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As we comprehend narratives, our attentional engagement fluctuates
over time. Despite theoretical conceptions of narrative engagement
as emotion-laden attention, little empirical work has characterized
the cognitive and neural processes that comprise subjective engage-
ment in naturalistic contexts or its consequences for memory. Here,
we relate fluctuations in narrative engagement to patterns of brain
coactivation and test whether neural signatures of engagement pre-
dict subsequent memory. In behavioral studies, participants contin-
uously rated how engaged they were as they watched a television
episode or listened to a story. Self-reported engagement was syn-
chronized across individuals and driven by the emotional content
of the narratives. In functional MRI datasets collected as different
individuals watched the same show or listened to the same story,
engagement drove neural synchrony, such that default mode net-
work activity wasmore synchronized across individuals duringmore
engaging moments of the narratives. Furthermore, models based
on time-varying functional brain connectivity predicted evolving
states of engagement across participants and independent data-
sets. The functional connections that predicted engagement over-
lapped with a validated neuromarker of sustained attention and
predicted recall of narrative events. Together, our findings charac-
terize the neural signatures of attentional engagement in naturalistic
contexts and elucidate relationships among narrative engagement,
sustained attention, and event memory.
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We engage with the world and construct memories by attend-
ing to information in our external environment (1). However,

the degree to which we pay attention waxes and wanes over time
(2, 3). Such fluctuations of attention not only influence our on-
going perceptual experience but can also have consequences for
what we later remember (4).
Changes in attentional states are typically studied with continuous

performance tasks (CPTs), which require participants to respond
to rare targets in a constant stream of stimuli or respond to every
presented stimulus except the rare target (5–7). Paying attention
to taxing CPTs, however, often feels different from paying attention
in other everyday situations. For example, when we listen to the
radio, watch a television show, or have a conversation with family
and friends, sustaining focus can feel comparatively effortless.
Psychology research has characterized feelings of effortless attention
in other contexts, such as flow states of complete absorption in an
activity (8). When comprehending narratives, our attention may
be naturally captured by the story, causing us to become engaged
in the experience. Narrative engagement has been defined as an
experience of being deeply immersed in a story with heightened
emotional arousal and attentional focus (9, 10). Building on this
theoretical definition, we characterize how subjective engagement
fluctuates as narratives unfold and test the hypothesis that
engagement scales with a story’s emotional content as well as an
individual’s sustained attentional state.
Functional neuroimaging studies have used naturalistic, narrative

stimuli to examine how we perceive (11, 12) and remember (13)
structured events based on memory of contexts (14–16), prior

knowledge or beliefs (17, 18), and emotional and social reasoning
(19–21). However, strikingly few neuroimaging studies have directly
probed attention during naturalistic paradigms. Among these, Regev
et al. (22) examined how selectively attending to narrative inputs
from a particular sensory modality (e.g., auditory) while suppressing
the other modality (e.g., visual) enhances stimulus-locked brain
responses to the attended inputs. With nonnarrative movies, Çukur
et al. (23) found that semantic representations were warped toward
attended object categories during visual search. However, both of
these studies relied on experimental manipulations of attention to
elucidate its relationship to brain activity. Work has also repor-
ted that intersubject synchrony of functional MRI (fMRI) and
electroencephalography (EEG) activity, a measure of neural
reliability, relates to heightened attention to stimuli (24–28)
and subsequent memory (29, 30). However, the neural signa-
tures of dynamically changing attentional states in naturalistic
contexts and their consequences for event memory remain
poorly understood.
Previous work suggests that goal-directed focus and attentional

control rely on activity in frontoparietal cortical regions compris-
ing a large-scale attention network (31, 32). Regions of the default
mode network (DMN) are thought to activate antagonistically to
the attention network (33), showing increased activity during off-
task thought and mind wandering while deactivating during external
attention (34, 35). Interestingly, however, other work provides
seemingly counterintuitive evidence that DMN activity character-
izes moments of stable and optimal attentional task performance
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(7, 36–38) and is centrally involved in narrative comprehension
and memory (11–13, 39, 40). Given conceptualizations of fronto-
parietal regions as task positive and DMN regions as task negative
in certain contexts—but DMN as task positive in others—what
roles do these networks play when our attention waxes and wanes
during real-world narratives?
Beyond the canonical DMN and frontoparietal networks, studies

have shown that synchrony between a widely distributed set of brain
regions reflects changes in attentional states within and across in-
dividuals (41, 42). Recent literature showed that functional con-
nectivity (FC), a statistical measure of neural synchrony between
pairwise brain regions, predicts attentional state changes during task
performance (43, 44). Since these studies characterized attentional
states in controlled task conditions, we further ask whether naturalistic
attentional engagement is reflected in functional brain connectivity.
The current study characterizes attentional states in real-world

settings by tracking subjective engagement during movie watching
and story listening. In doing so, we address three primary aims:
testing the theoretical conception of engagement as emotion-laden
attention, examining how engagement is reflected in large-scale
brain dynamics, and elucidating the consequences of engagement
during encoding for subsequent memory. We first measured self-
reported engagement as behavioral participants watched an epi-
sode of television series Sherlock or listened to an audio-narrated
story, Paranoia. Providing empirical support for its theoretical
definition, changes in engagement were driven by the emotional
contents of narratives and related to fluctuations of a validated FC
index of sustained attention during psychological tasks (43). We
next related group-average engagement time courses to fMRI
activity observed as a separate pool of participants watched Sher-
lock (13) or listened to Paranoia (18). Dynamic intersubject cor-
relation analysis (ISC) (45) revealed that activity in large-scale
functional networks, especially the DMN, was more synchronized
across individuals during more engaging periods of the narratives.
Furthermore, using time-resolved predictive modeling (46), we
found that patterns of time-resolved FC predicted engagement
dynamics and that these same patterns predicted later event recall.
Thus, we provide evidence for engagement as emotion-laden sus-
tained attention, elucidate the role of brain network dynamics in
engagement, and demonstrate relationships between engagement
and episodic memory.

Results
Tracking Dynamic States of Engagement during Movie Watching and
Story Listening.We asked how subjective engagement changes over
time as individuals comprehend a story and whether changes are
synchronized across participants. We measured engagement during
two narrative stimuli that were used in previous fMRI research: 1) a
20-min audio-narrated story, Paranoia (fMRI dataset n = 22) (18),
which was intentionally created to induce suspicion surrounding the
characters and situations and 2) a 50-min episode of BBC’s televi-
sion series Sherlock (fMRI dataset n = 17) (13), in which Sherlock
and Dr. Watson meet and solve a mysterious crime together.
We chose these stimuli because they were both long narratives
with complex plots and relationships among characters, and they
involved different sensory modalities (one audio only and one
audiovisual), which enabled us to investigate high-level cognitive
states of engagement that are not specific to sensory modality (47).
In behavioral studies, participants listened to Paranoia (n = 21)

or watched Sherlock (n = 17) and were instructed to continuously
rate how engaging they found the story by adjusting a scale bar
from 1 (“Not engaging at all”) to 9 (“Completely engaging”) using
button presses (Fig. 1A) (48). The definition of engagement [Ta-
ble 1; adapted from Busselle and Bilandzic (9)] was explained to
participants prior to the task. The scale bar was always visible on the
computer monitor so that participants could make continuous ad-
justments as they experienced changes in subjective engagement.

