viruses in wastewater.

3.1. Real-time reverse transcriptase - polymerase-chain-reaction testing
(RT-qPCR)

The Reverse Transcription Polymerase Chain Reaction (RT-PCR) is a
technique that combines reverse transcription of RNA intoDNA and am-
plifies a specific DNA part with a polymerase chain reaction (Freeman
et al., 1999). Real-time PCR (RT-qPCR) is mainly used to quantify the
amount of a specified RNA that can be performed by fluorescence mon-
itoring of amplification reactions.

The RT-qPCRwas proved to be a sensibly and robust method for the
early detection of SARS-CoV-2 during outbreaks (Randazzo et al., 2020).
The genetic materials of SARS-CoV-2 have been detected in different
wastewater samples worldwide, including Australia, China, France,
Germany, Italy, India, Japan, Netherlands, Spain, United Arab Emirates,
and the United States of America (Ahmed et al., 2020; Arora et al.,
2020; Balboa et al., 2021; Fongaro et al., 2020; Haramoto et al., 2020;
Hasan et al., 2021; Kumar et al., 2020b; La Rosa et al., 2020; Rimoldi
et al., 2020; Westhaus et al., 2021; Wu et al., 2020a; Wu et al., 2020b;



Fig. 2. Sample preparation and analysis process for the SARS-CoV-2's RNA in wastewater.
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Wurtzer et al., 2020). The RT-PCR was used as a WBE tool and detected
viral RNA on several occasions where the number of confirmed cases
was low, as in the Netherlands and Spain (Lodder and Husman, 2020;
Randazzo et al., 2020). It illustrates the surveillance system's sensitivity
and its capabilities as an early warning technique for viral outbreaks.

Kumar et al. (2020b) investigated the presence of the SARS-CoV-2
by using RT-qPCR in India at the Old Pirana wastewater treatment
plant, which receives an influent from a hospital that accommodates
COVID-19 patients. It was noticed that the quantity of the viral RNA in
the wastewater corresponded to the number of declared infected pa-
tients at the hospitals. The viral concentration in the influent was rang-
ing between 5.6 × 101 and 3.5 × 102 copies L−1. Gonzalez et al. (2020)
studied the frequency of detections and concentrations for twenty-
one weeks in south-eastern Virginia, the USA using RT-qPCR. During
this period, the concentration range was between 101 and 104 copies
per 100 mL in samples where viral RNA was detected. The normalized
loading rate fluctuations at the WWTP were aligned with the number
of known outbreaks in the study.

3.2. Nucleic acid sequence-based amplification (NASBA)

Nucleic Acid Sequence Based Amplification (NASBA) is another
method that can be used for virus detection in wastewater. The
NASBA technique relies mainly on the detection of the RNA. NASBA
uses several enzymes to amplify the numerous target nucleic acid se-
quences of the SARS-Cov-2. In contrast to the other nucleic acid ampli-
fication methods, NASBA can amplify directly from an RNA without
the need for a reverse transcription step (Farkas et al., 2020). The
three used enzymes, T7 RNA polymerase, reverse transcriptase, and
RNase H, can amplify one strand template of RNA (Hryniszyn et al.,
2013). NASBA has the potential to detect a low concentration of DNA
6

or RNA sequences during 15–60 min and at a temperature of 37–65 °C
(Farkas et al., 2020).

NASBA was used by Jean et al. (2001) to determine the concentra-
tion of Hepatitis A Virus (HAV) in wastewater from the Saint-Nicolas
wastewater treatment plant in Canada. Even though there was signifi-
cant bacterial contamination in the wastewater (2 × 105 fecal coli-
forms/mL), the results showed high HAV detection. Hence, the
bacterial presence doesn't affect the analysis. NASBA was able to detect
0.4 ng of target RNA/mL compared with 4 ng/mL for RT-PCR, indicating
NASBA's strong potential (Jean et al., 2001). However, it is noteworthy
to mention that several reasons limit the adoption of NASBA as a tool
for viral detection in wastewater. This technique has difficulties in pro-
ducing reliable and quantitative results. Moreover, its costs are rela-
tively higher than the PCR test in terms of viral detection in water and
the environment (Walker et al., 2017).

3.3. Biosensors

Biosensors are portable analytical instruments that can detect bio-
logical pathogens (i.e., SARS-CoV-2) and proteins with measurable
physicochemical properties by converting biological reactions intomea-
surable electrical signals (Goode et al., 2015; Mehrotra, 2016). Given
that viral detection, the biological molecule could be the isolatedmicro-
organism, the viral nucleic acid, viral protein particles, or the host's an-
tibodies against the virus. A biochemical response is obtained specific to
the viral particles or their genome. The transducer captures the recogni-
tion response converting it into a quantifiable signal computed by a dig-
ital detector, pursued by analyzing and presenting the detected signal
via a processor (Samson et al., 2020; Yang et al., 2020). Biological re-
sponses can be transduced to measurable signals once they interacted
with their specific targets (Neethirajan et al., 2017). Aptamer-based



Table 1
A summary of the commonly used methods for viral detection in wastewater.

Method Sensitivity Time
required

LOD
(SARS-COV2)

Specificity Advantages Disadvantages References

RT-PCR 89-95% 2 h 10 copies/μL 93% → Highly sensitive
towards specific
organisms

→ Requires expensive instruments
→ Requires the knowledge of the

detected organisms
→ Requires concentration of samples
→ Highly susceptible to contamination

by inhibitors
→ Have low limit of detection
→ Cannot differentiate between dead

and alive organisms
→ Interference of humic acids
→ Relatively slow detection time

(Asif et al., 2021; Nassir et al., 2020;
Pilevar et al., 2020; Rabiee et al., 2020;
Russo et al., 2020)

NASBA Up to 95% 60-90
mins

1
copy/reaction

98.9% → Highly sensitive
and specificity

→ Simple proce-
dure

→ Relatively fast
→ Sample contami-

nation resistance

→ Expensive kits
→ Few available essays for environ-

mental sampling
→ False positive has higher chances

over false negative

(Fakruddin et al., 2012; Lahrich et al.,
2021; Matovu et al., 2010; Chantratita
et al., 2004)

Biosensors Up to
96.7%

15 mins 0.22 pM Up to
100%

→ Affordable cost
→ High sensitivity
→ Rapid real time

detection
→ Simple proce-

dure
→ Portability
→ Requires small

samples

→ Antibody binding is influenced by
environmental parameters such as
pH, temperature, etc.

→ Binding of antibody-antigen can be
influenced by reagents, solvents, or
radiation

→ Transcription regulation is a com-
plex process

(Choi, 2020; Ejeian et al., 2018; Lahrich
et al., 2021; Qiu et al., 2020)

Flow
cytometry
(FCM)

NA 15-45
mins

NA NA → Rapid detection
→ High throughput
→ High accuracy
→ Ease of use

→ Requires fresh samples
→ Only detect alive cells

(Brown et al., 2015; Brussaard, 2004; Ma
et al., 2013)

ELISA 20-80% 2 h 1 ng/mL >98% → Affordable costs
→ Relatively sim-

ple procedure

→ Low specificity
→ Concentration of sample is required
→ Time consuming
→ Low limit of detection

(Feng et al., 2020; Pilevar et al., 2020;
Sakamoto et al., 2018; Saville et al., 2001;
Streeck et al., 2020)

PFGE NA 24-26 h NA NA → Very sensitive to
genetic differ-
ences

→ High throughput

→ Too sensitive to differentiate
between sources

→ A prior database is required
→ Time consuming

(Meays et al., 2004)
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biosensors (Aptasensor) have a single-stranded DNA that can bind to
the target protein or DNA with high accuracy, producing a detectable
signal once it gets bound (Farkas et al., 2020).

Biosensors have been successfully used to detect norovirus in
aquatic samples. The aptasensors used are based on electrochemical,
fluorescence, colorimetric, and surface plasmon resonance detection
platforms (Farkas et al., 2020;Weerathunge et al., 2019). Generally, bio-
sensors are resistant to environmental inhibitors, allowing high recov-
ery of it and allowing low detection limits (Schilling et al., 2018).
Moreover, the biosensors can detect viruses in a short period of
7–16 min (Liu and Zhu, 2005). Furthermore, the interaction between
molecules can be observed in real-time (Liu and Zhu, 2005). Qiu et al.
(2020) succeeded in using a dual-function plasmonic biosensor that
combines plasmonic photothermal effect and surface plasmon reso-
nance to detect SARS-CoV-2 RNA. The biosensor showed high accuracy
with a low detection limit of 0.22 pM. Nevertheless, considering the ne-
cessity of rapid detection of the infection statuswithin a population and
the viral presence in the environment, biosensors can serve as a poten-
tial tool in the surveillance and detecting SARS-CoV-2 (Lahrich et al.,
2021).

3.4. Nano(bio)sensors and quantum dots

The development of nano(bio)sensors is essential due to their
unique physicochemical and optical properties of materials of small
sizes (Suleman et al., 2021). These properties give the nano-sensors
7

high accuracy and sensitivity besides the fast detection of viral infec-
tions. In addition, merging the nano-sized sensors with the electro-
chemical detection methods offers the advantage of reduced viral
detection time and the ability to detect low concentrations (Bukkitgar
et al., 2020). This combination is considered a cost-effective method
for fast detecting of coronavirus-induced infections (Lim and Bonanni,
2020).

