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Abstract

Congenital heart disease (CHD) is the most common birth defect. Fetal screening ultrasound 

provides five views of the heart that together can detect 90% of complex CHD, but in 

practice, sensitivity is as low as 30%. Here, using 107,823 images from 1,326 retrospective 

echocardiograms and screening ultrasounds from 18- to 24-week fetuses, we trained an ensemble 

of neural networks to identify recommended cardiac views and distinguish between normal hearts 

and complex CHD. We also used segmentation models to calculate standard fetal cardiothoracic 
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measurements. In an internal test set of 4,108 fetal surveys (0.9% CHD, >4.4 million images), 

the model achieved an area under the curve (AUC) of 0.99, 95% sensitivity (95% confidence 

interval (CI), 84–99%), 96% specificity (95% CI, 95–97%) and 100% negative predictive 

value in distinguishing normal from abnormal hearts. Model sensitivity was comparable to that 

of clinicians and remained robust on outside-hospital and lower-quality images. The model’s 

decisions were based on clinically relevant features. Cardiac measurements correlated with 

reported measures for normal and abnormal hearts. Applied to guideline-recommended imaging, 

ensemble learning models could significantly improve detection of fetal CHD, a critical and global 

diagnostic challenge.

CHD, the most common birth defect1, can be asymptomatic in fetal life but cause substantial 

morbidity and mortality after birth1–3. Compared to postnatal diagnosis, fetal diagnosis 

can improve neonatal outcomes and surgical and/or interventional planning4–6 and could 

enable in utero therapies7,8. Distinguishing normal fetal hearts from complex CHD requiring 

referral to a fetal cardiologist is therefore a critical and universal need. Low sensitivity in 

this task can limit palliation options, worsen postnatal outcomes and hamper research on in 

utero therapies, while low specificity can cause unnecessary additional testing and referrals.

A fetal survey (fetal screening ultrasound) is recommended for every pregnancy 

worldwide9,10 in the second trimester and generally includes five clinically recommended 

cardiac views (Fig. 1a) that together could allow clinicians to diagnose up to 90% of 

complex CHD11,12. In practice, however, detection is often as low as 30%1,13,14, even where 

ultrasound is universal9,10,14. Specificity is also suboptimal, as low as 40–50%1.

Two reasons for this gap between possible and commonplace CHD detection are (1) 

inadequate expertise in interpretation and/or (2) inadequate acquisition of diagnostic-quality 

images15,16. Causes of inadequate imaging include poor acoustic windows, fetal motion and 

the small size of the fetal heart. Furthermore, a fetal survey includes thousands of image 

frames spanning multiple structures per single video ‘sweep’, so the diagnostic frames of 

interest for CHD may be only a handful and are thus easily missed. Finally, the prevalence 

of CHD in the population (~0.8–1%) is low enough that non-experts see it only rarely and 

may discount or overlook image acquisition and interpretation can bridge the diagnosis gap; 

however, these small, single-center programs are difficult to sustain and scale.19

Deep learning (DL) is a state-of-the-art type of machine learning useful in image 

analysis20–24. DL has been applied to adult cardiac ultrasound25,26, besting clinicians on 

view classification on small, downsampled datasets27. DL can be used to classify images or 

to segment structures within images; several DL models can be used together in an ensemble 

fashion. We hypothesized that DL could improve ultrasound analysis for CHD.

Results

To test whether DL can improve fetal CHD detection, using multimodal imaging and experts 

in fetal cardiology, we implemented an ensemble of neural networks (Fig. 1b) to (1) identify 

the five diagnostic-quality, guideline-recommended cardiac views (Fig. 1a) from among all 

images in a fetal ultrasound (survey or echocardiogram), (2) use these views to provide 
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classification of normal heart versus any of 16 complex CHD lesions (Table 1) and (3) 

calculate the cardiothoracic ratio (CTR), cardiac axis (CA) and fractional area change (FAC) 

for each cardiac chamber (Extended Data Fig. 2).

To train the various components in the ensemble, up to 107,823 images from up to 1,326 

studies were used. Five test datasets independent from the training dataset were used for 

evaluating model performance: (1) FETAL-125, which comprises images from axial sweeps 

from 125 fetal echocardiograms from the University of California, San Fransisco (UCSF) 

(30% CHD, 19,822 images); (2) OB-125, which comprises all images from the 125 fetal 

surveys corresponding to the same patients in FETAL-125 (30% CHD, 329,405 images); 

(3) OB-4000, which comprises all images from 4,108 fetal surveys with 0.9% CHD, similar 

to the general population prevalence of 0.8–1% (4,473,852 images; includes OB-125); (4) 

BCH-400, which comprises images from axial sweeps of 423 fetal echocardiograms highly 

enriched for CHD from Boston Children’s Hospital (BCH), an external medical center (92% 

CHD, 44,512 images); and (5) TWINS-10, which includes ten sets of twins. Training and 

test sets are further described in Table 1, the Methods and Supplementary Table 1. Prediction 

times per image averaged 3 ms for classification and 50 ms for segmentation on a standard 

laptop (Methods).

View classification.

Identifying the five views of the heart recommended in fetal CHD screening11 (three-vessel 

trachea (3VT), three-vessel view (3VV), left-ventricular outflow tract (LVOT), axial four 

chamber (A4C) and abdomen (ABDO)) was a prerequisite for diagnosis. We therefore 

trained a convolutional neural network28 (Extended Data Fig. 1a) view classifier (‘DL view 

classifier’, Fig. 1b) to pick the five screening views from fetal ultrasounds, for which 

any image that was not one of the five guideline-recommended views was classified as 

‘non-target’ (for example, head, foot, placenta). Training data were multimodal, including 

both fetal echocardiograms, which naturally contain more and higher-quality views of the 

heart, and fetal surveys, offering a full range of non-target images. Notably, only views of 

sufficient quality to be used for diagnosis (as deemed by expert labelers, Methods) were 

used to train the view classifier.

