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Abstract

Type 2 diabetes is associated with several potential comorbidities, among them impaired 

wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease­

associated abnormal cellular responses, infection, immunological and microvascular dysfunction, 

and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment 

and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve­

derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts 

bidirectionally to effect normal wound healing after trauma. However, the mechanisms through 

which cutaneous innervation modulates wound healing are poorly understood, especially in 

humans. Better understanding of these mechanisms may provide the basis for targeted treatments 

for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology 

with a focus on neural involvement in normal and diabetic wound healing, as well as future 

therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.

INTRODUCTION

In the United States, more than 30 million individuals above the age of 18 years have 

type 2 diabetes (T2D)1 and more than 34% of the US adult population are prediabetic (an 

estimated 88 million adults).2 From 2012 to 2017, the costs of diabetes increased by 26% 

to $327 billion USD,1 and the global economic burden is projected to exceed $627 billion 

USD by 2035.3 Smoking,4 a sedentary lifestyle,5 and obesity6 are recognized risk factors 

for developing diabetes-related complications, including life-threatening heart attacks and 

strokes.

Chronic, nonhealing wounds, particularly ulcerations of the foot, are the leading cause 

of nontraumatic lower extremity amputations in the United States at a frequency 

of approximately 200,000 annually.7,8 Disease-associated abnormal cellular responses, 

infection, immunological and microvascular dysfunction, and peripheral neuropathy are 

implicated in the pathogenesis of the wound healing impairment and diabetic foot 

ulcer.9,10 Current treatment options are limited, particularly pathogenesis-based therapeutic 

approaches for preventing or healing diabetic ulcers.
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MECHANISM OF NORMAL WOUND HEALING

The skin acts as a protective barrier, preventing desiccation and representing the body’s key 

site of protection against the environment. Receptors on keratinocytes and epidermal sensory 

nerve afferents detect extrinsic stimuli and respond to prevent and react to an injury. When 

a wound occurs in a healthy individual, communication among keratinocytes, nerves, and 

other cells leads to a series of distinct, yet overlapping phases as part of the “cascade of 

healing” (Fig 1). Hemostasis, an immediate response, involves the constriction of injured 

blood vessels and activation of platelets to form a fibrin clot,11 which serves as a scaffold 

for incoming inflammatory cells.12 Proinflammatory cytokines, among them interleukin 

(IL)-1β, IL-6, tumor necrosis factor (TNF)-α,13 and interferon-gamma (IFN-γ),14 recruit 

neutrophils into the wound bed, followed by monocytes, which become tissue-activated 

macrophages 48–96 hours postinjury.15 These cytokines and growth factors stimulate 

epithelial cells, endothelial cells, and fibroblasts to proliferate and migrate into the wound 

area. Fibroblasts fill the injured area and differentiate into myofibroblasts, first synthesizing 

collagen III, but also collagen I, proteoglycans, and matrix metalloproteinases (MMPs),16 

to form and remodel the extracellular matrix. Angiogenesis occurs in this developing 

granulation tissue matrix due to the presence of low oxygen,17 low pH, and high lactate 

levels.18 Keratinocytes begin the re-epithelization process through successful migration 

across the matrix, with proliferation and then differentiation into a functional epidermis. 

Migration ends when keratinocytes from opposing edges meet. A thin epithelial layer 

is established as keratinocytes form new adhesions to the underlying matrix.19 Through 

keratinocyte proliferation and differentiation, the multilayer epidermis is ultimately formed. 

Growth factors, such as epidermal growth factor (EGF),20 keratinocyte growth factor 

(KGF),21 insulin-like growth factor (IGF)-1,22 and transforming growth factor (TGF)-α,23 

regulate keratinocyte activity.24 Although re-epithelization is a clinical indicator of wound 

healing, granulation tissue reinforcement completes the reparative process. The remodeling 

phase of wound healing, also known as the maturation phase, involves strengthening the 

scarred area by crosslinking and improving collagen fiber alignment, with apoptosis of cells 

from the healing process that are no longer needed.