In order to prepare the nano-sensors, a surface modification step of
the parent nano-particles should be done. One method of surface mod-
ification or functionalization is the loading or doping with other active
materials having high sensitivity to viruses and pathogens (Shetti
et al., 2021). In this regard, various nano-sensors were developed, in-
cluding nano-spherical particles, nano-islands and nano-wires of gold,
and graphene nano-particles to detect various viral infections, including
SARS-CoV-2 (Antiochia, 2020; Asif et al., 2020). For instance, Au fiber
Bragg grating FBG probe decorated with graphene oxide nanoparticles
was used as a sensor to rapidly detect COVID-19 from patients' saliva
(Samavati et al., 2020). Additionally, Vadlamani et al. (2020) prepared
a low-cost and highly sensitive sensor consisting of nano‑cobalt sup-
ported on titania nano-tubes to detect the SARS-CoV-2 virus
(Vadlamani et al., 2020). Fortunately, this detection method was rela-
tively quick because of the use of an electrochemical sensor that detects
the spike protein on the virus's surface. In a recent study, a new dual-
functional plasmonic biosensor containing two-dimensional gold
nano-islands decorated with DNA receptors was tested as a promising
COVID-19 virus analyzer (Qiu et al., 2020). It is worth noting that this
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analytical device combines both the plasmonic photothermal (PPT) ef-
fect and localized surface plasmon resonance (LSPR) sensing transduc-
tion.

In addition, other forms of carbon-based nano-sensors are deemed
to be excellent candidates for viral detection, such as carbon nano-
tubes and dots (Wang and Dai, 2015), in addition to biochars (Spanu
et al., 2020). This is owed to their excellent electrochemical and optical
sensing characteristics. From an economic and environmental point of
view, biomass-derived from waste matrices (e.g., agricultural residues)
has received much attention to prepare these carbonaceous materials
(Bhat et al., 2020). Moreover, there are other types of bio-sensors such
as electro-spun nano-fibers, 1-D carbon nano-tubes, and quantum
dots that are small in size and have high activity and accuracy towards
viral detection (Castillo-Henriquez et al., 2020; Shetti et al., 2021).

Quantum dots (QDs) are considered very promising sensors as they
are highly selective (Castillo-Henriquez et al., 2020). Besides, they can
detect a diverse range of substances/compounds in awide range of clin-
ical conditions rapidly and without the requirement of further labora-
tory tests. The fluorescence and photo-electrochemical features of the
developed QDs enable them to detect various microRNAs, DNAs, and
proteins which are evidence of their ability to detect a wide variety of
viruses (Ma et al., 2018). Therefore, they were successfully used for
the detection of circulating cell-free miRNAs in lung carcinogenesis
(Singh et al., 2018), plant viruses (Hong and Lee, 2018), and most re-
cently, the COVID-19 virus (Manivannan and Ponnuchamy, 2020).
They were used not only for the detection but also for combatting the
virus by hampering the genomic replication of the viral RNA.

3.5. Nucleic acid staining with fluorescent dyes (NASFD)

Highly fluorescent nucleic acid dyes can be used to detect the SARS-
CoV-2 virus in wastewater, wherein the wastewater samples pass via a
filter with a pore size of 0.22 μm (Maestre-Carballa et al., 2019). After
that, the nucleic acids in the SARS-CoV-2 virus particles get stained by
a fluorescent dye that allows the formation of fluorescent dots with di-
mensionsmore significant than the actual virus particles. These fluores-
cent dots appear after the excitation of the fluorescent dye bounded
with the nucleic acids. Thus, the fluorescent dots will be counted as
SARS-CoV-2 virus particles by viewing the sample under an
epifluorescence microscope (Corpuz et al., 2020).

One of the most common dyes that have been used widely in recent
research is SYBR Green I, whose blue emission is observedwith the help
of an epifluorescence microscope (Tonkrongjun et al., 2019). Wu and
Liu (2009) used SYBR Green I to count viruses from influent, effluent,
and sludge samples. Also, Otawa et al. (2007) adopted a direct count
method with SYBR Green I as a staining agent to count the number of
virus particles in mixed liquor-activated sludge samples.

One of the pros of using this method is that counting stained virus
particles even under lower magnifications is possible; thus, the need
for transmission electron microscopy (TEM) instrumentation can be
avoided (Ortmann and Suttle, 2009). Also, there is no need to cultivate
the samples in the laboratories since the virus particles can still be
counted using this method. Moreover, it will be easier to differentiate
the virus particles with nucleic acids from virus-like particles without
nucleic acids through DNase treatment (Forterre et al., 2013).

3.6. Flow cytometry (FCM)

Another method employed to count SARS-CoV-2 virus in wastewa-
ter samples is by combining fluorescent nucleic acid-specific dyes
with flow cytometry (FCM). Firstly, in the FCM unit, wastewater sam-
ples are diluted with the buffer solutions, stained with the fluorescent
dyes (e.g., propidium iodide, thiazole orange, SYBR Green I, SYBR
Green II, and SYBR Gold), and injected into the flow cytometer. After
that, the SARS-CoV-2 virus particles enter a stream in a single file
under the hydrodynamics effect of the surrounding sheath fluid. Then,
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the individual particles intersect with a monochromatic light beam,
usually from an argon-ion laser. Finally, each particle's interactions
with the incident laser beam produce scattered and fluorescence parti-
cles that can be collected by detectors and get analyzed as scatter and
fluorescence intensity, respectively (Corpuz et al., 2020).

Furthermore, in the FCM method, the wastewater samples are
stained with a fluorescent dye that binds selectively either to the DNA
or RNA. Hence, the intensity of the DNA/dye and RNA/dye complexes'
fluorescence correlates with the sample's DNA/RNA content (Adan
et al., 2017). The positives about using FCM are its high accuracy and
quantification speed (Brown et al., 2019). The FCM approach was used
by Huang et al. (2016) to quantify the virus particles in activated sludge
and effluent samples from three wastewater reclamation plants. Ac-
cording to another study done by Brown et al. (2019) on determining
the number of virus particles from activated sludge samples using
FCM, it was shown that the FCM method has a higher sensitivity than
that of epifluorescence microscopy (EFM). Consequently, it can be said
that FCM has a higher sensitivity and quantification speed in counting
virus particles compared to the EFM method.

3.7. In situ fluorescence

A differentmethod that can only be performed in specialized labora-
tories is fluorescence-based analysis. The conceptual design of a fluores-
cence instrument has been presented by Pollard (Pollard, 2012) that in-
situ and online monitoring of viruses' numbers in varying water matri-
ces, including effluent wastewater, can be done. The proposed fluores-
cence device has an inline filter to remove any bacteria present in the
wastewater sample. After this filter, a mixing coil is placed, where
DNase and the fluorescent probe SYBR-Gold are added to the sample
to form the DNA/RNA-SYBR viral complex. After that, this mixture is di-
rected to reverse osmosis (RO) filter to concentrate the viruses. The RO
concentrate, stained viral particles, passes across a unit to measure the
fluorescence signal. While the permeate becomes the background fluo-
rescence that is subtracted from the sample viral fluorescence.

Despite that the proposed device is still under the conceptual stage,
this method's tests have shown that the excitation-emission matrix
(EEM) fluorescence intensity has a linear correlation (r2 = 0.97) with
the viral count.

3.8. Immunofluorescence assay (IFA)

Immunofluorescence (IFA) is a method that can be used to quantify
and analyze the infectivity of SARS-CoV-2 virus. In this method, an in-
fected cell culture sample is adsorbed on a microscopic slide. Next, the
fixed sample is incubated sequentially with a specific antibody and a
fluorescent chemical-conjugated secondary antibody that recognizes
the former to detect the viral protein antigen. Finally, the fluorophore-
conjugated antibody is fluoresced under optical excitation, where the
antigen-antibody complex appears as a fluorescent particle under a
fluorescent microscope (Corpuz et al., 2020; Im et al., 2019).

Calgua et al. (2011) used this method successfully to quantify HAdV
and JCPyV in raw sewage inflowing into wastewater treatment plants.
The results showed that IFA has one higher order of magnitude in sen-
sitivity compared with other cell culture methods used in this study.
Schlindwein et al. (2010) used the IFA method to verify human adeno-
virus 2 (HAdV 2) viability in an activated sludge and effluent samples
from a wastewater treatment plant.

3.9. Enzyme-linked immunosorbent assay (ELISA)

The enzyme-linked immunosorbent assay (ELISA) is a method uti-
lized to detect the presence of microbial antigens in various matrices.
ELISA depends on the antigen-binding principle to its specific antibody,
causing a change in color or fluorescence due to the resultant enzyme
activity.
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This method works as follows: firstly, antigen-binding at a specific
antibody is immobilized on a surface, usually in a set of 96-well micro-
titer plates. Secondly, a second enzyme-linked antibody, which is spec-
ified for the same antigen, is utilized to form an antibody-antigen-
antibody sandwich. Then, the enzyme-coupled antibody is reacted
with a substrate that alters its color when modified by the enzyme. Fi-
nally, the color change or fluorescence is correlatedwith the probed an-
tigens' concentration in the sample (Corpuz et al., 2020). This method
was utilized successfully by Atabakhsh et al. (2020) to detect rotavirus
in influent and effluent samples of wastewater treatment plants. In
that study, ELISA methods helped determine the removal efficiencies
of rotavirus from urban wastewater treatment systems.

3.10. Pulsed-field gel electrophoresis (PFGE)

Pulsed-field gel electrophoresis (PFGE) is a method that uses a pul-
sating electric field that enables the separation of highmolecularweight
DNA fragments of the SARS-CoV-2 virus according to their molecular
sizes (Corpuz et al., 2020; Nassonova, 2008). In this method, two sepa-
rate electrodes are used to generate alternating electric fields that cause
reorientation of themolecules periodically to align to the imposed elec-
tric field (Le et al., 2017). Molecular sizes and DNA molecules' charges
affect their ability to re-orient themselves and respond to the set mod-
ulated electric fields. Smaller DNAmolecules usually take a shorter time
to re-orient themselves by migrating through the gel matrix pores to-
wards the new anodes; while, larger molecules take a longer time.
Also, the larger DNA molecules, which migrate slower than the set
pulse time, tend to migrate as one band via the gel matrix (Le et al.,
2017; Lopez-Canovas et al., 2019). Furthermore, the band pattern
formed by a viral community works as its fingerprint, where the num-
ber of the formed bands estimates the number of different viruses (di-
versity) in a sample (Corpuz et al., 2020).