We first tested whether changes in engagement were similar
across participants comprehending the same narratives. Providing
initial validation for our self-report task as a measure of stimulus-
related narrative engagement, we found significant positive cor-
relations between pairwise engagement time courses (Paranoia
mean Pearson’s r = 0.358 ± 0.215; Sherlock r = 0.230 ± 0.182;
Fig. 1B). Mean r values were computed by averaging Fisher’s z–
transformed Pearson’s correlation coefficients and transforming
the mean Fisher’s z value back to r. Correlations were significantly
positive in 95.24% of Paranoia participant pairs and 86.03% of
Sherlock participant pairs (false discovery rate-corrected P [FDR-
P] < 0.05, corrected for number of participant pairs). We av-
eraged all participants’ response time courses (Fig. 1C) and
observed positive linear trends in engagement for both Paranoia
[t(1,308) = 40.62, r2= 0.56, P < 0.001] and Sherlock [t(1,974) =
26.36, r2= 0.26, P < 0.001], suggesting a gradual increase in
engagement as the narrative developed to an end (for detailed
behavioral results, see SI Appendix, Supplementary Text S1).
Since engagement ratings were similar across participants, we

treated the group-average engagement rating (Fig. 1C) as a proxy
for stimulus-related engagement, common across individuals. We
qualitatively assessed moments when participants were, on average,
most or least engaged in the narratives (Fig. 1C). In Paranoia,
engagement peaked at moments when a character exhibited
suspicious behavior, or when there was an unexpected twist in the
story. On the other hand, engagement was generally low when a
story setting was being developed or when a protagonist was having
an internal thought. In Sherlock, engagement peaked at moments
when Sherlock was solving a mysterious crime and when events
were highly suspenseful. Participants’ general engagement de-
creased during comparatively casual events, less relevant to the
crime scenes. The group-averaged engagement time courses were
convolved with the hemodynamic response function (HRF) to be
applied to a separate pool of individuals who participated in
previous fMRI studies.

Engagement Scales with Emotional Arousal of the Narratives. Given
that participants’ engagement dynamics were time locked to the
stimuli, we asked which features of narratives drove changes in
engagement. We conducted partial correlations between group-
average engagement and four features of the narratives: positive
and negative emotional content and auditory and visual sensory
information measured at every moment of time (48). We used
different ways of extracting the emotional content of the Para-
noia and Sherlock narratives to utilize open resources distributed
by the two research groups and assess the robustness of results to
a specific extraction approach. For Paranoia, emotional arousal
was inferred from the occurrence of positive and negative emotion
words in the story transcript using Linguistic Inquiry and Word
Count text analysis (49) [provided by Finn et al. (18)]. Words
indicating positive emotion included accept, adventure, amaz-
ingly, and appreciated, and words indicating negative emotion
included afraid, alarmed, anxious, and apprehensively (for a full
list of emotional words, see SI Appendix, Table S1). The fre-
quencies of positive and negative emotion words were counted per
sentence, then expanded to match the moments when the sen-
tence was uttered during scans (SI Appendix, Fig. S1A). Thus, high
frequencies indicated high positive or negative emotional arousal.
For Sherlock, we used four independent raters’ emotional ratings
[provided by Chen et al. (13)] at each scene of Sherlock, containing
both valence (positive and negative) and arousal (scale of 1 to 5).
Interrater reliability was high, with average of the pairwise raters’
Pearson’s r = 0.564 ± 0.084, thus we used an averaged rating as a
proxy for evolving emotional arousal, again separately for
positive and negative emotional content. To quantify auditory
salience of the stimulus, we extracted audio envelopes from the
sound clips of both Paranoia and Sherlock using Hilbert transform
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(50). For Sherlock, the visual salience was represented by global
luminance, calculated by averaging pixel-wise luminance values per
frame of the video (51).
The occurrence of negative (partial r = 0.133, FDR-P = 0.061)

but not positive (partial r = −0.019, FDR-P = 0.862) emotion
words in Paranoia was marginally correlated with changes in
engagement when controlling for the rest of the variables (SI
Appendix, Fig. S1B). In Sherlock, both positive (partial r = 0.530,
FDR-P = 0.002) and negative (partial r = 0.539, FDR-P = 0.002)
emotional arousals were correlated with engagement. We ob-
served no significant relationship between auditory envelopes and
engagement, both for Paranoia (partial r = −0.018, FDR-P =
0.663) and Sherlock (partial r = −0.103, FDR-P = 0.363). Simi-
larly, there was no significant correlation between visual lumi-
nance and engagement for Sherlock (partial r = −0.230, FDR-P =
0.124). For significance tests, observed partial correlation values
were compared with null distributions of partial correlations be-
tween each factor and 10,000 permuted, phase-randomized en-
gagement ratings [two-tailed test: P = (1 + number of null |r|
values ≥ empirical |r|) / (1 + number of permutations)]. We cre-
ated such null distribution because phase randomization retains
the same characteristics of temporal dynamics (i.e., frequency and
amplitude) but in different phases. Multiple comparisons correc-
tion was applied to each dataset separately using FDR correction
for number of features tested (i.e., three for Paranoia [positive
emotion, negative emotion, auditory envelope] and four for Sherlock
[with the addition of luminance]). The results suggest that en-
gagement scales with emotional narrative content but not with the
sensory-level salience of the stimuli themselves.

Neural Synchrony of the DMN Increases during Engaging Moments of
the Narratives. We analyzed open-sourced fMRI data from two
separate studies (13, 18). The datasets were collected from dif-
ferent participant samples, experimental sites, and research con-
texts, with different image-acquisition protocols. To assess the
reproducibility and generalizability of our results, we applied dif-
ferent analysis pipelines to the two datasets throughout the study.
This allowed us to conceptually replicate findings across samples
and confirm that results are robust to particular analytic choices.
We preprocessed the Paranoia fMRI data as described in the
Materials and Methods, whereas we used the fully preprocessed
images of Sherlock dataset, provided by Chen et al. (13).
We asked whether stimulus-driven patterns of neural activity

scaled with changes in engagement. ISC is a method of isolating
shared, stimulus-driven brain activity, assuming that if partici-
pants perceive the same stimulus at the same time, their shared
variance in fMRI signal is related to stimulus processing (28, 45,
52, 53). Recent studies showed that ISC provides an alternative
to identifying brain regions that are entrained to a stimulus with
reduced intrinsic noise (52) compared to a conventional general
linear model (GLM) that relies on fixed experimental manipu-
lations with a priori hypotheses (45) (reference SI Appendix, Fig.
S2 for GLM results using group-average engagement as a re-
gressor). We hypothesized that ISC would increase as participants,
on average, become more engaged in the story. We used HRF-
convolved group-average engagement ratings from the behavioral
studies as our index of narrative engagement because participant-
specific measures of engagement were not available in the existing
fMRI datasets.
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Fig. 1. Behavioral experiment results. Ratings of subjective engagement collected as participants listened to the Paranoia story (Left) or watched the
Sherlock episode (Right). (A) Every participant’s engagement ratings across time. Ratings were z-normalized across time for each participant. (B) Histograms of
pairwise participants’ response similarities. Engagement rating similarity was calculated by the Pearson’s correlation between pairs of participants’ en-
gagement ratings across time. (C) Average engagement ratings, which are used as proxies for group-level states of engagement. The gray area indicates 95%
confidence interval (CI). Event descriptions are given at moments of peak engagement.