On normal studies in the FETAL-125 test set, the F score (the harmonic mean of precision 

and recall) for view classification was 0.93, (AUC range, 0.94–0.98, Fig. 2a,b). The 

network’s classification decision on a particular image is determined by the probability 

of the image belonging to each of the possible classes; by default, the image is assigned 

to the class with the highest probability. For fetal view classification, as demonstrated for 

adults27, the mean probability for correct predictions was significantly higher than that for 

incorrect predictions (P value, Mann–Whitney U test, <1 × 10−300) (Fig. 2c).

We then tested the view classifier on OB-125 (Fig. 2d,e). When diagnostic-quality target 

views were present, the view classifier found them with 90% sensitivity (95% CI, 90%) 

and 78% specificity (95% CI, 77–78%). Using only images with prediction probabilities 

at or above the first quartile, sensitivity and specificity increased to 96% and 92% (95% 

CI, 96% and 92–93%). Recommended views were not always present in each fetal survey 

and were more commonly present in normal studies (Fig. 2f). The view classifier’s greatest 
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confusion was between 3VT and 3VV (Fig. 2d), adjacent views that often also cause clinical 

uncertainty11,16,29.

To validate that the view classifier used clinically relevant features, we performed 

both saliency mapping and gradient-weighted class activation mapping (Grad-CAM) 

experiments27,30 on test images to show the pixels (saliency mapping) or region (Grad

CAM) most important to the classifier in making its decision. Both experiments show that 

the view classifier makes its decisions based on clinically relevant image features (Fig. 2g).

Classification of normal versus complex CHD.

We trained the same convolutional neural network architecture used above to classify normal 

hearts versus CHD for each of the five view classes (binary ‘DL dx classifiers,’ Fig. 

1b). On FETAL-125, the AUC ranged from 0.72 (ABDO) to 0.88 (3VV and A4C; Fig. 

3a). Across all test datasets, AUCs for the ABDO view reflected the clinical finding that 

the abdomen view is the least useful for CHD diagnosis. For each heart, we arrived at 

a composite diagnostic decision of normal heart versus CHD by applying a rule-based 

classifier (‘composite dx classifier’ Fig. 1b) to the per-image, per-view predictions that is 

essentially a weighted average (Methods and Extended Data Fig. 1c).

Using this approach, we achieved AUCs of 0.98, 0.93, 0.99 and 0.89 in distinguishing 

normal from abnormal hearts on FETAL-125, OB-125, OB-4000 and BCH-400, respectively 

(Fig. 3e) (to achieve this AUC for OB-4000, only images with view-prediction probabilities 

above the first quartile were used in the composite diagnostic classifier). This allowed a 

sensitivity of 95% (95% CI, 83–99%), a specificity of 96% (95% CI, 95–97%), a positive 

predictive value of 20% (95% CI, 17–23%) and a negative predictive value of 100% 

in OB-4000. Performance on these and additional testing scenarios discussed below are 

summarized in Fig. 3f and Supplementary Table 2; notably, we compared testing scenarios 

for OB-125, where all images (regardless of view-prediction probability) are used for 

diagnosis, where only true positive views are used, where only images with view-prediction 

probabilities above the first quartile are used and where a portion of true positive views 

are purposefully scrambled to mimic view misclassification. Overall, model sensitivity on 

fetal echocardiograms rivaled that cited across several papers31–33 (P value, 0.3, assuming 

normal distribution of measures in the literature). More importantly, model sensitivity and 

specificity on fetal surveys were significantly better than reported performance1,13,14,32 (P 
values, 0.002 and 0.04, respectively).

While the clinician’s interpretation of the entire ultrasound study served as our gold-standard 

label for testing and training, we also wished to compare model performance on fetal 

surveys (OB-125) directly against that of clinicians on a task-for-task basis by giving each 

the following test: one full-resolution image per view, with only five images in total per 

heart (Fig. 3g). This test was chosen both to make the task feasible for humans and, 

given the potential variation in image acquisition protocols across different institutions, 

to simulate a ‘lean protocol’ in which only minimal recommended views are acquired. 

Thirty-eight of the 125 fetal surveys (30%) in OB-125 contained all five views. On this 

test, the model achieved 88% sensitivity (95% CI, 47–100%) and 90% specificity (95% CI, 

73–98%). Clinicians (n = 7) achieved an average sensitivity of 86% (95% CI, 82–90%) and 
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a specificity of 68% (95% CI, 64–72%) (Fig. 3f). The model was comparable to clinicians (P 
= 0.3) in sensitivity and superior to them (P = 0.04) in specificity.

To validate that the model generalizes beyond the medical center where it was trained34, 

we tested it on fetal echocardiograms from an unaffiliated, geographically remote medical 

center with a high prevalence of CHD (BCH-400; Table 1). AUCs for view detection on 

normal hearts ranged from 0.95 to 0.99 (not shown). The AUC for composite classification 

of normal versus abnormal hearts was 0.89, despite a high prevalence of abnormal hearts in 

this test set (Fig. 3e and Supplementary Table 2).

Multifetal pregnancies have a higher risk of CHD than the general population1. Therefore, 

a CHD detection model applicable to ultrasounds of twins and other multiple pregnancies 

would be useful. Based on saliency mapping and Grad-CAM experiments (Figs. 2g and 3h), 

we hypothesized that our model could perform adequately on surveys of twins. We used 

our model to predict views and diagnoses for ten sets of twins (TWINS-10 test set; n = 20 

fetuses), including those with tetralogy of Fallot (TOF) and hypoplastic left heart syndrome 

(HLHS). Sensitivity and specificity were 100% and 72% (Supplementary Table 2).

Models should be robust to minor variation in image quality to be useful for a range of 

patients and medical centers. We therefore assessed model performance on images within 

OB-125 that expert clinicians did not label as high-quality views but that the model did 

classify as target views (Fig. 2d,f). We inspected these ‘false positive’ images directly 

and analyzed their prediction probabilities. Of images with probability ≥0.9, two-thirds 

(66%) were in fact target views but of lower quality (for example, slightly off axis, heavily 

shadowed) than ones chosen by experts, and most (59%) of these low-quality target views 

had probabilities ≥0.9 (Extended Data Fig. 3). Therefore, the model can appropriately detect 

target views of lower quality. We submitted these lower-quality target images for diagnostic 

prediction and found a sensitivity of 95% (95% CI, 83–99%) and a specificity of 39% (95% 

CI, 28–50%). Thus, the ensemble model can make use of suboptimal images in fetal surveys 

to detect complex CHD, albeit with lower specificity.