The PFGEmethodwas applied byOtawa et al. (2007) to estimate the
diversity of viruses in activated sludge samples from 14 differentwaste-
water treatment plants. The results showed that the prevailing sizes of
viral DNAs in the samples were in the range of 40–70 kb. The PFGE
method was also able to demonstrate the mutual similarity in the de-
tected viral species from the different activated sludge wastewater
treatment plants based on the similarity of the band patterns. Another
study was done by Wu and Liu (2009), where they used PFGE to deter-
mine the virus diversities in influent, primary settling tank, effluent, and
sludge samples from a municipal wastewater treatment plant. The re-
sults revealed that the activated sludge, anaerobic digestion sludge,
and effluent had the largest number of bands; besides, there were sim-
ilar band patterns between the influent and primary settling tank sam-
ples. The results also showed that the dominant sizes of viral DNAswere
between the ranges of 30–80 kb and 200–350 kb.

3.11. Transmission electron microscopy (TEM)

Optical microscopes cannot detect viruses. However, Electron mi-
croscopes can identify and determine viruses (Corpuz et al., 2020).
Transmission electron microscopy is one of the earliest techniques to
identify and classify viruses based on morphology (Roingeard et al.,
2019). The working principle of a TEM depends on negative staining,
where the SARS-CoV-2 viral particles are adsorbed on a pre-treated
electron transparent sample support grid (Corpuz et al., 2020). Usually
uranyl acetate and phosphotungstic acid, are then used for staining.
The samples are then analyzed using the electron microscope. The neg-
ative staining allows SARS-CoV-2 viral counting and viral size and struc-
ture determinations (Laue, 2010).

García-Fontana et al. (2020) visualized viral particles from Grenada,
Spain's Los Vados wastewater treatment plant. The TEM analysis
showed differences depending on the sampling location. For example,
a wide diversity of Eukarya viral particles and bacteriophages were de-
tected in the influent. Similarly, the same observations were noticed in
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theWWTPeffluent and sludge. The examination ofwastewater samples
by TEM also elaborated the diversity of viral morphologies with
filamentous viral particles. Moreover, the TEM examination showed
that 300 nm length of viral filamentous particles are typical for
tobamoviruses (Bacnik et al., 2020).

The advantages of using the TEM to determine viruses during anout-
break rely on the fact that viruses' morphologies do not change after a
mutation of the nucleic acid. On the other hand, the TEM is highly selec-
tive to host-specific infectious viruses, leading to a lower count than the
real one (Brown et al., 2015; Corpuz et al., 2020). Additionally, the TEM
is challenging to be used for investigating high numbers of samples
since it requires experienced personnel (Barreto-Vieira and Barth,
2015; Corpuz et al., 2020).

3.12. Testing challenges in wastewater

The testing for SARS-CoV-2 in wastewater is not fully standardized
yet and still lacks a fully standardized protocol for accurate detection
and determination (Sherchan et al., 2020). Al Huraimel et al. (2020) il-
lustrated that quantitative determination of infected citizens by SARS-
CoV-2 from wastewater is a challenging process due to several reasons
such as (i) the amount of viral RNA existing in feces, (ii) the lack of rep-
resentative samples along the periods, (iii) the detection ability of kits at
low concentrations, (iv) the variability of viral RNA excretion rates be-
tween inhabitation, (v) the vague links between the predictions of the
number of cases and the amount of detection RNA concentration in
wastewater, (vi) the necessity to evolve envelop virus concentrating
methods (Ahmed et al., 2020; Mallapaty, 2020).

4. Coronaviruses air sampling and detection

4.1. Coronaviruses air sampling

An essential step in microbial air sampling is to eliminate any dam-
age that could affect the microbial cell by limiting the microbial stress
(e.g., long sampling time and dryness effect) during the sampling proce-
dure. Furthermore, preserving the cell viability is not as important as
ensuring the nucleic acid integrity, especially for RNA viruses, as the
RNA possesses high instability (Verreault et al., 2008). Maintaining op-
timum sampling conditions (sampling volume, flow rate, and time)
also plays a major role in precise sampling and targeted virus detection.
Multiple factors can affect the indoor sampling of SARS-like viruses, in-
cluding air movement, ventilation, humidity, and temperature (Guo
et al., 2020). For hospital air sampling, patients' numbers inside the
room, occupancy, distances from the patient's bed, and activity during
sampling could influence the results (Cox et al., 2020). Therefore, sur-
rounding factors such as sampling environmental conditions and sam-
pler type should be assessed upon standardizing a protocol for SARS-
CoV-2 air sampling (Rahmani et al., 2020).

Bioaerosols samplers are classified into four categories, as follows:
liquid impingers, filters, impactors, and cyclones (Borges et al., 2021;
Sung et al., 2017). For indoor air sampling, biosamplers are usually lo-
cated 40–50 cm (Dubuis and Duchaine, 2021) and up to a distance of
1.5–2 m (Dumont-Leblond et al., 2021; Dumont-Leblond et al., 2020)
from the resident for collecting the optimum and representative air
sampling volume.

Liquid impinge-type biosamplers collect/absorb the bioaerosols into
a liquid medium. Most of the recent studies have recommended using
the biosampler for air sampling of SARS like viruses (Rahmani et al.,
2020). The biosampler is normally equipped with a high flow rate vac-
uum pump ranging from 10 to 60 L/min to collect the air samples
(Rahmani et al., 2020). Due to the use of a high flow rate vacuum
pump, this sampling tool may bemore appropriate for outdoor air sam-
pling rather than for collecting samples from indoor environments.
However, Faridi et al. (2020) have applied this impinger technique for
the sampling of SARS-Cov-2 in an indoor environment (ImamKhomeini
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Hospital Complex) after replacing the high volume vacuum pump by an
average flow-rate pump, although the limited flow rate capacity nega-
tively impacted the overall effectiveness of the viral detection. It has
been reported that liquid impingers are the most widely used tool for
sampling viruses in the air because they help to maintain the viability
and integrity of the viral particles during sampling (Rahmani et al.,
2020). Additionally, the viral analyses can be conducted directly with-
out the need for viral extraction from themedium and/or a filter surface
(Pan et al., 2019; Rahmani et al., 2020).

Moreover, filters are extensively used for viral air sampling because
of the high efficiency in capturing virus-containing aerosols having a
particle size ˂ 500 nm. The four basic filtrationmechanisms are intercep-
tion, diffusion, inertial impaction, and electrostatic attraction. Different
materials for the membrane filters have been tested in sampling air-
borne viruses, such as polytetrafluoroethylene (PTFE), cellulose, tightly
packed cotton, gelatin, Teflon, and polycarbonate (PC) (Pan et al., 2019;
Rahmani et al., 2020). Gelatin and PTFE are themost widely used filters
for air sampling of SARS-like viruses (Booth et al., 2005; Fabian et al.,
2009). The advantage of using the gelatin filter over the other com-
monly used filters is their ability to dissolve in the liquid medium that
facilitates the enumeration of microbial or viral particles in cell cultures
without any harmful impact on the viability of the viruses (Pan et al.,
2019). Besides, gelatin filters have been commonly used in modern air
sampling instruments, such as MD-8 Airscan sampler (Rahmani et al.,
2020). Zhao et al. (2014) have reported that the MD-8 Airscan sampler
with a gelatin filter enhanced the efficiency of collecting RNA viruses,
i.e., ~ 100%. Similarly, PTFE filter has been recommended by theNational
Institute for Occupational Safety and Health (NIOSH) for sampling air-
borne viruses (Rahmani et al., 2020), owing to its unique structure,
which offers an advantage of easy elution of the target viruses from
the membrane without any interaction between them (Lindsley et al.,
2017).
Table 3
Summary of the commonly used air samplers for corona viruses sampling.

Sampler Target virus Sampling
time

Sa
(s

Filter: MD-8 airscan sampler MERS-CoV 20 min 5

Filter: MD-8 airscan sampling device (Sartorius) and
sterile gelatin filters

MERS-CoV 20 min 50

Filter: High-efficiency particulate air (HEPA) filters
installed in the pipeline connecting sampler and
vacuum pump

SARS
coronaviruses

4 h 4

Filter: PTFE membrane filter with a pore size of 0.3 μm in a
closed-face, 3-piece disposable plastic cassette attached
to a personal sample pump

SARS
coronaviruses

10.5 – 13
h

2

Filter: MD-8 airscan sampler SARS-CoV-2 15 min 10

Filter: Sterilized gelatin filters with pore size 3 μm placed
in styrene filter cassette

SARS-CoV-2 1 h 5

Impinger: attached to a personal sample pump with
average flow

SARS-CoV-2 1 h 1

Impactor: High-resolution slit-sampler system SARS
coronaviruses

18 min 30

Cyclone: SASS 2300 wetted wall cyclone sampler SARS-CoV-2 30 min 30

Cyclone Bioaerosol Sampler SARS-CoV-2 4 h 3.