Table 1. Definition of engagement instructed to the participants during the behavioral experiments

I find the story engaging when... I find the story not engaging when...

I am curious and excited to know what’s coming up next. I am bored.
I am immersed in the story. Other things pop into my mind, like my daily concerns or personal events.
My attention is focused on the story. My attention is wandering away from the story.
The events are interesting. I can feel myself dozing off.

The events are not interesting.

Adapted from Busselle and Bilandzic (9).
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To test the hypothesis that ISC varies with engagement, we
calculated dynamic ISC using a tapered sliding window approach,
where the Fisher’s z–transformed Pearson’s correlation between
pairwise participants’ blood oxygen level dependent (BOLD) re-
sponses was computed within the temporal window, repeatedly
across the entire scan duration (54). We implemented a window
size of 40 repetition time [TR] (= 40 s) for Paranoia and 30 TR
(= 45 s) for Sherlock data, following the optimal window size
suggested by previous literature (55–57), with a step size of 1 TR and
a Gaussian kernel σ = 3 TR (reference SI Appendix, Supplementary
Text S2 for replications with different sliding window sizes). The
BOLD time course was extracted from each region-of-interest
(ROI) in Yeo et al.’s (58, 59) cortical and Brainnetome atlas’s (60)
subcortical parcellations (122 ROIs total) (Materials and Methods).
Dynamic ISC was calculated for all pairs of participants and was
averaged per ROI per window. The Pearson’s r between the
dynamic ISC time course and group-average engagement (smoothed
with the same sliding window approach) was calculated for each
ROI (Fig. 2A).
Fig. 2B shows the regions in which dynamic ISC significantly

correlated with engagement ratings (two-tailed test nonparametric
P < 0.05, uncorrected for multiple comparisons). Dynamic ISC in
19 of the 122 Yeo atlas ROIs was significantly correlated with
engagement for Paranoia, and dynamic ISC in 21 ROIs was sig-
nificantly correlated with engagement for Sherlock (SI Appendix,
Table S2). In 18/19 and 18/21 of these regions, respectively, dy-
namic ISC was positively correlated with engagement, suggesting
that the cross-participant neural synchrony increased as narrative
engagement increased. Three regions—left posterior cingulate
cortex [+6.1, +51.0, +31.5] (r = 0.654, r = 0.309 for Paranoia and

Sherlock, respectively), right angular gyrus [−50.9, +56.7, +29.7]
(r = 0.454, r = 0.323), and right superior medial gyrus [−9.8, −49.2,
+41.9] (r = 0.449, r = 0.228)—showed higher synchrony with in-
creasing narrative engagement in both samples. The overlapping
regions all corresponded to the DMN. Though the probability of
regional overlap between the two samples was not significant
(one-tailed P = 0.681, nonparametric permutation tests with
randomly selected regions, iteration = 10,000), the probability of
all overlapping regions corresponding to the DMN was significant
above chance (P = 0.029). The results replicated when we used a
different parcellation scheme, the Shen et al. (61) atlas (SI Ap-
pendix, Fig. S3). These results suggest that BOLD responses are
more entrained to the stimulus when subjective levels of engage-
ment increase, especially the regions of the DMN.

Multivariate Patterns of Activation Magnitude Do Not Predict Changes
in Engagement. Recent work suggests that diverse cognitive and
attentional states can be predicted from multivariate patterns of
fMRI activity (62–64). Thus, we asked whether evolving states of
engagement can be predicted from dynamic patterns of brain
activity. To this end, we applied dynamic predictive modeling (39,
46) to BOLD time courses of ROIs to predict group-average
engagement at every moment of time.
Prediction was conducted using a leave-one-subject-out (LOO)

cross-validation within each dataset. Nonlinear support vector
regression (SVR) models were trained using fMRI data from
all but one participant and applied to the held-out participant’s
pattern of BOLD activity at every TR to predict the group-average
engagement observed at the corresponding TR (Fig. 3A). Prediction
accuracy was calculated by averaging the Fisher’s z–transformed
Pearson’s correlations between the predicted and observed engage-
ment dynamics across cross-validation folds. We used correlation
as an indicator of predictive performance because we were in-
terested in whether the model captures temporal dynamics, rather
than the actual values of group-average engagement ratings. Nev-
ertheless, we report both the mean squared error (MSE) and R2

along with the correlation values. For significance tests, observed
prediction accuracy was compared with results from 1,000 permu-
tations where null models were trained and tested with actual brain
patterns to predict the phase-randomized engagement ratings.
We assumed a one-tailed significance test, with P = (1 + number
of null r values ≥ empirical r) / (1 + number of permutations) for
Pearson’s correlation and R2, but applied an opposite end of tail
for MSE (i.e., the smaller the MSE, the better the prediction).
We examined whether magnitude of BOLD activity in regions

selected in the above ISC analysis (i.e., the colored regions in
Fig. 2B) predict changing levels of engagement. Models trained
on BOLD signal magnitude in these regions did not show robust
prediction of group-average engagement ratings (Paranoia: r =
0.042, P = 0.395, MSE = 1.051, P = 0.006, R2= −0.051, P = 0.006;
Sherlock: r = 0.111, P = 0.066, MSE = 1.620, P = 0.995, R2=
−0.620, P = 0.995). Even when we used magnitude of BOLD
time courses of all 122 Yeo atlas ROIs as features, models did
not show robust prediction of engagement (Paranoia: r = 0.114,
P = 0.277, MSE = 1.012, P = 0.096, R2= −0.012, P = 0.096;
Sherlock: r = 0.232, P = 0.004, MSE = 1.205, P = 0.968, R2= −0.205,
P = 0.969). To increase the specificity of the neural features, we
conducted additional feature selection in every cross-validation fold
so that only the ROIs of which BOLD time courses are consistently
correlated with group-average engagement were included as fea-
tures to the model (one-sample Student’s t test, P < 0.01) (65). Still,
BOLD activation did not consistently predict engagement (Para-
noia: r = −0.021, P = 0.901, MSE = 1.120, P = 0.218, R2= −0.120,
P = 0.218; Sherlock: r = 0.227, P = 0.003, MSE = 1.239, P = 0.572,
R2= −0.239, P = 0.572). Thus, patterns of BOLD signal magnitude
across ROIs are not sufficient for predicting group-average nar-
rative engagement in these samples.
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Functional Connectivity Predicts Changes in Engagement, Even across
Different Stories. Although multivariate patterns of BOLD activity
across regions failed to predict changes in engagement, evidence
suggests that changes in the statistical interactions of activity in
pairs of brain regions—functional connectivity (FC) dynamics—
predict cognitive and attentional state changes during task per-
formance (39, 44, 46). Thus, we examined whether whole-brain
FC patterns predict evolving states of engagement.
Time-resolved FC was extracted by computing Fisher’s z–

transformed Pearson’s correlations between the time courses of
every pair of ROIs using a tapered sliding window (54). Predictive
models were first trained and tested within dataset using LOO
cross-validation. SVRs were trained to predict group-average en-
gagement from all but one participants’ multivariate FC patterns
and then applied to dynamic FC patterns from the held-out indi-
vidual to predict moment-to-moment engagement (Fig. 3A). Feature
selection was conducted in every round of cross-validation; functional
connections (FCs) significantly correlated with engagement in the
training set were selected as features (one-sample Student’s t test,
P < 0.01) (65). Models predicted group-average engagement rat-
ings above chance for both the Paranoia (r = 0.380, P = 0.007;
MSE = 0.862, P = 0.005; R2= 0.138, P = 0.005) and Sherlock (r =
0.582, P = 0.008; MSE = 0.671, P = 0.009; R2= 0.329, P = 0.009)
datasets (Fig. 4A). Of note, the null distributions are positively
skewed (Fig. 4A), potentially because SVRs were trained and
tested on the same behavioral outcome (that is, to generate the
null distributions, an SVR model was trained to predict a phase-
randomized engagement time course and tested using that same
phase-randomized time course on each iteration; null model
performance could have been inflated if a stimulus feature that
influenced FC were correlated with the randomized engagement
time course). Nonetheless, prediction accuracy was significantly
above these skewed chance distributions. Prediction performance

was significantly higher than chance when we used a different type
of null distribution generated by randomly selecting the same
number of FCs from among those not selected in the actual fea-
ture selection (Paranoia, P < 0.001, P < 0.001, P < 0.001; Sherlock:
P < 0.001, P < 0.001, P < 0.001, respectively for Pearson’s r, MSE,
and R2; iteration = 1,000).
Within-dataset prediction demonstrates that models based on