As with view classification above, we performed several analyses to determine whether the 

diagnostic classifications were based on clinically relevant image features. We trained a set 

of per-view binary classifiers for each of the two most common lesions in our dataset (TOF 

and HLHS) and examined receiver operating characteristic (ROC) curves, saliency maps and 

Grad-CAM experiments. For TOF, AUCs were highest for the two views from which TOF 

is most easily clinically appreciable: 3VT and 3VV (Fig. 3b). For HLHS, 3VT, 3VV, LVOT 

and A4C are all abnormal, consistent with higher AUC values in Fig. 3c. Saliency mapping 

and Grad-CAM highlighted pixels and image regions relevant to distinguishing these lesions 

from normal hearts (Fig. 3h). In clinical practice, reported sensitivity in detecting TOF and 

HLHS is as low as 50% and 30%, respectively35. With our model, sensitivity is 71% for 

TOF and 89% for HLHS (specificities of 89% and 92%; Supplementary Table 2). Examples 

of diagnostic misclassifications can be found in Extended Data Fig. 4.
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Segmentation for fetal biometrics.

Biometric measurements aid in fetal CHD screening and diagnosis11. We therefore trained 

a modified U-Net36 (Extended Data Fig. 1b and Methods) to find cardiothoracic structures 

in A4C images and used these segmented structures to calculate the CTR, CA and FAC for 

each cardiac chamber (Table 2 and Fig. 4). Normal, TOF and HLHS hearts from UCSF were 

represented in training and testing.

Per-class Jaccard similarities measuring overlap of labeled and predicted segmentations are 

found in Supplementary Table 3. Predictably, Jaccard values were higher for more highly 

represented pixel classes (for example, background) and were similar to intra-labeler Jaccard 

values (range, 0.53–0.98; mean, 0.76). Example labels and predictions for segmented 

structures are shown in Fig. 4.

Normal cardiothoracic circumference ratios range from 0.5 to 0.6 (ref. 1). Mann–Whitney 

U testing showed no statistical differences among clinically measured and labeled CTRs for 

normal hearts, nor between labeled and model-predicted CTRs. CTRs for TOF and HLHS 

hearts were normal, as previously reported1.

A normal CA is 45° ± 20° (ref. 11). Consistent with the literature37, the mean CA value 

was increased in TOF at 63° ± 16° (range, 54–80°; P value, 0.007). CA values for HLHS 

were not found in the literature, but the model-predicted CA was 49° ± 2° (range, 33–72°; P 
value, 0.04).

In addition to the five still-image views, it is best practice to also obtain a video of 

the A4C view to assess cardiac function1. The FAC quantifies this assessment. From a 

study measuring 70 normal 18- to 24-week fetuses, the 50th percentile for left- and right

ventricular FAC averaged 0.34 ± 0.01 and 0.33 ± 0.02, respectively38. In our test dataset, 

the labeled FAC values for normal left ventricle and right ventricle were 0.47 ± 0.10 and 

0.47 ± 0.11, respectively, and model predictions were 0.44 ± 0.06 (P value, 0.3) and 0.52 ± 

0.13 (P value, 0.2), respectively. Although there are no fetal atrial FAC values established 

in the literature, model-predicted left-atrium and right-atrium FAC values were statistically 

indistinguishable from labels at 0.52 ± 0.12 and 0.48 ± 0.10, respectively (P values, 0.5 and 

0.5). All measurements are summarized in Table 2 and Extended Data Fig. 2.

In sum, the data show that fetal cardiothoracic biometrics can be derived from image 

segmentation, showing good agreement between previously reported values and the potential 

to provide additional metrics not yet benchmarked.

Discussion

With clear benefit to early diagnosis and treatment of CHD and growing research on in 

utero interventions, the need for accurate, scalable fetal screening for CHD has never 

been stronger39, while sensitivity and specificity for CHD detection are quite variable at 

centers and clinics worldwide and in many centers remain quite low1. To address this, 

we investigated the impact of combining real-world fetal ultrasounds and trusted clinical 

guidelines with cutting-edge DL to achieve expert-level CHD detection from fetal surveys, 
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one of the most difficult diagnostic challenges in ultrasound. In over 4,000 fetal surveys 

(over 4 million images), the ensemble model achieved an AUC of 0.99.

DL has been used on various medical tasks21,23,40, but to our knowledge this is the first 

use of deep learning to approximately double reported community-level sensitivity and 

specificity on a global diagnostic challenge in a test set of real fetal screening ultrasounds 

with a CHD prevalence similar to the general population (OB-4000).

The model’s performance and speed allow its integration into clinical practice as software 

onboard ultrasound machines to improve real-time acquisition and to facilitate telehealth 

approaches to prenatal care41. As a key benefit, the view classifier could be used on its 

own to help ensure adequate view acquisition. For retrospectively collected images, the 

model could be used as standalone software for which a user uploads a study and receives 

model-chosen views and diagnostic predictions.

To ensure that our model could work robustly in real-world settings, we used two

dimensional ultrasound and standard recommended fetal views rather than specialized 

or vendor-specific image acquisitions42,43. Furthermore, we tested our model in a range 

of different scenarios and on different independent test datasets. Importantly, the model 

maintained high sensitivity on external imaging, suboptimal imaging and imaging from fetal 

surveys and fetal echocardiograms, datasets with community-level CHD prevalence and 

those with high CHD prevalence. When a test dataset approximately 10% of the size of 

the training dataset has arisen as an informal rule of thumb for adequate testing in the data 

science community, we tested on over 350% of the number of studies in the training set and 

over 4,000% the number of images. While UCSF is a referral center for fetal CHD, it also 

provides community care for obstetrics, and so the fetal screening ultrasounds in OB-4000 

represent a cross-section of the community with an expected incidence of CHD that mirrors 

that of the population at large.