WOUND HEALING ABNORMALITIES IN DIABETES: TISSUE AND 

CELLULAR FACTORS

Diabetes affects inflammation,25 matrix deposition,26 and angiogenesis27 of the wound 

healing cascade as a result of numerous factors (Fig 1; Table I). Many studies of 

diabetic wounds have investigated the impaired blood flow leading to poor oxygenation 

and nutrient delivery, chronic exposure to hyperglycemia, immune cell dysregulation, 

and propensity for bacterial colonization and infection. Importantly, chronic induction of 

proinflammatory cytokines, such as TNF-α28 and IL-1β,29,30 stalls the inflammatory phase 

and disrupts wound healing. Defects have been described in neutrophil function, leukocyte 

chemotaxis, macrophage phagocytosis, and bactericidal capacity in diabetic wounds, leading 

to inadequate bacterial clearance.
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Normal healing is characterized by a transition in the ratio of macrophage phenotypes 

M1 and M2, reflecting the shift from inflammatory to proliferative functions. Classically 

activated M1 macrophages secrete high amounts of proinflammatory cytokines (eg, IL-1, 

IL-6, IL-12, TNF-α)31 and oxidative metabolites (eg, nitric oxide and superoxide) to 

facilitate pathogen killing activity and wound debridement early after wounding. Varied 

stimuli, including IL-4 and IL-13 signaling,32 evoke M2 macrophage activation, and aid 

in the resolution of inflammation. The phenotypic switch to an M2 macrophage is marked 

by upregulation of classical M2 cytokines and growth factors, such as IL-10, vascular 

endothelial growth factor (VEGF), transforming growth factor (TGF)-β1, and platelet­

derived growth factor (PDGF), to encourage granulation tissue formation, angiogenesis, and 

cellular proliferation.32,33

In diabetes, the ratio of M1 (proinflammatory) to M2 (anti-inflammatory) macrophages 

is increased, impeding the proliferative phase in wound healing.34 Diabetes also increases 

neutrophil extracellular traps (NETs), aggregates of de-condensed chromatin formed by 

neutrophils to neutralize organisms, which suggests another deleterious effect of the 

enhanced inflammatory response.35,36 Hyperglycemia accelerates the formation of advanced 

glycation end product (AGE),37 which are thought to contribute to impaired healing 

by increasing oxidative stress,38 changing the expression and function of proteins that 

are critical to wound repair,39,40 enhancing the inflammatory response by activation of 

transcription factors,41,42 and potentially leading to exaggerated cellular apoptosis.43

In addition to increased levels of glycosylated proteins, a measure of poor diabetic 

control,44,45 glycosphingolipids, and particularly ganglioside GM3, are increased in diabetic 

tissues, including skin,46–48 and have been implicated in impaired healing. Increases in 

GM3 suppress growth factor-induced responses, including insulin, IGF-1,49 and EGF 

receptor signaling, leading to delayed skin cell migration and inhibition of cell proliferation. 

Suppression of expression of GM3 synthase (GM3S), the enzyme required for synthesis of 

GM3, using genetic (knockout or topically applied siRNA nanoconstructs) or biochemical 

(glucosylceramide synthesis small molecule inhibition) approaches accelerates healing in 

wounded mouse models of diet-induced type 2 diabetes.46,48 Inhibition of GM3S in cultured 

keratinocytes reverses the glucose- and TNF-α-induced slowing of cell migration through 

increasing insulin- and IGF-1-induced IGF-1 receptor phosphorylation and activating 

Rac1.46–48 These data suggest GM3 depletion as a pathogenesis-based direction in therapy.

Diabetic cells retain “metabolic memory,” including at the level of histone modification,50,51 

genome-wide DNA methylation,51 and microRNA expression patterns.52,53 Hyperglycemia 

leads to an altered miRNA signature in wound healing, which may be linked to the 

dysregulated inflammation in diabetes54 and has been positively correlated to the severity 

of diabetic foot ulcers.55 Dysregulated expression of miRNAs influences the cellular 

transcriptome and may impair wound healing in diabetes. For example, miR-27–3p 

overexpression in diabetic foot ulcer-derived fibroblasts (DFUFs) and diabetic mice,56 

as well as downregulation of miR-129 and −355 in human diabetic wounds,57 hinders 

healing by impairing fibroblast function and inhibiting MMP-9 expression, respectively. 