FC dynamics predict stimulus-related engagement within two
narratives. To confirm that models are capturing engagement
and not other stimulus-specific regularities, we conducted across-
dataset prediction (Fig. 3B). SVRs learned the mappings between
multivariate patterns of FCs and moment-to-moment engagement
using data from all participants in one dataset (e.g., Paranoia). The
FCs selected in every round of cross-validation during the within-
dataset prediction were used as features (Fig. 4B). Next, the model
trained in one dataset was applied to predict engagement in the
held-out dataset (e.g., Sherlock). Across-dataset prediction was
successful both when predicting engagement of Paranoia from a
model trained with Sherlock (r = 0.114, P = 0.015; MSE = 1.062,
P = 0.015; R2= −0.063, P = 0.015; reference SI Appendix, Fig. S4
for interpretation of negative R2) and when predicting engage-
ment of Sherlock from a model trained with Paranoia (r = 0.188,
P < 0.001; MSE = 1.022, P < 0.001; R2= −0.023, P < 0.001). As
expected, the null distribution was not shifted in the across-dataset
prediction, suggesting that the model did not learn a spurious
relationship between FC and story-specific properties other than
subjective engagement (Fig. 4A). Results replicated with additional
sliding window sizes (SI Appendix, Fig. S5). However, for across-
dataset prediction, the prediction performance of the engagement
networks was not significantly better than that of size-matched
random networks selected from FCs outside the engagement
networks (Paranoia: P = 0.492, P = 0.458, P = 0.458; Sherlock: P =
0.031, P = 0.203, P = 0.203, respectively for Pearson’s r, MSE, and
R2), which implies that narrative engagement may be reflected in
widely distributed patterns of time-varying FC, rather than being
specifically predicted by these particular sets of connections.
To characterize the anatomy of the predictive networks, we

visualized the FCs consistently selected in every round of within-
dataset cross-validation for the Paranoia and Sherlock datasets
(Fig. 4B). We call these sets of FCs the engagement networks.
For Paranoia, a set of 205 FCs was consistently selected, with 125
FCs positively and 80 FCs negatively correlated with engage-
ment. For Sherlock, 685 FCs were selected, with 583 FCs posi-
tively and 102 FCs negatively correlated with engagement. We
next asked whether there is significant overlap between the
Paranoia and Sherlock engagement networks. Thirty-one FCs were
included in the engagement networks in both datasets, with a
significant degree of overlap (using the hypergeometric cumula-
tive distribution function, P = 0.002). Twenty-six FCs were posi-
tively correlated (significance of overlap, P < 0.001), and 5 FCs
were negatively correlated (P < 0.001) with engagement in both
datasets (visualized in Fig. 4 C and D).
To examine whether particular functional networks were rep-

resented in the engagement networks more frequently than would
be expected by chance, we calculated the proportion of selected
FCs relative to the total number of possible connections between
each pair of functional networks (one-tailed test nonparametric
FDR-P < 0.01; Fig. 4 B and C). In both datasets, connections
between the DMN and frontoparietal control network (FPN) and
connections within the DMN were positively correlated with
group-average engagement, whereas connections within the FPN
were negatively correlated with engagement. The results suggest
that the FCs within and between regions of the DMN and FPN
contain representations of higher-order cognitive states of en-
gagement that are not specific to sensory modality (audiovisual
versus auditory) or narrative contents (different stories).
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Fig. 3. Schematic of dynamic predictive modeling. (A) Within-dataset pre-
diction. Internal model validation is conducted using LOO cross-validation.
Multivariate patterns of brain activity (e.g., patterns of pairwise regional FC) at
time t are aligned with a group-level behavioral score (e.g., group-average
engagement) at time t, across all participants but one. The SVR model is
trained using data from all time points and training participants, and is then
applied to the held-out participant’s time-varying FC patterns to predict en-
gagement at every time step. Prediction accuracy is measured as the average
of the cross-validation folds’ Fisher’s z–transformed Pearson’s correlation be-
tween predicted and observed engagement time courses. (B) Across-dataset
prediction. To externally validate predictive models, an SVR model is trained
using all participants’ time-varying FC and the group-average engagement
ratings from a single dataset (e.g., Paranoia). The model is tested on fMRI data
from every participant in an independent dataset (e.g., Sherlock). Significance
was tested by training null models to predict phase-randomized behavioral
time courses. The observed correlation between the predicted and observed
engagement was compared with the distribution of null model correlations
(one-tailed tests).
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Visual Sustained Attention Network Predicts Engagement during Visual
Narratives. Previous work theorized that narrative engagement
involves attentional focus to story events (9, 10, 67, 68). To test
this empirically, we asked whether a sustained attention network, a
set of FCs that predicts trait-like differences in sustained attention
abilities (43) and state-like changes in attentional task per-
formance during a gradual-onset continuous performance task
(gradCPT) (44), also predicts dynamic changes in naturalistic
narrative engagement. We hypothesized that FCs that predict the
ability to stay focused during a controlled experimental task may
also reflect the degree to which individuals are engaged in nar-
ratives at each moment of time. To do so, we first redefined the
sustained attention network using data from Rosenberg et al. (43)
in Yeo atlas space in order to apply it to the Paranoia and Sherlock
datasets (Fig. 5A; Materials and Methods). Results revealed that
connections between the visual network (VIS) and the somato-
sensory-motor (SM), dorsal attention (DAN), and ventral atten-
tion networks (VAN), and connections between the DAN and
subcortical network (SUBC) were positively correlated with indi-
viduals’ gradCPT performance, potentially reflecting the fact that
the task requires participants to exert goal-directed attention to
visually presented stimuli. On the other hand, connections be-
tween the DMN and SM, DAN, and VAN, and connections be-
tween the FPN and SUBC were negatively correlated with
gradCPT performance, aligning with conceptions of the DMN as
task-negative network in certain contexts (34, 35).
To test whether sustained attention network dynamics were

time locked to the narratives, we examined whether network
strength was synchronized across individuals when comprehending