Cyclone and filter: Cyclone sampler and 37-mm filter
cassettes and 0.3-μm polytetrafluoroethylene filters

SARS-CoV-2 4 h 10
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Although filters are very effective in collecting virus-containing par-
ticles, they also have some drawbacks, including the possibility of viral
destruction in certain conditions, such as sampling of large air volumes
(Pan et al., 2019; Rahmani et al., 2020). High volume sample pumps re-
quire a longer sampling time, resulting infilter dryness and thus causing
damage to the viruses (Rahmani et al., 2020). Other drawbacks that
were reported for gelatin filters include: (i) dissolution of gelatin filters
may occur in case of sampling at high relative humidity or if high vol-
ume sample pumps are used, (ii) desiccation of viruses may take place
in the case of sampling at low relative humidity (Fabian et al., 2009;
Pan et al., 2019; Rahmani et al., 2020). Impactors like the Andersen 6-
stage sampler and the slit sampler collect airborne particles into a liquid
medium, where a vacuum pump is used to withdraw the aerosol. The
collection media is then recovered, and aliquots are used for viral isola-
tion (Pan et al., 2019). The use of a high-resolution slit-sampler in the
collection of SARS coronaviruses was also addressed in a previous
study (Booth et al., 2005). However, negative results were reported
for all the viral cultures, although 2 out of the 10 samples were tested
positive using RT-PCR. This could be attributed to the low concentra-
tions of the viruses in the air or that these instruments are inappropriate
for sampling aerosolized viruses (Pan et al., 2019).

Cyclone sampler exerts centrifugal forces on particles in order to be
separated from the air flow. This sampler has been used for sampling in-
fluenza A virus (IAV) and SARS-like viruses (Pan et al., 2019; Rahmani
et al., 2020). The NIOSH has developed a multistage cyclone sampler
that operates at 3.5 L/min. The first stage consists of a 15 mL tube that
captures aerosol particles larger than 4 μm. The second stage consists
of a 1.5 mL tube that captures aerosol particles between 1 and 4 μm.
While the third stage consists of a polytetrafluoroethylene (PTFE) filter
that collects aerosol particles smaller than 1 μm(Chia et al., 2020). How-
ever, the cyclone sampler was not efficiently successful in collecting
SARS-CoV-2 viruses present in indoor air of a hospital complex (Chia
mpling flow rate
ampling volume)

Limitations References

0 L/min (1000 L)

→ Dehydration of viruses during sampling
→ Possibility of inactivation of some frac-

tion of the collected viruses during the
extraction process of the filters

→ May require high volume sample pumps

(Kim et al.,
2016)

L/min (1000 L) (Azhar et al.,
2014)

L/min (960 L) (Agranovski
et al., 2004)

L/min (1260–1560 L) (Booth et al.,
2005)

0 L/min (1500 L) (Ong et al.,
2020a)

L/min (300 L) → Desiccation of viruses may occur in case
of sampling at low relative humidity

→ Dissolution of gelatin filters may occur
in case of sampling at high relative
humidity and high sampling volume

(Liu et al.,
2020)

L/min (60 L) → The limited flow rate capacity
→ Antifoam is required to overcome pro-

duction of foam in the culture medium

(Faridi et al.,
2020)

L/min (540 L) → Limit the smallest cut-off size to 0.2–0.3
μm

(Booth et al.,
2005)

0 min (9000 L)

→ Degradation of viral RNA may occur
during the collection

(Borges et al.,
2021; Guo
et al., 2020)

5 L/min (840 L) (Chia et al.,
2020)

0 L/min (400 L) (Ong et al.,
2020a)
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et al., 2020). It was reported that physical damagemight have occurred
to the viruses due to the impaction forces created during the sampling
process (Blachere et al., 2009; Brown et al., 2013; Cao et al., 2011; Pan
et al., 2019).

Table 3 summarizes the commonly used air samplers for
coronaviruses sampling and the limitations of each sampler. Several
precautions must be taken in consideration during the selection step
of the air sampler for both indoor and outdoor environments. For exam-
ple, it is recommended not to operate the cyclone sampler with an air-
flow rate greater than 200 L/min to avoid the degradation of viral RNA
in the collected samples (Borges et al., 2021). Additionally, it is recom-
mended not to use high-volume sample pumps with filter samplers to
evade viral dehydration (Robotto et al., 2021).

4.2. Coronaviruses detection techniques

Following the sampling phase, the viral RNA is extracted from the
sample matrices using the viral RNA/DNA isolation kit and stored in
an elution buffer for further analysis (Azhar et al., 2014; Faridi et al.,
2020). Once the viral genomic material is extracted, several examina-
tions and identification techniques are performed, as demonstrated in
Fig. 3 (Corman et al., 2020; Drosten et al., 2002; Shetti et al., 2021). Now-
adays, multiple identification techniques are modified to detect viruses
in air sampleswith high efficiency as shown in Table 4.Moreover, Cheng
et al. (2020) studied SARS-CoV-2 air sampling in an isolation room and
highlighted that positive environmental air samples were detected only
if the patient's viral load within the clinical samples exceeded 1000
copies/mL. They also reported that the SARS-CoV-2 viral load ranging
from110 to 9400 copies/mL resulted in a positive SARS-CoV-2 in the en-
vironmental air samples (Cheng et al., 2020), with a distance ≥2 m be-
tween the air sample and the patient (Lednicky et al., 2020).

4.3. Reverse transcriptase real-time polymerase chain reaction testing
(RT-qPCR)

The gold standard technique for SARS-CoV-2 detection in air sam-
ples is RT-qPCR owing to its high sensitivity and accuracy (Lednicky
et al., 2020; Lei et al., 2020; Rahmani et al., 2020), as previously
Fig. 3. SARS-CoV-2 air survaillence
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mentioned. Although RT-qPCR can precisely identify SARS-CoV-2 in
several clinical specimens including, blood, saliva, sputum, stool, and
urine (Peng et al., 2020; Wang et al., 2020b), various studies have
proved the effectiveness of RT-qPCR in detecting SARS-CoV-2 in the
air as well. This technique can predict thousands of viral copies present
in 1mLof liquid aerosolwithin the proper limit of detection (LOD) (Ong
et al., 2020b).

Therefore, a key step in the air monitoring system is to enrich the
viral concentrations, which are distributed in the environment, into
smaller volumes of liquid to exceed the LOD, in conjunction with
increasing the sample volume. Guo et al. (2020) have examined the
indoor environment within hospitals using RT-qPCR, and they
detected the presence of SARS-CoV-2 in patients' rooms, around air
outlets, and in physician's office areas. A large sample volume
(~ 9000 L) was collected using the SASS 2300 wetted wall cyclone
sampler to achieve positive results (Guo et al., 2020). The advantages
of using RT-qPCR are the high detection sensitivity, ease of use, rela-
tive rapid results, and the simultaneous diagnosis of multiple respi-
ratory agents.

4.4. Reverse transcription-loop-mediated isothermal amplification
(RT-LAMP)

Another technique for SARS-CoV-2 identification based on
nucleic acid amplification is the reverse transcription-loop-
mediated isothermal amplification (RT-LAMP), which offers an ad-
vantage of accurate and sensitive detection of SARS-CoV-2 in clinical
samples (Yu et al., 2020). This novel technique is used to overcome
the constraints of qPCR as long processing time. Unlike RT-qPCR,
RT-LAMP is processed under the isothermal condition at constant
temperature (65 °C), thus reducing the time consumption as tem-
perature changes; therefore, the reaction lasts only 20 min (Park
et al., 2020). Additionally, the LOD of RT-LAPM is only 80 copies of
RNA/mL of samples, which is considered lower than the limit de-
tected by qPCR (Huang et al., 2020). The concept of nucleic acid de-
tection relies on magnesium pyrophosphate production upon
amplification resulting in turbidity that could be seen by the naked
eye and quantified using a turbidimeter (Hong et al., 2004).
, sampling, and identification.



Table 4
Summary of the commonly used techniques for viral detection in air.

Method Mechanism of
detection

Time
required*

Advantages Disadvantages References

RT-qPCR Nucleic acid
amplification

2 h → Sensitivity
→ Accuracy
→ Detects thousands of viral copies in 1 mL

liquid aerosol
→ Simultaneous diagnosis of multiple respira-

tory agents

→ Time consuming
→ Requires viral enrichment to reach

limit of detection

(Guo et al., 2020; Ong et al.,
2020b)

RT-LAMP Nucleic acid
amplification

20 min → Rapid results
→ High sensitivity
→ High accuracy
→ Detects 12 of viral copies per reaction
→ Greater amplification products yield
→ Less sensitive to the presence of contami-

nants in the sample

→ Alteration in the sample PH affects the
assay performance

(Park et al., 2020; Thi et al.,
2020; Yu et al., 2020; Zhu
et al., 2020)

TEM Viral morphological
examination

Few min → Effective in confirmation of viral identity → Requires large sample volume (Agranovski et al., 2004; Kim
et al., 2016)

CRISPR-Cas Nucleic acid
identification –gene
editing

40 min → High sensitivity
→ High specificity
→ Short detection time

→ Susceptible for false results if a muta-
tion took place in the target sequence

(Abduljalil, 2020; Broughton
et al., 2020; Jia et al., 2020)

Biosensors Measuring biological
response

15 min → Detect low viral concentrations in the
sample

→ Different viral bio-recognition molecules
are accessible for use (viral genome, spike
protein, antibody

→ High cost and long processing time are
required for target and biological
matrix preparation

(Iravani, 2020; Kim et al.,
2020; Qiu et al., 2020; Samson
et al., 2020)

O.M. Abdeldayem, A.M. Dabbish, M.M. Habashy et al. Science of the Total Environment 803 (2022) 149834
Based on the LAMP technique, Zhu et al. (2020) have developed
nanoparticle-based biosensors (NBS) to achieve the benefits of rapid
and precise detection of SARS-CoV-2. In RT-LAMP-NBS one-step assay,
the LAMP primers are designed to detect and amplify the opening read-
ing frame fragment 1a/b sequence and nucleoprotein sequence of the
SARS-CoV-2 genome in one tube. The NBS detects and analyzes the re-
sults. With the aid of this biosensor, it can predict very low concentra-
tions of SARS-CoV-2 (12 copies) per reaction (Zhu et al., 2020).
Therefore, it overcomes non-specific amplification of other non-SARS-
CoV-2 genomic sequences, increasing the specificity and reducing
false-positive outcomes. RT-LAMP was widely used for SARS-CoV-2 de-
tection in clinical samples. Nevertheless, it has not been applied yet for
SARS-CoV-2 detection in air samples (Thi et al., 2020).