Our approach to both model design and testing ensured interpretability at several levels, 

which can help with clinical adoption. Choosing to use an ensemble of classifiers (first a 

view detector and then per-view diagnostic classifiers and finally a classifier for composite 

diagnosis) allowed us to incorporate clinical view recommendations into our model and to 

demonstrate that model performance per view and per CHD lesion were consistent with 

clinical knowledge about which views were most likely to aid in detection of specific 

lesions.

Analysis of confusion matrices, ROC curves and incorrectly classified images helped 

determine that model error mirrored uncertainties in clinical practice. Saliency mapping 

and Grad-CAM for both view and diagnostic classifications demonstrated that model 

predictions relied on cardiac structures. The prominence of the aorta, the right heart and 

the stomach as distinguishing features among the five target views is both new and makes 

sense. A comparison of the different testing scenarios and visualization of per-image 

misclassifications suggests that both the quality of images and the number of available 

images per study contribute to the best overall performance.
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As mentioned above, we incorporated two similar study types, fetal echocardiograms and 

fetal surveys, in a multimodal approach to model training that harnessed more specialized 

imaging in service of improving performance on screening imaging. By feeding only 

target views into the diagnostic classifier step, we took a more data-efficient approach 

to the diagnostic classifier compared to using the entire ultrasound. We also took a new 

approach to addressing variation in image quality that relied on human experts to agree 

only on labeling diagnostic-quality images for training (in testing, the model analyzed all 

images). This approach economized on human labor, consolidating inter-expert agreement 

on diagnostic-quality images, while providing fewer constraints to the model training, as 

some aspects that make an image low in quality to a human eye may not matter as much 

to a computer ‘eye’ (image contrast is a good example of this). We found that prediction 

probability was an indirect representation of the model’s quality assessment and that using 

cutoffs for high-prediction-probability images improved model performance.

While it is the most common birth defect, CHD is still relatively rare. Moreover, unlike 

modalities such as photographs21,23, electrocardiograms40 or chest X-rays, each ultrasound 

study contains thousands of image frames. Therefore, designing a model that could work 

on a large number of non-independent images from a dataset with relatively few individuals 

was an important challenge to overcome. In sum, the strengths above allowed us to find 

diagnostic signals for rare diseases and allowed computational efficiency both in training 

and in subsequent predictions on new data, which is key to translating this work toward 

real-world and resource-poor settings where it is needed44.

While 4,108 fetal surveys is a substantial test set, especially when considering the size 

of each ultrasound exam, hundreds of millions of fetal surveys are performed annually at 

many thousands of medical centers and clinics worldwide. Furthermore, while the OB-4000 

test set represented community fetal screening ultrasounds, they were still drawn from 

a center with experience in fetal screening. Therefore, expanded testing of the model 

prospectively on consecutive cases and in multiple centers, including rural community 

and/or non-expert centers and including more multiple gestations, will be important moving 

forward. It will also be important to test the model on imaging that includes a range of non

cardiac malformations. Several small improvements in model algorithms, as well as more 

training data from more centers, may further boost performance and may allow for diagnosis 

of specific lesion types. Similarly, more training data for image segmentation, including 

segmenting additional CHD lesions, will improve segmentation model performance and 

allow those results to be integrated into the composite diagnostic classifier. Further clinical 

validation of segmentation-derived fetal biometrics will be needed, particularly when 

metrics on particular CHD lesions have not yet been described elsewhere.

We look forward to testing and refining ensemble learning models in larger populations in 

an effort to democratize the expertise of fetal cardiology experts to providers and patients 

worldwide and to applying similar techniques to other diagnostic challenges in medical 

imaging.
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Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41591-021-01342-5.

Methods

The methods below describe datasets, data processing, algorithms and performance 

measures46.

Datasets.

All datasets were obtained retrospectively and de-identified, with waived consent in 

compliance with the Institutional Review Board at the UCSF and the Institutional Review 

Board at Boston Children’s Hospital.

Inclusion, exclusion and definitions of normal heart and CHD.—Fetal 

echocardiograms (dedicated ultrasounds of the fetal heart, performed by fetal cardiologists 

and sonographers with specific expertise in fetal cardiology)19 and fetal surveys (second

trimester obstetric anatomy scans performed by sonographers, radiologists, obstetricians 

and/or maternal–fetal-medicine physicians)11 performed between 2000 and 2019 were used. 

Images came from GE (67%), Siemens (27%), Philips (5%) and Hitachi (<1%) ultrasound 

machines. Inclusion criteria were fetuses of 18–24 weeks of gestational age. Fetuses with 

clinically significant non-cardiac malformations (for example, congenital diaphragmatic 

hernia, congenital airway malformation, congenital cystic adenomatoid malformation, 

meningomyelocele) were excluded. Gold-standard definitions of normal heart versus CHD 

were made as follows. CHD pathology was determined by review of the clinical report 

as well as visual verification of the CHD lesion for each ultrasound by clinician experts 

(A.J.M.-G., J.C.L. and Y.Z., with over 60 years of combined experience in fetal cardiology). 

Additionally, for studies performed in or after 2012, we were able to validate the presence, 

absence and type of cardiac findings in the ultrasound studies with electronic health-record 

codes for CHD in the resulting neonates (ICD-9 codes 745*, 746* and 747* and ICD-10 

code Q2* and ICD procedure codes 02*, 35*, 36*, 37* 38*, 88* and 89*). Studies for 

which clinician experts did not agree on the lesion and for which no postnatal diagnosis was 

present were not included. Normal fetal hearts were defined as negative for structural heart 

disease, fetal arrhythmia, maternal diabetes, maternal lupus, maternal Sjögren syndrome 

or the presence or history of abnormal nuchal translucency measurement, non-cardiac 

congenital malformations or CHD as defined above. Abnormal fetal studies had any of 

the following lesions: TOF, pulmonary atresia with ventricular septal defect (VSD) or 

double-outlet right ventricle with VSD committed to aorta (TOF); critical aortic stenosis and 

HLHS, including critical aortic stenosis with dilated left ventricle (HLHS); isolated aortic 

stenosis; atrioventricular septal defect; d-transposition of the great arteries; l-transposition of 

the great arteries; single ventricle, including heterotaxy with left or right atrial isomerism; 

double-outlet right ventricle with uncommitted, doubly committed or subpulmonary VSD 

(double-outlet right ventricle); aortic coarctation; total anomalous pulmonary venous return; 
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truncus arteriosus; Ebstein’s anomaly (tricuspid dysplasia); tricuspid atresia; and pulmonary 

atresia with intact interventricular septum. Isolated VSDs were not included as they only 

rarely require perinatal intervention.