the same story. Fig. 5B depicts the time-resolved network strength
of all participants. The strength of sustained attention network was
computed as the difference between the mean FC of the positively
correlated FCs, minus the mean FC of the negatively correlated
FCs. For Paranoia, pairwise subject similarity in network strength
was, on average, r = 0.002 ± 0.168, with only 39.39% of pairwise
participants showing positive correlations (FDR-P < 0.05; Fig. 5C).
For Sherlock, however, participants exhibited significant degrees of
synchrony in sustained attention network strength, with a mean r =
0.191 ± 0.117 and 89.71% of pairwise participants showing positive
correlations (FDR-P < 0.05; Fig. 5C). We examined whether the
dynamics of sustained attention network strength are correlated
with group-average engagement. We did not observe evidence of
correlations between sustained attention network dynamics and
engagement (mean of the correlations between each participant’s
sustained attention network strength time course and the group-
average engagement time course: Paranoia: r = 0.033 ± 0.225;
Sherlock: r = 0.047 ± 0.140), suggesting that the sustained attention
network does not explicitly represent fluctuating states of narrative
engagement in its overall strength alone.
We next asked if multivariate patterns of time-resolved FCs in

the sustained attention network predict group-average engage-
ment (Fig. 5D). When trained with LOO cross-validation, SVRs
based on FC patterns of the sustained attention network pre-
dicted changes in engagement in the Sherlock dataset (r = 0.458,
P = 0.008, MSE = 0.794, P = 0.009, R2= 0.206, P = 0.009), in
which the narrative was delivered in the auditory and visual
modalities but not in the Paranoia dataset (r = 0.192, P = 0.166,
MSE = 0.998, P = 0.206, R2= 0.002, P = 0.206), which was
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delivered only in the auditory modality. Prediction performance
was robust for Sherlock when compared to the size-matched ran-
dom networks selected from FCs outside the engagement network
and sustained attention network (P = 0.013, P = 0.013, P = 0.013,
respectively for Pearson’s r, MSE, and R2). The results provide
empirical evidence that the sustained attention network—which
was defined in a completely independent study using a controlled
experimental paradigm with visual stimuli—predicts stimulus-related
engagement during an audiovisual narrative (Sherlock) but not an
audio-only narrative (Paranoia).
Finally, we characterized the anatomical overlap between the

Sherlock engagement network (Fig. 4 B, Right) and the sustained
attention network (Fig. 5A). There was a significant overlap of
the FCs positively correlated with both sustained attention and
Sherlock engagement (20 overlapping FCs; calculated using the
hypergeometric cumulative distribution function, P = 0.002;
Fig. 5E). Connections between the VIS and the DAN and VAN
and connections between the DMN and FPN were included in
both networks above chance (one-tailed test nonparametric FDR
P < 0.01). On the other hand, there was no significant overlap of
the negatively correlated FC (one overlapping FC; P = 0.769). The
results were robust when we calculated anatomical overlap using a
range of feature-selection thresholds (SI Appendix, Table S3). The
partial overlap between the networks predicting sustained atten-
tion and engagement suggests that shared but also distinctive
processes are involved in maintaining focus on a visual sustained
attention task and a visual narrative. However, since these results
are based on only a single narrative representing each sensory
modality, the modality specificity of the overlap between the

sustained attention network and engagement network should be
tested in future work.

Engagement Network during Memory Encoding Predicts Later Recall
of the Events.During both a television episode and an audio-narrated
story, people’s engagement fluctuated over time with patterns of
functional brain connectivity. What consequences do these changes
in narrative engagement have for how we remember stories? To
address this question, we asked whether attentional engagement
facilitates encoding of events into long-term memory. To measure
how well each moment of the narratives was remembered, we
analyzed fMRI participants’ free recall data provided by Finn et al.
(18) and Chen et al. (13). Again, to test for the robustness of
results with different analysis pipelines, we used two different
approaches to quantify recall. For Paranoia, each phrase of par-
ticipants’ recall was manually matched to the semantically closest
sentence in the original story transcript (Fig. 6A). Every word in
the story and recall transcripts was then represented as a vector in
a distributional word embedding space, GloVe (69), and was
combined to create a sentence embedding vector (70). The degree
of semantic similarity between the audio transcript and matched
recall was computed using the cosine similarities between the sen-
tence embedding vectors. For Sherlock, we used a data-driven topic
modeling approach (71), similar to that implemented by Heusser
et al. (72), to segment the stories into multiple events and quantified
the similarities between recalled events with the video annotations
(Fig. 6B). Fig. 6C illustrates example “recall fidelity” time courses.
To examine whether people tend to remember and forget

similar events, we calculated the similarity of recall fidelity time
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courses of all pairwise fMRI participants (Fig. 6D). Almost every
pair of participants exhibited similar trends of recall, for both
Paranoia (mean r = 0.315 ± 0.092, with 100% of pairwise par-
ticipants showing positive correlations, FDR-P < 0.05) and
Sherlock (mean r = 0.335 ± 0.255, with 86.77% showing positive
correlations, FDR-P < 0.05). The results imply that particular
events in a story tend to be more likely to be recalled than other
events (72), replicating previous empirical findings of Meyer and
McConkie (73), and revisiting theoretical explanations that the
subjective importance of events within situational contexts influences
memory for those events (74).
We asked whether fMRI participants’ individual-specific recall

fidelity time courses were significantly related with behavioral
participants’ group-average engagement ratings. Correlations be-
tween individual-specific recall time courses and engagement were
averaged and then compared with the null distribution where

engagement ratings were phase randomized (two-tailed tests, it-
eration = 10,000). We observed different results for the two
datasets: significant correlations between engagement and recall
in Sherlock (mean r = 0.197 ± 0.145, P = 0.024) but not Paranoia
(r = 0.014 ± 0.103, P = 0.833).
The disparate results may be due to story-specific components,

differences in the behavioral analysis pipelines, or a possibility
that group-averaged behavioral engagement ratings do not fully
capture attention fluctuations that are consequential for memory.
Therefore, we applied a connectome-based dynamic predictive
modeling approach, asking whether each narrative’s engagement
network (Fig. 4B) predicted the same narrative’s individual-specific
story recall (Fig. 6C). We trained SVR models with LOO cross-
validations to predict recall fidelity from patterns of FCs in the
engagement network and tested whether models predicted held-
out participant’s recall given their engagement network (replacing
group-average engagement with individual-specific recall time
courses in Fig. 3). Models predicted the fidelity with which each
moment of the story would be later recalled (Fig. 6E) in both the
Paranoia (r = 0.123, P < 0.001; MSE = 1.041, P < 0.001; R2= −0.042,
P < 0.001) and Sherlock datasets (r = 0.104, P = 0.008; MSE = 1.058,
P = 0.018; R2= −0.058, P = 0.018). However, the engagement net-
work did not show specificity in predicting subsequent recall, given
that the accuracy of recall fidelity predictions from engagement
network FCs did not significantly differ from the accuracy of
predictions made by the size-matched random networks selected
from FCs outside the engagement networks (Paranoia: P = 0.092,
P = 0.155, P = 0.166; Sherlock: P = 0.823, P = 0.851, P = 0.851,
respectively for Pearson’s r, MSE, and R2). Models did not gen-
eralize to predict recall across datasets (Paranoia predicted from a
model trained with Sherlock: r = −0.059, P = 0.959; MSE = 1.175,
P = 0.998; R2= −0.176, P = 0.998; Sherlock predicted from a
model trained with Paranoia: r = −0.035, P = 0.869; MSE = 1.126,
P = 0.718; R2= −0.127, P = 0.717), suggesting that the engagement
network model specific to each narrative predicts subsequent re-
call. Thus, although time-varying FC in networks related to en-
gagement predicted subsequent recall within dataset, the lack of
cross-story generalization leaves open the possibility that models
are capturing stimulus-specific effects in addition to signal related
to memory encoding of narrative events.