4.5. Transmission electron microscope (TEM)

As previously discussed in an earlier section, TEM is beneficially used
to recognize and characterize viruses along with various matrices. How-
ever, viral identification in air samples using TEM is challenged by the
viral concentration enrichment within the sample to reach a detectable
limit (Richert-Poggeler et al., 2018). Subsequently, previous studies on
different coronaviruses relied primarily on large sample volumes. Kim
et al. (2016) have reported MERS-CoV existence, and Agranovski et al.
(2004) had positive results for SARS-CoV in air sampleswhen the volume
of the sample in both studies exceeded 1000 L (Agranovski et al., 2004;
Kim et al., 2016). Another pre-requisite step to increase the viral load in
the collected sample is throughviral cultures. The tubingused to intercon-
nect the sampler with the vacuum pump are fitted with HEPA (high-effi-
ciency particulate air) filters. Such filters are inoculated in a flask with
confluent monolayers of Vero cells (viral host cells); after that, the flask
is incubated at 37 °C for 60min. The inoculated cell cultures are then pre-
served at the proper culture medium, and finally, the culture supernatant
is examined under the TEM to identify the virus (Agranovski et al., 2004).

4.6. Clustered regularly interspaced short palindromic repeats (CRISPR) –
Cas (CRISPR associated) technique

Introduction of modern gene-editing CRISPR (Clustered Regularly
Interspaced Short Palindromic Repeats) - Cas (CRISPR associated)
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technique was extremely vital in the field of viral detection (Bayat
et al., 2018). This technology targets viral RNA degradation; thus, it con-
trols viral replication within the host cell and reduces transmission
(Brouns et al., 2008). CRISPR-Cas system was discovered firstly as part
of natural bacterial and archaeal immune responses against viruses. Af-
terward, scientists repurposed its use for gene-editing in mammalian
cells (Jinek et al., 2012). Recently, the CRISPR-Cas system is a potential
tool for COVID-19 molecular diagnosis and therapeutic approaches
(Kumar et al., 2020c; Zuo et al., 2017).

Applying the CRISPR-Cas system for SARS-CoV-2 detection im-
proved the sensitivity, specificity, and detection time (30–60 min)
over traditional PCR techniques (Jia et al., 2020). Broughton et al.
(2020) applied CRISPR-Cas12-based lateral flow assay to diagnose
SARS-CoV-2 infection. They took swabs from the nasopharyngeal or
oropharyngeal in a consistent period (around 40 min). Whereas,
Hajian et al. (2019) combined CRISPR-Cas technologywith FET to de-
velop a new biological sensor. The biosensor is composed of a
CRISPR-chip connected to graphene-based FET. With the advantage
of skipping the amplification process, it managed to detect a 1.7
femtomolar concentration of nucleic acid in only 15 min (Hajian
et al., 2019).

4.7. Biosensors for SARS-CoV-2 detection

Several biosensors were developed to detect coronaviruses such as
MERS and SARS-CoV-1 to diagnose the infection rapidly. Most of the
biosensors were designed based on optical systems. Moreover, the pie-
zoelectric mechanismwas used for SARS-CoV-1 detection, compared to
an electrochemical biosensor for MERS identification. Huang et al.
(2009) introduced a new biosensor relying on a fiber-optical mecha-
nism to detect SARS-CoV-1 nucleocapsid protein (Huang et al., 2009).
Similarly, Roh and Jo (2011) utilized the same biorecognition molecule
to detect 0.1 pg/mL of SARS-CoV-1 through a quantum dots-coupled
RNA aptamer chip (Roh and Jo, 2011). However, nanoparticle-based
biosensors were used widely in MERS detection. Teengam et al.
(2017) created pyrrolidinyl peptide nucleic acid probes via nanoparticle
aggregation to develop an optical biosensor to determine MERS. These
nucleic acid probes were synthesized to effectively hybridize with the
complementary sequence of MERS RNA (Teengam et al., 2017).
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Moreover, Layqah and Eissa (2019) utilized gold nanoparticles to mod-
ify carbon electrodes carrying MERS antigen, then quantifying the spe-
cific antibodies in the samples volumetrically (Layqah and Eissa,
2019). Since the biorecognitionmaterial, whether it is a nucleic acid, an-
tigen, antibody, or PCR product, is typically similar across the species,
the previously developed biosensors can be modified to determine
SARS-CoV-2.

A recognition target is identified to design a biosensor specific for
SARS-CoV-2 detection, such as any region of SARS-CoV-2 RNA, its pro-
teins, viral proteases, or human immunoglobulins as a part of the
human immune response towards the virus (Escors et al., 2001;
Huang et al., 2009; Tian et al., 2020; Xu et al., 2020). The recognition
method is then chosen either through nucleic acid hybridization,
receptor-ligand interaction, antigen-antibody binding, or enzymatic re-
action. An additional component included for the environmental sam-
pling of SARS-CoV-2 directly from the ambient air is an air sampler.
Given the fact that the airborne SARS-CoV-2 concentration in the air is
relatively low (103–104 of viral RNA copies per 1 m3 of air during the
COVID-19 pandemic), a complex air sampling procedure is essential.
Accordingly, this implements point-of-care risk assessment, which
boosts viral concentration to a detectable limit (Yang et al., 2011).
Therefore, a proper aerosol to hydrosol enrichment capacity equivalent
to 105–106 folds (obtained from 103 to 104 of SARS-CoV-2 genome cop-
ies per 1m3 of air) is necessary (Kim et al., 2020). Since the particles car-
rying the SARA-CoV-2 virus are loaded with other compounds
(e.g., proteins, salts, organic and inorganic substances, in addition to
other viruses), the viral-containing particles are larger than the size of
the virus. Therefore, the sampler used for airborne viral detection
should be designed with filters of larger pore sizes than the actual
viral size (25–400 nm) (Hogan et al., 2005).

A novel biosensor was introduced by Qiu et al. (2020) after studying
the RNA sequences of both SARS-CoV viruses. They designed a specific ol-
igonucleotidemerging the sequencing of both SARS-CoV-1 andSARS-CoV-
2 andmeasured the hybridization effect via dual plasmonic-photothermal
mechanisms. The biosensor effectively detected 0.22 pMconcentrations of
SARS-CoV-2 (Qiu et al., 2020). Seo et al. (2020) have developed a sensor-
based technique for the detection of SARS-CoV-2. The sensorwas designed
based on field-effect transistor (FET) biosensing ability, in which a FET
graphene film is coated with a specific antibody targeting SARS-CoV-2
spike protein (Seo et al., 2020). This method provided high accuracy and
sensitivity in detecting low concentrations of SARS-CoV-2 in nasopharyn-
geal swabs of infected patients without the need for sample pretreatment.
FET biosensor was proved to detect 1 fg/mL concentration of SARS-CoV-2
spike proteins if it dissolved in a phosphate buffer saline and a concentra-
tion of 100 fg/mL. Also, if it is present in clinical transport medium
(Samson et al., 2020). Although it has not been applied, it is considered a
potential method for the sensitive detection of SARS-CoV-2 in the air. Ex-
tensive research is invested nowadays to reduce the drawbacks and im-
prove these biosensors' performance for an efficient and more reliable
diagnosis of SARS-CoV-2 in different matrices.

5. Role of computational modeling in viral outbreaks

Besides theory, experiment, and simulation, computational modeling
has quickly evolved to become one of the main pillars of science (Chang
and Makatsoris, 2001). The advancement in computational modeling
tools and technologies and their versatile adaptation in many fields has
led to a significant quality improvement of the executed tasks. Among
those tasks are the early detection of disease vector outbreaks and the
risk map assessments (Agbehadji et al., 2020; Simsek and Kantarci,
2020). The availability ofmassive global data (health and environmental)
led to the advancement in computing capacities and the emergence of
technologies such as Big Data, AI, ML, Internet of Things (IoT), and
Cloud Computing (Allam et al., 2020). Notably, this allowed massive
amounts of data collected from different sources to be retrieved and ana-
lyzed in real-time to provide informative insights and predictions, as
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presented in Fig. 4. Hence, the availability of predictive modeling tech-
niques should be expected to contribute remarkably to detect future
viral outbreaks using the current available data, including environmental
and health datasets. Currently, the detection of outbreaks using computa-
tional methods such as AI is focused mainly on identifying the virus
spread between humans using data collected from infected humans.
Using the same technology, the AI can also detect outbreaks using WBE.

5.1. Artificial intelligence andmachine learning for detection of outbreaks of
infected persons

AI and its related ML technologies can accurately track and survey
the virus spread, alarming the patients and healthcare authorities,
based on the availability of representative data (Ahmad et al., 2020;
Kumar et al., 2020a). These technologies can contribute to providing
fast, reliable, and cost-effective tools to help manage viral outbreaks.
Moreover, they can rapidly identify high-risk patients and provide risk
maps and valuable insights to control infection in real-time. Table 5
summarizes the computational modeling methods, mainly AI/ML tech-
niques used recently in different jurisdictions for forecasting the status
of the SARS-CoV-2 pandemic.