Study design and training and test sets.—Overview: source data from the UCSF 

were split into the training set (a mix of fetal echocardiograms and fetal screening 

ultrasounds) and the FETAL-125 test set of fetal echocardiograms (first test set). A second 

test set, OB-125, was obtained from UCSF fetal screening ultrasounds corresponding to 

those echocardiograms from FETAL-125. Additional normal fetal screening ultrasounds 

were added to OB-125 to create a third test set, OB-4000. Next, fetal echocardiograms were 

obtained from Boston Children’s Hospital to make the fourth test set, BCH-400. A fifth 

test set comprised ten sets of twins (TWINS-10). Training and test sets did not overlap by 

image, patient or study. Among the test datasets, FETAL-125 and OB-125 test sets represent 

fetal echocardiograms and fetal screening ultrasounds from the same patients by design, and 

OB-125 is part of OB-4000. This information is summarized in Supplementary Table 1; 

details on these datasets follow below.

UCSF source data for the training set for all models and for FETAL-125 
(first test set).—Our source data began with all UCSF fetal echocardiograms fitting 

the inclusion and exclusion criteria above for CHD (n = 437 studies). We then added a 

random sample of normal UCSF fetal echocardiograms (n = 875 studies), such that CHD 

studies comprised approximately 30% of individuals. This was carried out to maintain 

relatively balanced classes of CHD versus normal-heart studies. We used the axial video 

and still-image clips from the fetal echocardiograms. We also included all images from 139 

randomly chosen normal fetal screening ultrasound studies to include a range of non-target 

images found in screening. Together, these data made up the UCSF source data for training 

and initial testing (first test set).

From this source dataset, we used the 139 fetal screening ultrasounds, 787 normal fetal 

echocardiograms and 400 CHD echocardiograms for training (n = 1,326 studies in total; 

69,841 images from normal studies and 102,974 images from abnormal studies; Table 1). 

The remaining 88 normal echocardiograms and 37 CHD echocardiograms made up the first 

test set, FETAL-125 (n = 125; 11,445 normal images and 8,377 abnormal images).

OB-125 test set (second test set).—We obtained the corresponding fetal screening 

ultrasounds from the same patients in FETAL-125 to create the OB-125 test set. All image 

frames from each study were used (220,990 normal images and 108,415 abnormal images).

OB-4000 test set (third test set).—To create a UCSF testing set of fetal screening 

ultrasounds with a CHD prevalence similar to that of the standard population, we started 

with OB-125 and added an additional 3,983 normal fetal surveys, such that the CHD lesions 

in OB-125 comprised 0.9% of an overall dataset totaling 4,108 surveys. The result was 

OB-4000 (4,473,852 images; 4,365,437 normal and 108,415 abnormal).
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BCH-400 test set (fourth test set).—As an external testing set, we received 423 fetal 

echocardiograms (4,389 images from 32 studies of normal hearts and 40,123 images from 

391 studies of abnormal hearts) from Boston Children’s Hospital.

TWINS-10 test set (fifth test set).—Separately, we obtained a test set of ten twin 

ultrasounds between 18–24 weeks of gestational age (5,754 echocardiogram images). Eight 

sets of twins had normal hearts; one set of twins had one normal and one TOF heart; and one 

set of twins had one normal and one HLHS heart.

Use of imaging from the training set to train different models in the ensemble.
—Images from the overall training dataset above were used to train (1) a view classifier, (2) 

normal versus abnormal diagnostic classifiers for each target view and (3) a segmentation 

model. For all trainings, roughly equal proportions of data classes were used. For the view 

classifier, 53,532 images from the 926 normal hearts were used. For the per-view diagnostic 

classifiers, 46,498 of the above images from 916 normal hearts were combined with an 

additional 54,291 images from 400 abnormal hearts (for a total of 1,316 studies and 100,789 

images) (ten of the studies used to train the view classifier only had non-target views and 

so were not used to train the diagnostic classifiers). For segmentation of cardiac chambers, 

1,248 A4C images from 186 studies (122 normal, 25 HLHS, 39 TOF) were used. For 

segmentation of the heart and thorax, 952 A4C images from 223 studies (157 normal, 25 

HLHS, 41 TOF) were used.

Image labeling by clinicians.—Every image frame of the training set, FETAL-125, 

OB-125 and BCH-400 were view labeled by clinician experts (for the training data, images 

for which clinician experts did not agree on the view were excluded from training. For 

test sets, a portion of the dataset was independently scored by both labelers to ensure 

agreement (Extended Data Fig. 5). Because OB-4000 was too large for this approach, 

experts instead only verified that the top five predicted views for each ultrasound study 

did in fact contain views of interest (and were normal hearts) before that study underwent 

diagnostic classification. For view labeling, as per clinical guidelines, 3VT, 3VV, A4C and 

abdomen views were from axial sections of the fetal thorax, while the LVOT view included 

both axial and sagittal LVOT images. For segmentation labeling, clinicians manually traced 

cardiothoracic structures (thorax, heart, spine and each of the four cardiac chambers) on 

A4C images.

Data processing.

DICOM-formatted images were de-identified and converted to grayscale as previously 

described27. Axial sweeps of the thorax were split into constituent frames at a resolution 

of 300 by 400 pixels. For view classification tasks, images were labeled as 3VT, 3VV, 

LVOT, A4C and ABDO. A sixth category, called non-target, comprised any fetal image that 

was not one of the five cardiac views of interest. For disease-classification tasks, studies 

were labeled to correspond to normal hearts or CHD lesions as mentioned above.