Discussion
The degree to which we are engaged in narratives in the real world
fluctuates over time. Sometimes we may find ourselves immersed in
a particularly engrossing story, whereas at other moments we may
become bored with a plot line or struggle to follow a conversation
thread. What drives these changes in narrative engagement, and
how does engagement affect what we later remember about a story?
Here, using data from independent behavioral and fMRI studies,

we test theoretical proposals that narrative engagement reflects
states of heightened attentional focus and emotional arousal.
Specifically, we analyzed two open-source fMRI datasets collected
as participants watched an episode of Sherlock or listened to an
audio-narrated story, Paranoia. We ran behavioral experiments in
which independent participants continuously rated how engaging
they found the narratives. Self-reported engagement fluctuated
across time and was synchronous across individuals, demonstrating
that this paradigm captures states of engagement that are shared
across individuals (Fig. 1). Group-average changes in engagement
were correlated with the narratives’ emotional contents but not
their low-level sensory salience. Furthermore, dynamic ISC revealed
that activity in DMN is more synchronized across individuals during
engaging moments of the narratives, suggesting that DMN activity
becomes more entrained to narratives when people are more
engaged (Fig. 2). Fully cross-validated models trained on time-
resolved whole-brain FC (Fig. 3), but not BOLD activity, predicted
moment-to-moment changes in engagement in each fMRI sample.
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Fig. 6. Individual-specific story recall in relation to engagement network
dynamics. To quantify the fidelity with which events in a story were recalled,
(A) in Paranoia, we matched the phrases uttered during free recall to the
story transcript and calculated semantic similarity using distributional word
embeddings. (B) In Sherlock, we applied dynamic topic modeling fitted with
video annotations to extract topic vectors of individuals’ recall transcripts.
The topic vector similarities between recall and video annotations were
summed across recalled events (71, 72). (C) Representative participants’
subsequent recall fidelity of the events for Paranoia (Left) and Sherlock
(Right). (D) Histograms of the pairwise participants’ recall similarity values.
Recall similarity was calculated by the Pearson’s correlation between pairs of
participants’ recall fidelity time courses. (E) Predictive performance of
individual-specific recall fidelity from the engagement networks of within
dataset (Left) and across dataset (Right) for Paranoia (dark gray) and Sher-
lock (light gray). The patterns of FCs that predicted group-average en-
gagement, illustrated in Fig. 4B, were used as multivariate features in the
model. Black dots indicate Pearson’s correlations between predicted and
observed recall fidelity time courses for every participant. Lines indicate
prediction performance, or the mean r across cross-validation folds. Gray violin
plots show null distributions of mean prediction performance, generated
from models that predict shuffled recall fidelity time courses.
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Predictive models further generalized across datasets (Fig. 4),
demonstrating that FC contains information about higher-order,
modality-general cognitive states of engagement. We observed
that the sustained attention network, defined using data collected
during a visual attention task, predicted changes in engagement as
individuals watched Sherlock, but not as individuals listened to
Paranoia (Fig. 5), suggesting that brain networks involved in
sustained attention and attentional control may be partially in-
volved when individuals are attentively engaged in naturalistic
contexts. Lastly, we found that dataset-specific engagement
networks predicted how well participants remembered story
events (Fig. 6), suggesting that brain networks related to dynamic
attentional engagement during encoding are also related to later
memory for narratives.
Historically, research on sustained attention has studied at-

tention to external stimuli during psychological tasks requiring
top-down attentional control and cognitive effort (5, 75–77).
Complementary work has described states of attention associated
with less subjective effort (78), such as flow states of complete
absorption in an activity (8), in-the-zone moments of optimal task
performance (36, 38, 79, 80), and soft fascination to natural en-
vironments (81) or aesthetic pieces of art (82). Recent work has
also characterized stimulus-independent internal attention and
mind wandering (7, 83–86). However, relatively few studies have
tackled attentional mechanisms during the processing of contex-
tually rich everyday narratives to ask, for example, to what degree
narrative engagement requires attentional control, how atten-
tional fluctuations modulate moment-to-moment comprehension
and memory, or how state- or trait-like differences in subjective
engagement are reflected in the brain activity. Bellana and Honey*
theorized that deep information processing (87) is involved when
comprehending narratives, which leads to high engagement (or
transportation, absorption, and immersion) during perception and
rich memory representation.
Our work provides empirical support that the functional networks

involved in top-down sustained attention (Fig. 5A) and stimulus-
related narrative engagement (Fig. 4B) are partially overlapping
and that these two networks both play a role in predicting sub-
jective engagement and subsequent memory. Patterns of FC in the
sustained attention network, defined to predict performance on a
visual CPT (43), predicted narrative engagement of an audiovisual
narrative, Sherlock, but not an audio-narrated story, Paranoia. This
raises the possibility that the sustained attention network captures
visual sustained attention specifically. However, because the current
results are based on a single narrative from each sensory modality,
many other differences between the Paranoia and Sherlock datasets
could account for the sustained attention network’s pattern of
generalization (e.g., sample size, scan parameters, or preprocess-
ing pipelines). It is also possible that the inconsistent pattern of
results across datasets could have arisen due to a false-positive
finding in one sample. Thus, future work can test whether net-
works defined to predict visual attention capture visual narrative
engagement whereas networks trained to predict auditory atten-
tion capture auditory narrative engagement (88, 89). Analyses of
the overlap between these hypothetical modality-specific networks
could provide evidence for a hierarchical network organization
involving both modality-specific and modality-general attention
subnetworks.
The current results support characterizations of the DMN as a

modality-general network involved in attention and narrative
processing. In both the Paranoia and Sherlock datasets, stimulus-
driven patterns of DMN activity varied with changes in narrative
engagement, replicating previous observations that intersubject
neural synchrony increases during “emotionally charged and

surprising” movie moments (28). In addition to cross-subject syn-
chrony in DMN activity, time-varying FC involving DMN regions
also reflects time-varying engagement. In particular, within-
network DMN connections and connections between DMN and
FPN regions (Fig. 4C) predicted subjective engagement in both
Paranoia and Sherlock. These results align with the findings of
Zhang et al. (90) that resting-state FC within the DMN and be-
tween the DMN and visual sensory-processing network predicts
trait-level differences in narrative comprehension and attention
during reading. Together, our results suggest that attentional en-
gagement may modulate the degree to which DMN integrates
narrative events on a moment-to-moment basis by changing its
activations and large-scale interactions with other brain regions.
Previous research has studied interactions between sustained

attention and subsequent memory using controlled psychological
tasks that measure participants’ memory for stimuli encountered
in different attentional states. For example, participants in a study
from deBettencourt et al. (4) performed a CPT and then reported
their incidental recognition memory of the presented images. CPT
stimuli seen during engaged attentional states (indexed with re-
sponse times) were better remembered. Complementary work has
examined relationships between attention and recall during a
naturalistic task using individual differences approaches (29, 90,
91). Jangraw et al. (91) asked participants to read transcripts of
Greek history lectures during fMRI, then measured their perfor-
mance on a postscan comprehension test. Individuals who showed
FC signatures of stronger sustained attention during reading
performed better on a comprehension test. Cohen and Parra (29)
found that individuals with EEG activity time courses more similar
to the rest of the group during narrative presentation scored higher
on a memory test conducted 3 wk later. However, attending to and
remembering events constantly fluctuates across time, heavily de-
pendent on the situational contexts and relational structure. It is yet
unknown the role of dynamic memory when constructing structured
representation of narratives (92, 93) or how we modulate attention
online to encode critical events and reinstate relevant memories.
The implication of our results—that neural signatures of engage-
ment predict subsequent memory—motivates future work address-
ing neural mechanisms of the bidirectional interactions between
sustained attention and memory in naturalistic contexts.
The current study focuses on group-level states of engagement