Moreover, advanced ML techniques such as deep learning (DL) net-
works are used to detect and predict the SARS-CoV-2 pandemic. A deep
learning network (nCOVnet) has also been proposed for the fast detection
of the pandemic using chestX-ray images (Panwar et al., 2020). As a trans-
fer learning approach, the authors of another study (Nayak et al., 2021)
compared the performance of different pre-trained convolutional neural
network (CNN) models such as AlexNet (Krizhevsky et al., 2012), VGG-
16 (Simonyan and Zisserman, 2014), SqueezeNet (Iandola et al., 2016)
and ResNet-34 (He et al., 2016) for detecting the pandemic using chest
X-ray images. Another approach was recently proposed by Zheng et al.
(2020) to predict the probability of the pandemic infection. This approach
exploits the 3D chest CT volumes through the segmentationof the 3D lung
region using pretrained U-Net (Ronneberger et al., 2015) architecture;
after that, the segmented lung is fed into a 3D DL network for prediction.

Outside China, the AI-driven algorithms were able to detect the
SARS-CoV-2 even before theWHOwas informed. Consequently, several
alarms were triggered to warn travelers of the risks of traveling to spe-
cific locations. On the other hand, Chinese companies did not trigger
those alarms, indicating that the data-sharing restriction might have
led to these severe consequences (Allam et al., 2020). BlueDot was
one of the companies with a successful history of detecting outbreaks
(Dananjayan and Raj, 2020). It had previously detected the outbreak
of the Zika virus in Florida in addition to spotting the COVID-19 pan-
demic wave 9 days before the WHO released the alerting statement of
the emergence of coronavirus (Bogoch et al., 2016). BlueDot used the
available data from news reports, airline flights, and previous outbreaks
in predicting the SARS-CoV-2 emerging from Chinese regions. In recent
work, eight of ten cities that could be potentially affected by the new co-
ronaviruswere successfully predicted (Bogoch et al., 2020).Metabiota is
another company that successfully used a similar approach by using Big
Data analytics to exploit flight data to forecast infections, several days
before the first reported case, in countries at risks such as Japan,
Thailand, Taiwan, and South Korea (Allam et al., 2020). Companies
such as BlueDot (Netherlands), Metabiota (USA), and others that can
exploit the breakthrough of AI technologies and big data analytics can
help the healthcare sectors, governments, and businesses minimize
the risk resulting from unexpected viral outbreaks. Accordingly, various
AI techniques, big data analytics, and their applicability in contact trac-
ing, detection of viral outbreaks, and recommending control strategies
are discussed in the following subsections.

5.2. Contact tracing

As the SARS-CoV-2 is spread mainly from person to person through
droplets, discharges the nose, or contact transmission, therefore, contact



Fig. 4. Computational modeling strategies for viral outbreak management.
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tracing can be an appropriate method for monitoring and control the
spread of the outbreak (World HealthOrganization, 2020a). The contact
tracing process relies on using infected patients' data to forecast and
predict the virus spread.Multiple COVID-19 infected countries used dig-
ital contact tracing, mainly smartphone applications synergized with
different technologies such as Bluetooth, Global Positioning System
(GPS), Social media, contact details, network-based APIs, mobile track-
ing data, card transaction data, and system physical address
(Lalmuanawma et al., 2020). Such data from different sources change
over time and grows quickly; hence, it is called “big data”
(Devakunchari, 2014). Many platforms can handle big data challenges
in terms of volume, velocity, and variety. Storm (Apache Storm), S4
(Neumeyer et al., 2010), Kafka (Apache Kafka), Apache Spark (Apache
Spark™ - Unified Analytics Engine for Big Data), and Flink (Apache Flink:
Stateful Computations over Data Streams) can handle data stream pro-
cessing that can process large volumes of data in a relatively short
time span. The digitalization of contract tracing and the exploitation of
big data analytics are superior by their virtual real-time fast abilities
compared to the non-digital process. The collected individual personal
data through digital applications are then used byML and AI techniques
to track citizenswho are vulnerable to the viral outbreak due to their re-
cent contact with infected persons. Lalmuanawma et al. (2020) listed
over 36 countries that have successfully used digital contact tracing by
using either centralized, decentralized, or hybrid techniques.

Digital contact tracing is limited mainly by privacy and control over
data and data security breaches. According to Sohrabi et al. (2020), sev-
eral contact tracing applications, including those produced by countries,
violated privacy laws and were reported to be unsafe. Several countries
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already have their contact tracing applications to track the spread of vi-
ruses; however, to fight the viral spread, a global action should be per-
formed for a better tracing. Wen et al. (2020) have analyzed the
documentation of 41 released contracted tracing applications for
COVID-19 contacts tracing. The results showed that several applications
could expose the identity information to enable fingerprinting and
tracking specifying users. This addresses issues regarding the question
of who should be capable and has the right to trace people. Confidential
and publically available data should be addressed appropriately. Re-
strictions of using or sharing data would also be a matter of concern.

5.3. Accurate detection of outbreaks: motivations to combine WBE and AI

Water is a vital resource for society, the economy, and the environ-
ment (Abdeldayem et al., 2020), especially during a pandemic where
hygiene is critical for spreading the virus. During the last decade, the
water sector has been navigating parallelly into two transformations
(Garrido-Baserba et al., 2020). The first transformation is the fourth
water revolution, “Water 4.0,” which aims to more sustainable and ra-
tional water resources management (Sedlak, 2014). The second one is
the digitalization of the water sector and its empowerment with AI
and Big Data to initiate new functionalities in thewater andwastewater
management sectors (Poch et al., 2020; Ramírez Calderón et al., 2020).
In the context of viral detection, AI-based tools that exploit the data col-
lected from smart city sources have the potential tomonitor and control
viral outbreaks.

AI has been conventionally used for controlling state variables in
wastewater treatment plants or outbreaks detection from Big Data



Table 5
A summary of different computation methods used for SARS-CoV-2 forecasting.

Studied
location

Forecasting Method Input Validation/Error
method

Results Reference

Brazil → Support vector regression
(SVR)

→ Dataset of confirmed cases of
COVID-19

→ Cross vali-
dation

→ Error for SVR
→ 1 day: 0.87-3.51%
→ 2 days: 1.02-5.63%
→ 3 days: 0.95-6.90%

(Ribeiro et al.,
2020b)

Canada → Deep learning long short--
term memory (LSTM)

→ Number of confirmed cases
→ Number of fatalities and recovered

patient

→ Cross vali-
dation

→ Accuracy:
→ Short term: 93.45%
→ Long term: 92.67%
→ Outbreak end was estimated to be on

June 2020

(Chimmula and
Zhang, 2020)

China → Adaptive neuro-fuzzy infer-
ence system using enhanced
flower pollination method

→ World Health Organization (WHO)
official data of the outbreak of the
COVID-19

→ Holdout → High performance in predicting con-
firmed cases

→ R2=0.97

(Al-Qaness
et al., 2020)

India
USA
UK

→ Long short-term memory
(LSTM)

→ Memory optimized by Grey
Wolf

→ Optimizer deep learning
approach

→ Google trends
→ European Centre for Disease preven-

tion and Control (ECDC) data

→ Akaike
information
criterion

→ Reduction in Mean Absolute Percentage
Error (MAPE) values for forecasting
results to the extent of about 98.00%

(Prasanth et al.,
2021)

Italy → Auto-regressive integrated
moving average (ARIMA)
Forecasting package

→ COVID-19 infected patient data from
Italian ministry of health

→ Mean abso-
lute predic-
tion param-
eter

→ 93.75% of accuracy for registered case
models

→ 84.40% of accuracy for recovered case
models

(Chintalapudi
et al., 2020)

Italy
Spain
France
China
Australia
USA

→ Variational autoencoder
(VAE) deep learning

→ Daily confirmed and recovered cases
collected from six countries

→ Holdout → Error per country
→ Italy: 5.90%
→ Spain: 2.19%
→ France: 1.88%
→ China: 0.13%
→ Australia: 0.24%
→ USA: 2.04%

(Zeroual et al.,
2020)

Mexico → Decision tree algorithim → Epidemiology dataset by Secretariat
of Health in Mexico

→ Cross vali-
dation

→ Accuracy: 94.99% (Muhammad
et al., 2021)

Ukraine → Polynomial regression → Daily incidence of coronavirus infection
→ Population size
→ Viral propagation speed

→ Holdout → Accuracy: 97.60% (Chumachenko
et al., 2020)

24
Countries
and 24
States

→ Artificial neural network
(ANN)

→ Dataset provided by the Center for
Systems Science and Engineering
(CSSE) at Johns Hopkins University

→ Handout → Average accuracy of 87.70% (Wieczorek
et al., 2020b)

12
countries

→ Support vector regression
(SVR)

→ Dataset provided by the Center for
Systems Science and Engineering
(CSSE) at Johns Hopkins University

→ Cross vali-
dation

→ Ability to capture nonlinear patterns
from the data

→ Gaussian Kernel provided best in-sample
performance and also provided worst out--
of-sample prediction

(Peng and
Nagata, 2020)
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(Allam et al., 2020; Ramírez Calderón et al., 2020; Sundui et al., 2021).
As previously mentioned, WBE can provide great opportunities to de-
tect viral outbreaks, especially for countries with limited resources to
carry out clinical tests. However, upon conducting an extensive search,
it was found that no approach in the scientific literature combines AI
with WBE for the detection of viral outbreaks. Hence, there is a clear
need to fill this gap and propose new frameworks for such purposes.
In response to this need, this paper proposes a framework for using AI
to predict viral outbreaks using WBE. The framework is presented in
the following subsection.

5.4. The proposed WBE-AI framework

The proposed framework depends on the concept of data-
driven modeling that exploits an ensemble of diversified types of
ML methods; predictive, descriptive, and prescriptive. This is be-
cause no single method can work perfectly in all situations and all
types of data. These methods use various algorithms from statisti-
cal learning, AI, and combinatorial optimization. It is essential to
combine human expertise with additional knowledge extracted
by the AI/ML methods (Ragab et al., 2019). The role of human
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expertise is central to the framework proposed in this work. First,
the expert quantifies the data quality by using an assessment tech-
nique consistent with his/her subjective knowledge. This is to pro-
vide a clear assessment of the data uncertainty. The second task is
to perform the verification and validation procedures to ensure
the trustworthiness of the resulting predictive/descriptive/
prescriptive models. This is based on his/her subjective knowledge
and enables models to be updated with minimal efforts from
human experts.