For input into classification networks, each image was cropped to 240 × 240 pixels centered 

on the ultrasound window and downsampled to 80 × 80 pixels and scaled with respect 
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to grayscale value (rescale intensity). For input into segmentation networks, images were 

cropped to 272 × 272 pixels centered on the ultrasound window and scaled with respect 

to grayscale value. All preprocessing steps made use of open-source Python libraries 

OpenCV (https://opencv.org/), scikit-image (https://scikit-image.org/) and NumPy (https://

numpy.org). For training fetal structural and functional measurements, OpenCV was used to 

label the thorax, heart, right atrium, right ventricle, left atrium, left ventricle and spine from 

A4C images.

Model architecture and training parameters.

Classification models.—Classification models were based on the ResNet architecture28 

with the following modifications. For view classification, the batch size was 32 samples, 

and training was over 175 epochs using the Adam optimizer and an adaptive learning 

rate (0.0005 for epochs 1–99; 0.0001 for epochs 100–149 and 0.00005 at 150+ epochs). 

Dropout of 50% was applied before the final fully connected layer. Data were augmented 

at run time by randomly applying rotations of up to 10°, Gaussian blur, width and height 

shifts of up to 20% of the total length, zooms of up to 50%, rescaling image intensity 

between the second and 98th percentiles and vertical and/or horizontal flips. For diagnostic 

classification, transfer learning was applied to the previously described view classification 

model as follows: the first 18 layers were frozen. Additional training used the above settings, 

except that epochs ranged from 12 to 60, learning rate was constant for each model, no 

adaptive learning was used, and the learning rate ranged from 0.00001 to 0.0001. The loss 

function was categorical cross-entropy (view classifier) or binary cross-entropy (diagnostic 

classifiers). The classification network architecture is shown in Extended Data Fig. 1a. 

During model optimization, training data were subdivided (by study) into training and 

validation sets using threefold cross-validation. Training and validation datasets in which 

view labels were randomized were used as a negative control, resulting in an F score 

commensurate with random chance among classes.

Segmentation model.—A4C images with clinician-labeled cardiothoracic structures 

(thorax, heart, spine and each of the four cardiac chambers) were used as training inputs 

to a U-Net36 neural network architecture with modifications as in Extended Data Fig. 1b. 

Two different models were trained to detect (1) the heart, spine and thorax and (2) the 

four cardiac chambers. Batch size was two, models were trained for 300–500 epochs, and 

an Adam optimizer was used with adaptive learning rates of 0.0001 to 0.00001. For data 

augmentation, width (shift) was set at 20%, zoom was 15%, random rotations of up to 

25° were permitted, and horizontal and/or vertical flips were used. The loss function was 

categorical cross-entropy.

Framework and training and prediction times.—All models were implemented 

in Python using Keras (https://keras.io/, GitHub,2015 ) with TensorFlow (https://

www.tensorflow.org/) backend. Trainings were performed on Amazon’s EC2 platform with 

a GPU instance ‘p2.xlarge’ and lasted about 1.95–5 h for segmentation models and between 

6 min and 4.6 h for classification models. Prediction times per image averaged 3 ms for 

classification and 50 ms for segmentation on a standard laptop (2.6-GHz Intel core, 16 GB 

of RAM).
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Probabilities and calculations.

Use of prediction probabilities in classification.—For each classification decision 

on a given image, the model calculates a probability of the image belonging to each 

of the possible output classes; as a default, the image is automatically assigned to the 

class with the highest probability. In certain testing scenarios, a threshold of acceptable 

prediction probability was applied to view classifications as follows. For OB-4000 ‘high

confidence’ views, diagnostic classification was performed only on images with view

prediction probabilities greater than the first quartile of correctly predicted views from the 

FETAL-125 test set. For OB-125 ‘low-quality’ views, model-predicted views that human 

labelers did not choose as diagnostic quality were used (Results and Supplementary Table 

2). A probability threshold for diagnostic classifications was also used in the rule-based 

composite diagnostic classifier, described below.

Composite diagnostic classification.—A rule-based classifier (‘composite dx 

classifier,’ Fig. 1b) was developed to unite per-view, per-image predictions into a single 

composite decision of normal heart versus CHD. The rule-based composite diagnostic 

classifier sums prediction probabilities for CHD and for normal heart, across images within 

a view and then across views, as follows (Extended Data Fig. 1c).

Only views with AUC > 0.85 on validation data were used. For each of the cardiac views 

of interest, a variable number of images each held a probability PCHD of CHD for each 

image; the probability of normal heart for each image was also recorded, where PNL = 1 

− PCHD. A high-pass threshold was determined from validation data for three of the four 

views (3VT, 3VV, LVOT; A4C was excluded from this due to high performance during 

cross-validation). The thresholds were an averaged Youden’s J statistic, calculated across the 

threefold cross-validation for each of these three per-view models. PCHD values below the 

high-pass threshold were reset to 0 to avoid overscoring CHD.

The resulting PNL and PCHD values for each view were then summed separately, to maintain 

a distinction between a view being present and normal versus being missing from a study, 

and each sum was normalized by the total sum of all predictions to account for different 

numbers of images in each view class to obtain the view-specific prediction values.

PCHDview = sum PCHD1...n × sum PCHDI...n + sum PNL1 …n
−1

PNLview = sum PNL1…n × sum PCHD1…n + sum PNL1…n
−1

Note that ‘view’ is either 3VT, 3VV, LVOT or A4C. These prediction values for each 

view were in turn summed for a composite classification. Evaluating true positives, false 

positives, true negatives and false negatives with different values for the offset number 

allowed construction of an ROC curve (Fig. 3e).