that are shared across individuals and are thus stimulus-related.
Future work characterizing each person’s unique pattern of at-
tentional engagement during narratives can help disentangle in-
trinsic from stimulus-related attention fluctuations and elucidate
their consequences for memory at the individual level. Narrative
engagement can be inferred online using physiological measures
such as heart rate and electrodermal activity (94, 95), facial ex-
pressions (96), or with pupil dilation (97) and blink rate (98, 99).
In a recent study, van der Meer et al. (100) inferred participants’
subjective immersion to the movie from concurrent recordings of
heart rate and pupil diameter during fMRI. Furthermore, inter-
mittent experience sampling using thought probes, or multidimen-
sional experience sampling (83, 84), during fMRI can track
individuals’ moment-to-moment degree of attentional engagement
and even thought contents during movie watching or story listening.
In sum, we show that engagement during story comprehension

dynamically fluctuates across time, driven by narrative content. Our
results characterize the relationship between sustained attention
and narrative engagement and elucidate neural signatures that
predict future event memory.

Materials and Methods
Behavioral Experiments. Twenty-one individuals from the University of Chi-
cago or surrounding community participated in a behavioral study in which
they listened to the Paranoia story (3 left handed, 11 females, 18 to 30 y,
mean age 23.57 ± 4.04; 12 native English speakers, 2 bilingual English
speakers). Seventeen individuals participated in a behavioral study in which

*B. Bellana, C. J. Honey, “A persistent influence of narrative transportation on subse-
quent thought” Presented in Context & Episodic Memory Symposium (23 August 2020).
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they watched an episode of television series Sherlock (1 left-handed, 11
females, 18 to 30 y, mean age 22.06 ± 3.75; 11 native English speakers, 2
bilingual English speakers). All participants reported no history of visual or
hearing impairments, provided written informed consent, and were com-
pensated for their participation. The study was approved by the Institutional
Review Board of the University of Chicago.

Stimulus presentation and response recordingwere controlledwith PsychoPy3
(101). The experiment took place in a dimly lit room in front of a Macintosh
Apple monitor. Participants either listened to a 20-min audio-narrated Para-
noia or watched a 50-min episode of Sherlock while continuously rating how
engaging they found the story by adjusting a scale bar from 1 (“Not engaging
at all”) to 9 (“Completely engaging”). The scale bar was constantly visible on
the bottom of the computer monitor. Other aspects of the experiment repli-
cated, as closely as possible, previous fMRI studies: the same visual image was
shown at the center of the screen as participants listened to Paranoia (18), and
“run breaks” occurred at the same moments for both stories. The timing of
participants’ button presses was recorded.

To confirm compliance, individuals who listened to Paranoia completed nine
comprehension questions asking about the events. The average percent cor-
rect was 95.24 ± 8.29%, verifying that all participants maintained overall at-
tention to the story. Participants who watched Sherlockwere asked to provide
a spoken recall of the story in as much detail as they remembered as soon as
they finished watching the episode. These recall data were not analyzed here.
All participants were qualitatively assessed to have paid attention to the story.

Behavioral Data Analysis. All participants’ button-press responses were sam-
pled to TR duration (1s for Paranoia; 1.5s for Sherlock) and z-normalized
across time. Group-average engagement ratings were calculated by aver-
aging all participants’ normalized engagement ratings. The averaged en-
gagement time courses were convolved with the HRF to be applied to
separate groups of individuals who participated in the fMRI studies.

Several fMRI analyses in the study included the application of a tapered
sliding window. To relate behavioral time course to fMRI time courses, we
applied the same tapered sliding windows to the behavioral data time
courses. A sliding window size of 40 TR (= 40 s) for Paranoia and 30 TR (= 45 s)
for Sherlock datasets, with a step size of 1 TR and a Gaussian kernel σ = 3 TR
were applied. For the beginning and end of the time courses (for which the
tail of the Gaussian kernel was cropped), we adjusted the weights so that
the cumulative Gaussian distribution summed to 1. The adjustments changed
the peak weight of the Gaussian distribution from 1 to 1.031 maximum for
Paranoia and 1.041 maximum for Sherlock. The same parameters were used
throughout the study.

fMRI Image Acquisition and Preprocessing. The raw structural and functional
images of the Paranoia dataset were downloaded from OpenNeuro (102).
Functional images of Finn et al. (18) were acquired from 3T Siemens Trim-
Trio, using T2*-weighted echo planar imaging (EPI) multiband sequence
(TR = 1,000 ms, echo time = 30 ms, voxel size = 2.0 mm isotropic, flip angle =
60°, field of view = 220 × 220 mm). Structural images were bias-field cor-
rected and spatially normalized to the Montreal Neurological Institute (MNI)
space. Functional images were motion corrected using six rigid-body trans-
formation parameters and registered to MNI-aligned T1-weighted images.
White matter and cerebrospinal fluid masks were defined in MNI space and
warped into the native space. Linear drift, 24-parameter motion parameters,
mean signals from white matter and cerebrospinal fluid, and mean global
signal were regressed from the BOLD time course. We applied a band-pass
filter (0.009 Hz < f < 0.08 Hz) to remove low-frequency confounds and high-
frequency physiological noise. The data were spatially smoothed with a
Gaussian kernel of full width at half maximum of 4 mm.

The preprocessed images from the Sherlock dataset were downloaded
from Princeton University’s DataSpace repository (103). Functional images of
Chen et al. (13) were collected from 3T Siemens Skyra, using T2*-weighted
EPI sequence (TR = 1,500 ms, echo time = 28 ms, voxel size = 3.0 × 3.0 × 4.0
mm, flip angle = 64°, field of view = 192 × 192 mm). Preprocessing steps
followed slice timing correction, motion correction, linear detrending, high-
pass filtering (140-s cutoff), coregistration, and affine transformation to the
MNI space. The functional images were resampled to 3-mm isotropic voxels.
One participant’s dataset was missing 51 TRs from the end of the second run.
These TRs were discarded in all of the analyses.

All analyses were conducted in the volumetric space using AFNI software.
The cortical surface of the MNI standard template was reconstructed using
Freesurfer (104) for visualization purposes.

Whole-Brain Parcellation. Cortical regions were parcellated into 114 ROIs
following Yeo et al. (58) based on a seven-network cortical parcellation

estimated from the resting-state functional data of 1,000 adults (59). Sub-
cortical regions were parcellated into eight ROIs, corresponding to the bi-
lateral amygdala, hippocampus, thalamus, and striatum, extracted from the
subcortical nuclei masks of the Brainnetome atlas (60). The time courses of
the voxels corresponding to each of the 122 ROIs were averaged to a single,
representative time course. The eight functional networks include VIS and
SM relevant to sensory-motor processing, DAN and VAN relevant to top-
down guided attention or attentional shifts (105), limbic network (LIMB),
DMN and FPN relevant to transmodal information processing (106), and the
SUBC. Each ROI was labeled with one of the eight functional networks, which
was provided by Yeo et al. (58, 59, 107). To examine the robustness of our
results, we replicated the dynamic ISC analysis using the 268-node Shen
atlas (61).