For the case of viral outbreaks, the inputs to the framework consist of
different types of data, including images, reports, tabular data, IoT, and
others. These data are processed, and a number of parameters are
then extracted, such as the concentration of viruses in wastewater sam-
ples, the official number of infected people in the region of thewastewa-
ter plant, population density, and wastewater flow/generation rate.
Those parameters are potentially able to complement each other and
contribute effectively to build themodel. Other parameters are also con-
sidered, such as the external disturbances that influence theWBE oper-
ations, e.g., change of water consumption patterns, delayed load peaks,
and the shift between industrial and residential flows. The outputs of
the framework resemble the notification of an outbreak, projection of



Inputs
•Viral concentration
•Population density
•Flowrate
•Number of infected people
•etc.

Different
Data Types

Images

Reports

Tabular data

....

Ensemble of ML & DL Techniques

• Logical analysis 
of Data (LAD)

• Rough Set
Theory (RST)

• Decision Trees 
(DT)

• Etc.

Predictive Learning 
Techniques

• Artificial neural
network
(ANN)

• Support vector
machines 
(SVM)

• Bayesian
networks

• Quadratic
Discriminant
Analysis 
(QDA)

• Etc.

• Convolutional
neural networks 
(CNN)

• Recurrent neural
networks
(RNN & LSTM)

• Generative DL 
models 
(Autoencoders 
& GAN)

• Transfer
Learning

• Etc.

• Evolutionary
algorithms

• Fuzzy petri nets
• Reinforcement

Learning 
• Etc.

Human Expert

Outputs

� Notification of viral outbreaks
� Projection of infected citizens
� Vulnerable regions
� Control strategy
� etc.

IoT data

Decision Makers

Models’ Verification & Validation

Classical ML State-of-art DL Prescriptive
Learning 

Techniques

Descriptive
Learning

Techniques

Data Quality Assessment

Fig. 5. Proposed framework for viral outbreak detection and decision making.

O.M. Abdeldayem, A.M. Dabbish, M.M. Habashy et al. Science of the Total Environment 803 (2022) 149834
infected citizens andmortality, vulnerable regions of the outbreaks, and
others. Moreover, the framework provides the decision-maker with
control strategies that should be followed to minimize any expected
risks. The proposed framework is illustrated in Fig. 5, while the
framework's building blocks are also presented inmore detail in the fol-
lowing sections.

5.4.1. Predictive machine learning and deep learning methods
The general concept of predictive ML methods is to learn specific

properties from a training dataset to build a model capable of making
predictions (Alpaydin, 2014). Predictive methods can be divided into
two groups: regression and pattern classification. Machine learning re-
gressionmethods are based on analyzing existing relationships between
the variables and trends in thedata tomake predictions about numerical
variables, e.g., the number of infected citizens. In contrast to regression
methods, the task of pattern classification is to assign discrete class la-
bels to particular observations as outcomes of a prediction. To go back
to the above example: a pattern classification task could predict a high
or low infection. Themost commonML predictive methods are the sup-
port vector machine (SVM) (Bishop, 2006), Bayesian networks (Jensen
and Nielsen, 2007), Quadratic discriminant analysis (QDA) (Friedman,
1989), and the artificial neural network (ANN) (Sundui et al., 2021).

Although traditional ML methods have been proven to be effective
for predictive analysis, these methods cannot be successfully applied
in some cases. Therefore, advanced DL methods such as convolutional
neural networks (CNN) (LeCun et al., 1989), recurrent neural networks
(RNN) (Hochreiter and Schmidhuber, 1997; Medsker and Jain, 2001),
stacked automatic encoders (SAE) (Kingma et al., 2014), deep belief
networks (DBN) (Hinton, 2009) should be added to the list to ensure
building accurate and representative predictivemodels. AlthoughDL al-
gorithms are powerful, the functions they create during the training
procedure are sophisticated and opaque. Humans who would like to
use these models should have the basic ability to understand and trust
them before making important decisions.

5.4.2. Descriptive machine learning methods
Descriptive machine learning methods do precisely what the name

implies. They describe or summarize rawdata andmake it interpretable
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by humans (Novak et al., 2009). The main advantage of descriptive
methods over predictive ones is that they enable and allow decision-
makers to analyze past behaviors and understandhow theymight influ-
ence future outcomes. Among the descriptive MLmethods, the decision
trees (DT) (Quinlan, 1986), rough set theory (RST) (Pawlak, 1998), and
Logical Analysis of Data (LAD) (Crama et al., 1988) are themost popular
ones.

These descriptive methods represent a cornerstone in the
framework since decision-makers always seek accurate predic-
tions and meaningful insights that help them take the right actions
very rapidly. In the proposed framework, the decision trees are
suggested as one of the most widely used and practical descriptive
methods and is quite popular and ranked as number 1 in the pre-
eminent paper entitled”Top 10 Algorithms in Data Mining” (Wu
et al., 2008). It is a flow-chart-like structure, represented as sets
of “if” and “then” rules that are readable (interpretable) by
humans. LAD is a ML classification technique based on the theories
of Boolean algebra and combinatorial optimization (Boros et al.,
2000). The fundamental concept of LAD is the extraction of inter-
pretable patterns from the data to discover hidden knowledge
from a set of training observations. The extracted patterns are rep-
resented as sets of “if” and “then” rules that are easy to interpret
(Ragab et al., 2018).

5.4.3. Prescriptive machine learning methods
Prescriptive learning methods aim to recommend actions, control

strategies, and policies for optimizing a target process. This is an advan-
tageous characteristic over the predictive and descriptive methods
reported in the literature. Providing the decision-makers with recom-
mended control strategies through the proposed framework can help
inminimizing the spread of the viral outbreak. This can be done through
predicting and analyzing the current situation through predictive and
descriptive methods and then select from many prescriptions the best
one that mitigates the outbreak of the infection. Several prescriptive
ML techniques can be adopted and used in the framework, such as
deep reinforcement learning (RL) (Mousavi et al., 2018), fuzzy petri
nets (Liu et al., 2017), and evolutionary-based methods (Yu and Gen,
2010).
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6. Discussions: remarks, recommendations, and future research
perspectives

Several approaches for the detection of viral outbreaks have been pre-
sented in this article. However, there are still many aspects that require
further attention to obtain a more accurate viral outbreaks surveillance
approach. This prioritized need of viral outbreaks surveillance tools is at-
tributed to the fact that the world has been in several dangerous situa-
tions over the last two decades, primarily due to the spread of several
infectious diseases that could even last for the coming few years. There-
fore, the different scientific research communities (biologists, computer
scientists, doctors, engineers, statisticians, etc.) should strongly collabo-
rate and identify the existing knowledge gaps in outbreaks surveillance
tools and develop tools and techniques that will rapidly and efficiently
protect the safety of communities and its people. With the ongoing
COVID-19 pandemic, which has left behind many deserted city centers
worldwide, we must ask ourselves an important question concerning
the future vitality of this pandemic. The authors are deeply convinced
that the strength of any city center is that it is alive, with its residents,
workers, students, restaurants, shops, schools, shows, museums, lively
streets, green spaces, and public squares. In this line of progressive re-
search, AI and related digitalization technologies can play a major role
in achieving that goal and making cities more inclusive and sustainable.
In this section, several remarks are discussed on the existing viral detec-
tion tools and recommendations on the exploitation of advanced AI tech-
nologies are provided in order to achieve reliable and robust outbreak
monitoring and control strategies.

Viral air surveillance is a complicated process demanding advanced
technologies and governmental approvals for widespread applications.
The development of these technologies requires proper standardization
techniques, relevant calibration, and efficient reporting methods.
Furthermore, air sampling methodology design must consider the choice
of the sampling location, sample treatment before analysis, boosting the
viral load concentration, physical and biological viability of the virus
after sampling. Nevertheless, efforts have to be exerted to select the air
sampling method compatible with the downstream analytical proce-
dures. Further research is required to design novel biosensors for viral de-
tection in air samples, in addition to the identification in clinical samples.

This study shows that the WBE can have great potential for the de-
tection of viral outbreaks. However, some challenges are still faced
while applying it and need to be further addressed. Firstly, viral source
concentration should be accurately identified from exogenous sources
to avoid overestimating or underestimating the real number of patients.
Secondly, it is challenging to account for temporal fluctuations needed
to estimate the accurate population size. The standardization of
methods should be considered to measure the microbial factors in
wastewater. A standardized approach used by all stakeholders is not
provided yet. Hence, most of the current approaches are resulting
from diligent efforts by researchers. Therefore, it would be fundamen-
tally essential to have standardized methods for future research in
WBE. Besides, existing data analytics techniques need to be further im-
proved to avoid inaccuracies related to a false positive or false negative.
Moreover, the cross-validation of data and interdisciplinary collabora-
tions between different agencies would be vital for better WBE.

The ML and DL have recently contributed to the improvement of
screening, prediction, and forecasting tools for viral outbreaks with
reasonable accuracy and reliability. However, the urgency associated
with outbreaks mandates top-notch performance in terms of pre-
cisely predicting and screening, which has not yet been achieved.
Hence, the continuous upgrading of the current models is mandatory
for better forecasting in the future. An important aspect that needs to
be addressed is the data privacy associated with specific ML that re-
quires private data as an input for viral outbreak detection, especially
for technologies such as contact tracing. The use of ML and DL for de-
tecting outbreaks using environmental parameters such as WBE is
essential. To the authors' current knowledge, no employed ML/DL
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is used for early outbreak detection using WBE. Consequently,
using these AI technologies for viral detection using WBE needs to
be explored because it has a vast potential in improving viral out-
break detection and mapping.