Arnaout et al. Page 13

Nat Med. Author manuscript; available in PMC 2021 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Quantification of cardiothoracic ratio, chamber fractional area change and 
cardiac axis.—The CTR was measured as the ratio of the heart circumference to the 

thorax circumference. FAC for each of the four cardiac chambers was calculated as 

(maximum pixel area − minimum pixel area)(maximum pixel area)−1. CA was calculated 

as the angle between a line centered on the spine and thorax and a line centered on either 

the left chambers or the right chambers, whichever side had the greatest area (the line 

centered on the cardiac chambers was chosen as a computational method of finding a line 

parallel to the intraventricular septum, used clinically and in ground-truth labeling). Various 

checks were implemented to prevent calculation of clinical values from images with poor 

segmentation results. Concordance of predicted quantitative measurements were compared 

to ground-truth measures (labeled images and clinical measurements when available) using 

the Mann–Whitney U test. Measurements among normal, TOF and HLHS groups were 

compared using the Kruskal–Wallis test.

Model evaluation.

Overall accuracy, per-class accuracy, average accuracy, confusion matrices, F scores, 

receiver operator characteristics, C statistics and saliency maps (guided backpropagation) 

were calculated as previously described27,47. Grad-CAM was also used as previously 

described30. For performance analysis of segmentation models, Jaccard similarities were 

calculated in the standard fashion as the intersection of predicted and labeled structures 

divided by their union.

Comparison to human experts.

Clinicians with expertise in fetal cardiology (fetal cardiology and maternal–fetal medicine 

attendings, experienced fetal cardiology sonographers, fetal cardiology fellows, n = 7), were 

shown up to one image per view for the studies in the OB-125 test set and asked whether 

that study was normal or not. For segmentation, clinical labelers segmented a subset of 

images multiple times, and intra-labeler Jaccard similarities were calculated as a benchmark. 

Use of clinicians for validation was deemed exempt research by the UCSF CHR.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Due to the sensitive nature of patient data, we are not able to make these data publicly 

available at this time. Source data are provided with this paper.

Code availability

ResNet and U-Net are publicly available and can be used with the settings described in 

the Methods and in Extended Data Fig. 1. The model weights that support this work are 

copyright of the Regents of the University of California and are available upon request. 

Additional code will be available upon publication at https://github.com/ArnaoutLabUCSF/

cardioML.
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Extended Data

Extended Data Fig. 1 |. Neural network architectures and schematic of rules-based classifier.
a, Neural network architecture used for classification, based on ResNet (He et. al. 2015). 

Numbers indicate the number of filters in each layer, while the legend indicates the type 

of layer. For convolutional layers (grey), the size and stride of the convolutional filters is 

indicated in the legend. b, Neural network architecture used for segmentation, based on 

UNet (Ronneberger et. al. 2015). Numbers indicate the pixel dimensions at each layer. c, A 

schematic for the rules-based classifier (‘Composite dx classifier,’ Figure 1b) used to unite 

per-view, per-image predictions from neural network classifiers into a composite (per-heart) 

prediction of normal vs. CHD. Only views with AUC > 0.85 on validation data were 

used. For each view, there are various numbers of images k,l,m,n, each with a per-image 
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prediction probability pCHD and pNL. For each view, per-image pCHD and pNL were summed 

and scaled (see Methods) into a pair of overall prediction values for each view (for example 

PCHD3VT and PNL3VT). These are in turn summed for a composite classification. Evaluating 

true positive, false positive, true negative, and false negative with different offset numbers 

allowed construction of an ROC curve for each test dataset (Figure 3e). 3VT, 3-vessel 

trachea. 3VV, 3-vessel view. LVOT, left ventricular outflow tract. A4C, axial 4-chamber.

Extended Data Fig. 2 |. Bland-Altman plots comparing cardiac measurements from labeled vs. 
predicted structures.
CTR, cardiothoracic ratio; CA, cardiac axis; LV, left ventricle; RV, right ventricle; LA, left 

atrium, RA, right atrium. Legend indicates measures for normal hearts (NL), hypoplastic left 

heart syndrome (HLHS), and tetralogy of Fallot (TOF).

Arnaout et al. Page 16

Nat Med. Author manuscript; available in PMC 2021 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3 |. Model confidence on sub-optimal images.
Examples of sub-optimal quality images (target views found by the model but deemed 

low-quality by human experts) are shown for each view, along with violin plots showing 

prediction probabilities assigned to the sub-optimal target images (White dots signify mean, 

thick black line signifies 1st to 3rd quartiles). Numbers in parentheses on top of violin 

plots indicate the number of independent images represented in each plot. For 3VT images, 

minimum, Q1, median, Q3, and maximum prediction probabilities are 0.27, 0.55, 0.74, 

0.89, and 1.0, respectively. For 3VV images, minimum, Q1, median, Q3, and maximum 

prediction probabilities are 0.27, 0.73, 0.91, 0.99 and 1.0, respectively. For LVOT images, 

minimum, Q1, median, Q3, and maximum prediction probabilities are 0.31, 0.75, 0.92, 0.99, 

and 1.0, respectively. For A4C images, minimum, Q1, median, Q3, and maximum prediction 

probabilities are 0.28, 0.80, 0.95, 0.99, and 1.0, respectively. For ABDO images, minimum, 

Q1, median, Q3, and maximum prediction probabilities are 0.36, 0.83, 0.97, 1.0, and 1.0, 

respectively. Scale bars indicate 5mm. 3VT, 3-vessel trachea. 3VV, 3-vessel view. LVOT, left 

ventricular outflow tract. A4C, axial 4-chamber; ABDO, abdomen.
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Extended Data Fig. 4 |. Misclassifications from per-view diagnostic classifiers.
Top row: Example images misclassified by the diagnostic classifiers, with probabilities for 

the predicted class. Relevant cardiac structures are labeled. Second row: corresponding 

saliency map. Third row: Grad-CAM. Fourth row: possible interpretation of model’s 

misclassifications. Importantly, this is only to provide some context for readers who are 

unfamiliar with fetal cardiac anatomy; formally, it is not possible to know the true reason 

behind model misclassification. Fifth row: Clinician’s classification (normal vs. CHD) 

on the isolated example image. Sixth row: Model’s composite prediction of normal vs. 