Dynamic Intersubject Correlation. A tapered sliding window was applied to
calculate pairwise subjects’ BOLD time course ISC (Fig. 2A). Nonparametric
permutation tests were used to quantify the significance of the dynamic ISC
of each ROI. Null distributions were generated by taking Pearson’s r between
the actual dynamic ISC and the phase-randomized engagement ratings (two-
tailed test, uncorrected for multiple comparisons, iteration = 10,000).

Dynamic Predictive Modeling. For models based on FC patterns, time-resolved
FC matrices were computed as the Pearson’s correlations (Fisher’s r-to-z–
transformed) between the BOLD signal time courses of every pair of regions
(122 × 122 ROIs) using a tapered sliding window. SVR models were imple-
mented with python (sklearn.svm.SVR; rbf kernel, maximum iteration set to
1,000). The time series of every feature was z-normalized across time to retain
temporal variance within a person while ruling out across-individual variance.
Every time step was treated as an independent sample to the model.

In addition tomeasuring prediction performance representedwith amean
r across results in all cross-validation folds, we tested prediction performance
respectively for each cross-validation (SI Appendix, Figs. S6 and S7).

Figs. 4B and 5A illustrate the proportions of pairwise regions that were
selected in every cross-validation fold, grouped by the ROI’s predefined
functional network. The proportion of selected pairs was compared with
chance using nonparametric permutation test. The empirical proportion was
compared with a null distribution in which the same number of features was
randomly selected from all possible pairs of regions (one-tailed test FDR-P <
0.01, corrected for network pairs; iteration = 10,000). The significance in the
number of overlapping FCs in Figs. 4C and 5E was calculated by comparing
with the null distribution of the overlapping network pairs of the 10,000 size-
matched random networks.

Sustained Attention Network. We reanalyzed raw fMRI data from Rosenberg
et al. (43), which were collected from 25 participants as they completed three
runs (each with four 3-min blocks) of a sustained attention task, the gradCPT
(36). In the task, participants viewed a stream of scene images that gradually
transitioned from one to the next every 800 ms. Participants were instructed
to press a button every time they saw a frequent category image (cities; 90%
of trials) but to withhold response to infrequent category images (moun-
tains; 10% of trials). Functional MRI preprocessing steps matched those
applied to Paranoia data (and differed from those applied to Sherlock data).
We used Yeo et al.’s (59) 122-ROI parcellation scheme to directly compare
with our results and increase the computational feasibility of dynamic FC
pattern–based predictive modeling (the Yeo atlas has 122 ROIs, whereas the
Shen atlas, used in Rosenberg et al. (43), has 268). The behavioral perfor-
mance of each gradCPT block was assessed with sensitivity (d’) or hit rate
relative to false alarm rate. For each participant, overall task performance
was computed by taking the average d’ of all task blocks.

Replicating Rosenberg et al. (43) with Yeo atlas ROIs, we employed
connectome-based predictive modeling (65) to predict individuals’ d’ scores.
In a LOO cross-validation approach, we selected FCs that were significantly
correlated with training participants’ d’ scores (Spearman’s correlation, P <
0.01) (65). We separated the FCs that were positively or negatively correlated
with d’ and averaged the strength of positively correlated FCs and nega-
tively correlated FCs. A multiple linear regression model was trained to learn
the coefficients, where the dependent variable was individuals’ d’ scores, and
the two independent variables were the average of positively and negatively
correlated FCs, respectively. The model predicted the held-out participant’s d’
score, and the predicted scores of all cross-validations were validated by
taking the Pearson’s r with the observed scores. Replicating findings from
Rosenberg et al. (43), FC matrices using Yeo atlas significantly predicted in-
dividuals’ sustained attention scores (r = 0.801, P < 0.001; comparable to r =
0.822, P < 0.001 when using Shen atlas’ 268-ROI parcellation).
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The set of FCs selected in every cross-validation is termed the sustained
attention network. Dynamic strength of the sustained attention network
was computed by taking the difference between average FC time courses of
positively correlated FCs and the negatively correlated FCs, calculated with
the same sliding window analysis as above.

Event Recall. For Paranoia, each phrase of a participant’s recall was manually
matched to a sentence in the story transcript by the first author, which was
annotated with timestamps of when that sentence was heard by partici-
pants during fMRI. We vectorized all words included in the transcript and
recall data with the predefined, distributed word embedding, GloVe, which
is trained on Wikipedia and Gigaword 5 corpus (dimension = 100) (69).
Sentence embeddings were generated with the method adopted from
Arora et al. (70), such that the embedding vectors of every word included in
the recall phase were averaged, weighted by the smooth inverse frequency
of the word over a total number of words in the annotation or participant-
specific recalls. Conceptually, this gives higher weights to infrequently oc-
curring words when creating a sentence embedding vector. The smoothing
parameter was set to α = 0.0001, and we did not subtract out singular vector
(i.e., a common component) for comparison purposes. The cosine similarity
between the story and recall sentence embeddings was multiplied by the
binary index of whether a participant recalled the event or not, which
represents “recall fidelity” of Paranoia participants. The output recall fidelity
scores were extended in time to TR space so as to match the moments when
a sentence was uttered in the narration.

For Sherlock, we applied dynamic topic model (71) together with hidden
Markov model (11) as implemented by Heusser et al. (72). We followed the
hyperparameter selections and experimental steps of Heusser et al. (72). We
calculated a Pearson’s r similarity matrix between the annotated video event
embeddings (30 events detected by a hidden Markov model) and recall
event embeddings (the number of events differed for each participant). The
mean of every recall event’s similarity (Fisher’s z–transformed Pearson’s
correlation) with each of the video events was averaged to generate an
indicator of “recall fidelity.” This approach differs from Heusser et al.’s (72)
recall precision and distinctiveness metrics, which capture whether

participants’ recall events precisely and specifically match the topic contents
of the movie events. Specifically, recall precision was calculated by the
maximum correlation values between the topic vector of every recalled
event that was matched one-on-one with the movie event. In contrast, our
recall fidelity metric captures whether participants’ recalls were similar to
the annotated contents of the narrative stimulus, irrespective of precision to
specific movie events. Thus, we averaged the similarities of the entire recall
event with every moment of the movie event (average of every row in
Fig. 6B), which was expanded into a TR space to generate a recall fidelity
time course that matches the total duration of stimulus presentation.

To test the significance of recall prediction, we generated surrogate data
by randomly shuffling the event-specific recall fidelity scores for each indi-
vidual. Then, using the same event-to-TR mapping, we expanded the event-
wise recall fidelity scores to a recall fidelity time course in a TR space. This not
only retains the same range of recall scores per individual but also retains
the event boundaries. The HRF convolution and sliding time window were
applied to surrogate recall data, which were used with actual fMRI data to
train and test SVR models.

Data Availability. Behavioral experiment data and analysis code are available
at GitHub, https://github.com/hyssong/NarrativeEngagement (48). Sherlock
preprocessed fMRI data are available at DataSpace, https://dataspace.
princeton.edu/jspui/handle/88435/dsp01nz8062179 (103). Paranoia fMRI data
are available at OpenNeuro, https://openneuro.org/datasets/ds001338 (102).
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