As previously mentioned, several attempts were done to predict
how the viral spread took place. Consequently, the number of cases
was very close to the observed ones, with a deviation of only 2 to 10
cases over the actual reported cases (De Simone and Piangerelli, 2020;
Namasudra et al., 2021). As an additional real-world application of ML
usage, diagnosis of the cases proved its wide range coverage and multi-
ple capabilities (Ahmad et al., 2021; Fan et al., 2020). For example, Liang
et al. (2021) proposed a deep learning framework to analyze COVID-19
cases using medical images to increase testing sensitivity. Fortunately,
the developed CNN model showed high detection accuracy after being
trained by multiple X-ray and computed tomography images. The sta-
tistical indices of the developed CNNwere calculated and had the values
of F1 score > 97% and specificity >99%. In another study, deep CNNwas
developed and utilized to detect COVID-19 using medical images (Gaur
et al., 2021). In this case, the overall model accuracy was around 92%,
with a sensitivity of >94%. These techniqueswere applied in other stud-
ies where their accuracy and statistical indices were relatively high
(Pham, 2020; Shah et al., 2020).

All these reported studies represent strong evidence that these tech-
niques should be applied on a large scale in different areas, especially
the medical sector and environmental monitoring for viral detection.
However, one obstacle for this to happen on a large scale is the lack of
data transfer. Collaborations and official agreements between different
sectors to provide the needed data to the research community will
serve significantly in overcoming this obstacle. Open-source data sets
(Shuja et al., 2020), alongside rigorous analysis based on sophisticated
models, lead to suitable decisions during hard times. Our proposed
framework offers a good way for any viral outbreak, especially COVID-
19, surveillance in wastewater or air based on different data sources
and forms inspired by the aforementioned techniques.

Besides detecting the viral outbreak, there is an indispensable need for
a fast drug discovery process. Drug discovery is an exhausting process due
to the very-high dimensional search space ofmolecules that can reach up
to 1060 small drug-like molecules or peptides. As a result, it may take
years to develop an effective and certified drug for commercial use.

Fortunately,ML can play a key role in accelerating thedrug discovery
process, not only tracking the spread of the contagious virus. Prescrip-
tive ML techniques such as RL can be used for training a search agent.
This search agent can introduce good candidates of protein sequences
according to an evaluation function. As a result, the number of lab ex-
periments and clinical trials needed for a final vaccine can gradually de-
crease.

The buzz around AI and relatedML/DL technologies reflects its enor-
mous disruptive potential based on key tangible benefits over conven-
tional modeling methods. An important question is how to fully and
better exploit the available historical data as essential assets to build ac-
curate and versatile outbreak descriptive/predictive/prescriptive
models that will help to address the above-mentioned challenges. The
aim is to predict and describe howvarious components and phenomena
interact and influence each other to achieve accurate monitoring and
control of different pandemic-like scenarios. The spectacular success
of advanced AI methods in a wide range of data analytics applications
offers them as appropriate/best available candidates. These advanced
AI methods, combined with innovative processing techniques and
human expertise, have shown great success in large-scale industrial ap-
plications where the data have complex and ill-defined distributions
(Elhefnawy et al., 2021; Ragab et al., 2019). Over the past few years, AI
has been exploited in different cases, driven by advanced and relatively
inexpensive online computing infrastructures. Themultitude of diversi-
fied ML and DL has proven to be promising for many data-driven
modeling applications. This is one of the main motivations of the pro-
posed WBE-AI framework.
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The proposed framework aims to deliver timely and highly reliable in-
sight into the viruses' presence for accurately monitoring and controlling
their outbreaks. Confidently, the proposed framework can help to protect
people and communitieswhilemaintaining business and operational con-
tinuity. Facilities and stakeholders such as hospitals, manufacturing/
industrial, and healthcare facilities can benefit from the proposed frame-
work.

Researchers need flexible and generic tools that can be easily
adapted to meet the new needs to gain the true rewards and values
from existing data. To do so, here are some remarks and recommenda-
tions on the proper use and applicability of this framework.

6.1. Hyperparameters optimization and AutoML

In order to get the best performance of the ML or DL models,
hyperparameter optimization is highly recommended. For example, in
case of the existing ML methods, the optimization algorithm, its learning
rate, regularization parameters, etc. are among the hyperparameters that
need to be tuned within a search space. In the case of the DL method(s),
other hyperparameters should be optimized, such as the number of layers
(fully connected or convolutional), the activation function, the number of
filters in each convolutional layer in the case of convolutional neural net-
works, the batch size and the number of epochs for training, etc.

For automating the design of ML models and deep neural networks,
automated machine learning tools such as Auto-Keras (Jin et al., 2019),
H2OautoML (LeDell and Poirier, 2020), Auto-sklearn (Feurer et al.,
2019), Auto-WEKA (Thornton et al., 2013), and Auto-Pytorch (Zimmer
et al., 2021), in addition to neural architecture search (NAS) techniques
(Wistuba et al., 2019) are commonly used instead of the exhausting task
of manual design of such models with numerous hyperparameters.
However, these techniques have some limitations due to their highly
demanding computational power to obtain the best performing model
in a large search space.

6.2. Human-centric and Data-centric AI

In an analogy to the existing practices on continuous software engi-
neering “DevOps” (Bass et al., 2015), the practices for continuous delivery
of ML applications are called “MLOps” (Mäkinen et al., 2021). The ML/DL
technique used for implementing the predictive/descriptive/prescriptive
models is just the first step within the whole cycle of MLOps. There is
an urgent need to highlight the importance of data processing techniques
for successfully deploying any robust AI products in the commercial mar-
ket. Using the same AI technique while working on the data engineering
process is a potential research direction under the “Data-centric AI”
umbrella. One of the reasons behind that is the availability of several so-
phisticated ML/DL techniques in the absence of representative and infor-
mative datasets and the need tomonitor and update the deployedmodels
over time based on their performance and upcoming data.

The proposed computational modeling workflow is done under the
full supervision of a human expert. The involvement of the human ex-
pert within our proposed AI framework is an indispensable need for
the emerging “Human-centric AI”. Despite AI technologies' reliability
and unprecedented performance, these technologies cannot completely
replace human expertise and knowledge. Human expertise is essential
due to the following reasons: (i) assess the quality of data, and (ii) select
and leverage the suitable ML/DL method that fits the need. However,
the combination of “Data-centric AI” & “Human-centric AI” can result
in an augmented intelligence that may facilitate the adoption of AI in
various complex applications such as the one addressed in this article.

6.3. Transfer learning: from COVID-19 to other viruses

To solve the problemof the insufficiently labeled SARS-COV-2 data, a
common and effective method is transfer learning, which realizes the
diagnosis of any target virus by simply transferring the information of
19
other viruses to the target COVID-19 case. Moreover, generative learn-
ing AI techniques can predict and simulate new virtual viral strains
based on the historical viral data. Accordingly, these potential upcoming
strains can be confronted and dealt with based on the previously men-
tioned prescriptive learning techniques that can accelerate the drug dis-
covery process. Furthermore, different simulation andAI techniques can
be used to design new adaptive and accurate viral detectors for rapid
monitoring and control of potential viral outbreaks. The proposed
framework exploits the deep transfer learning methods and combines
the advantages of DL and transfer learning and their excellent feature
extraction capabilities.

Aside from the use of AI techniques to simulate and design new de-
tectors, the scale-up of producing highly detective nano (bio)sensors,
including quantum dots, in the future is a must despite being challeng-
ing due to techno-economic considerations and royalty issues. How-
ever, they possess some appealing features, such as high sensitivity,
which means working with very low concentrations of pathogens,
high accuracy, and fast detection. These advantages make them excel-
lent candidates to replace the traditional detection and diagnosis
methods currently being used to overcome their drawbacks. Hence, fu-
ture research should focus on feasibility studies in real environments,
scale-up and commercial-scale production of nano-sensors.

Finally, the effects of cross talk and viral defense signaling between
the viruses and the host should also be investigated, especially in the
newly mutated viruses such as SARS-CoV-2. Such investigations should
also address the existing knowledge gaps in detection using the cur-
rently applied techniques, identify the effects of transmission in the en-
vironment and their spreading abilities.

7. Conclusions

Viral outbreaks are matters of great concern for human survival.
Therefore, understanding its transmissionmeans and its early detection
is a matter of concern at various levels. WBE has been a growing tech-
nique for viral outbreak detection using different monitoring tech-
niques. Besides that, surveillance of viruses in indoor areas has been
performed; however, this study shows that the extension and its
applicability on higher scales still need further studies. AI and its related
ML and DL technologies are promising for viral outbreak detection, risk
map formation, and decision support. These technologies augment
researchers and decision-makers with multiple perspectives, which
can address the outbreaks monitoring and surveillance challenges.
Synergizing WBE and AI tools/techniques will significantly contribute
to the surveillance of viral outbreaks. In this work, a novel framework
has been proposed that combines an ensemble of ML and DL techniques
that can be used for different “fit-the-purpose” and by using various
types of monitored data sets. This ensemble includes descriptive, pre-
dictive and prescriptive techniques that can help decision-makers to ac-
curately detect and forecast future viral outbreaks in addition to
recommending versatile control strategies for preventing the spread
of the pandemic. Additionally, remarks and recommendations are pro-
vided for the successful implementation/development of the proposed
framework, including hyperparameter optimization of ML and DL tech-
niques, augmentation of human-centric & data-centric AI, and the ex-
ploitation of transfer learning for the detection of current viral
outbreaks using the past experiences in this field.
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