CHD using all available images for the given study. For several of these examples, the 

composite diagnosis per study is correct, even when a particular image-level classification 

was incorrect. Scale bars indicate 5 mm. 3VV, 3-vessel view. A4C, axial 4-chamber. SVC, 

superior vena cava. PA, pulmonary artery. RA, right atrium. RV, right ventricle. LA, left 

atrium. LV, left ventricle.
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Extended Data Fig. 5 |. Inter-observer agreement on a subset of labeled data.
Inter-observer agreement on a sample of FETAL-125 is shown as Cohen’s Kappa statistic 

across different views, where poor agreement is 0–0.20; fair agreement is 0.21–0.40; 

moderate agreement is 0.41–0.60; good agreement is 0.61–0.80 and excellent agreement 

is 0.81–1.0. Of note, images where clinicians did not agree were not included in model 

training (see Methods). Most agreement is good or excellent, with moderate agreement on 

including 3VT and 3VV views as diagnostic-quality vs. non-target. 3VT, 3-vessel trachea. 

3VV, 3-vessel view. LVOT, left ventricular outflow tract. A4C, axial 4-chamber, ABDO, 

abdomen, NT, non-target.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of the ensemble model.
a, Guidelines recommend that the indicated five axial views be used to detect CHD. The 

illustration was adapted with permission from yagel et. al.45. b, Schematic of the overall 

model, which is an ensemble of the components shown. From a fetal ultrasound, a DL 

classifier detects the five screening views (‘DL view classifier’). Subsequent DL classifiers 

for each view detect whether the view is normal or abnormal (‘DL dx classifiers’). These 

per-image, per-view classifications are fed into a rule-based classifier (detailed in Extended 

Data Fig. 1c) to create a composite diagnostic decision as to whether the fetal heart is 

normal or abnormal (‘composite dx classifier’) (the abdomen view was not included in the 

composite diagnostic classifier because, clinically, the abdomen view does not commonly 

contribute to diagnosis; see Methods for further details). A4C views were also passed to a 

segmentation model to extract fetal cardiac biometrics. NT, non-target; dx, diagnosis.
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Fig. 2 |. Performance of the view detection step of the ensemble model.
Normalized confusion matrix (a) and ROC curve (b) showing classifier performance on 

normal hearts from the FETAL-125 test set. Pos., positive. c, Violin plots showing prediction 

probabilities for this test set, by correctness. In violin plots, white dots signify medians, 

the thick black line signifies first to third quartiles. Numbers in parentheses below the x 
axis indicate the number of independent images in each violin plot. For correctly predicted 

images, the minimum, first quartile, median, third quartile and maximum prediction 

probabilities are 0.29, 0.98, 1.0, 1.0 and 1.0, respectively. For incorrectly predicted images, 
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the minimum, first quartile, median, third quartile and maximum prediction probabilities 

are 0.32, 0.60, 0.75, 0.92 and 1.0, respectively. Normalized confusion matrix (d) and ROC 

curve (e) showing classifier performance on normal hearts from the OB-125 test set. f, 
Percent of fetal surveys from the OB-125 test set with model-detected views (compared to 

human-detected views shown in parentheses). Gray shading indicates views with AUC ≥ 75 

for normal versus abnormal prediction from Fig. 3a,d. g, One example test image is shown 

per view (top row), with a corresponding saliency map (unlabeled, second row; labeled, 

third row). Fourth row, Grad-CAM for the example images. Scale bars indicate 5 mm. SM, 

saliency map; DA, ductal arch; AA, aortic arch; SVC, superior vena cava; PA, pulmonary 

artery; TV, tricuspid valve; AV, aortic valve; MV, mitral valve; IVS, interventricular septum; 

IAS, interatrial septum (foramen ovale); RA, right atrium; RV, right ventricle; LA, left 

atrium; DAo, descending aorta; LV, left ventricle; UV, umbilical vein; IVC, inferior vena 

cava.
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Fig. 3 |. Performance of the diagnostic steps of the ensemble model.
ROC curves showing the model’s ability to distinguish normal hearts versus any CHD lesion 

mentioned in Table 1 (a), normal heart (NL) versus TOF (b) and NL versus HLHS (c) 

for each of the five views in the FETAL-125 test dataset. d, ROC curve for prediction of 

per-view normal versus abnormal hearts from external data (BCH-400 test set). e, ROC 

curves for composite (per-heart) prediction of normal versus abnormal hearts for each of 

the four test datasets. ‘OB-4000ll’ indicates the high-confidence target images from the 

OB-4000 test set (images with view-prediction probability at or above the first quartile). f, 
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ROC curve for composite (per-heart) prediction of normal heart versus CHD for different 

testing scenarios for OB-125. OB-125*, all possible images present. OB-125†, only five 

images present, one image per view (teal line is model performance; teal dots denote 

clinician performance). OB-125‡, low-quality images. OB-125§, 6.5% of views scrambled 

to simulate error in view classification (average of three replicates). g, Example of images 

given to both the model and clinicians for determination of normal versus abnormal hearts in 

a head-to-head comparison. h, Top row, one example test image is shown for normal heart, 

TOF and HLHS; 3VV and A4C views are shown. Second row, corresponding unlabeled 

saliency map. Third row, labeled saliency map. Fourth row, Grad-CAM provides a heatmap 

of regions of the image most important to the model in prediction. In 3VV, the relative 

sizes of the aorta and pulmonary artery distinguish these lesions from normal hearts; and 

in A4C, the angled intraventricular septum and enlarged right heart distinguish TOF and 

HLHS, respectively, from normal hearts. Scale bars indicate 5 mm.
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Fig. 4 |. Analysis of fetal cardiac structure and function measurements based on segmentation 
provided by the ensemble model.
a,s Example input image, ground-truth label of anatomic structures, prediction of anatomic 

structures and calculations of the CTR and CA for a normal heart (a–d), TOF (e–h) and 

HLHS (i–p). Segmentation of an image series (q) allows plots of chamber area over time 

(label, r; prediction, s) and identification of image frames in ventricular systole (S) and 

diastole (D) for FAC calculation. Scale bars indicate 5 mm. Teal, thorax; green, spine; 
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purple, heart; red, left ventricle; pink, left atrium; blue, right ventricle; light blue, right 

atrium.
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