In a comparative analysis of miRNA expression profiles in human DFUFs vs normal foot­
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derived fibroblasts (NFF), aberrant expression of miR–21–5p, miR–34a–5p, and miR–145–

5p was linked to DFUF dysfunction in proliferation, migration, and differentiation.58

CONTRIBUTIONS OF PERIPHERAL NERVE DYSFUNCTION TO POOR 

DIABETIC WOUND HEALING

Both sensory and autonomic nerves populate skin.59 Autonomic nerves are restricted to the 

dermis and regulate lymphatic function, blood circulation, and appendageal function.60 In 

contrast, cutaneous sensory nerves predominate and are widely distributed in skin, including 

extending into the upper epidermis to interface with the environment. The trigeminal ganglia 

comprise many of the sensory neurons innervating the head. Conversely, the dorsal root 

ganglia largely innervate the rest of the body. Neuronal afferents that traverse the dermis 

to the epidermis originate in dorsal root ganglia in the spinal cord and only their dendritic 

extensions populate skin, with sensations transmitted from the peripheral nerve terminals to 

the body in the spinal cord. Distal foot skin represents the longest extension of a dorsal root 

ganglion in the body.

Early sensory nerve classification was strictly based on the size, speed of impulse 

conduction, and function (including neuropeptide secretion and type of sensation 

recognized). The thinly myelinated Aδ low-threshold mechanoreceptors are nerve fibers 

that carry thermal, mechanoreceptive (pressure), and acute nociceptive (pain) signals. The 

small, unmyelinated C fibers (~70%) transmit information related to pain, temperature, 

and itch,61 sending slower and more sustained impulses than Aδ fibers.62,63 C fibers are 

classically divided into 2 subsets, peptidergic (PEP) and nonpeptidergic (NP). Peptidergic C 

fibers produce neuropeptides such as substance P (SP) and calcitonin gene–related peptide 

(CGRP), and express the tropomyosin receptor kinase A (TrkA). In contrast, nonpeptidergic 

C fibers bind to isolectin B4 (IB4) and express the ATP-binding purinergic receptor P2 × 

3. However, markers for the PEP and NP C fibers are not absolute, for example, 1 subset 

of NP C fibers expresses Calca, the gene that encodes for neuropeptide CGRP (Table II). 

Indeed, use of single cell transcriptomics has demonstrated a previously unappreciated level 

of heterogeneity among DRG neurons, indicating that their functions may be very precisely 

tuned according to phenotype. Moreover, this type of analysis has highlighted important 

differences in the properties of DRG neurons based on sex and species, illustrating the 

translational challenges that face novel therapies for pain and itch based on regulation of 

sensory neuron function. Aδ and C fibers are considered polymodal due to their ability to 

sense various different stimuli.65 TH-expressing C fiber low-threshold mechanoreceptors (C­

LTMRs), which are unmyelinated and express tyrosine hydroxylase and dopamine/L-DOPA, 

are also likely involved in pain sensation but not well understood.66

Diabetic neuropathy occurs in almost 90% of diabetic foot ulcers.67 Neuropathies selectively 

target C and Aδ fibers, with degeneration linked to impaired healing in both type 1 and 

type 2 diabetes.68 Sensory neuropathy can lead to neuropathic pain and/or loss of sensation, 

increasing the risk of injury and foot ulceration by 8- to 18-fold and lower extremity 

amputation by 2- to 15-fold.69 Length-dependent “dying back” of axons, primarily involving 

the distal portions of the longest myelinated and unmyelinated sensory axons, results in 
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nerve dysfunction.70 Given the predominant degeneration of the small C and Aδ fibers, 

a common initial presentation is symmetric loss of temperature, light touch sensation, or 

painful prickling sensations in a “stocking and glove” distribution.

Diagnosis of small fiber neuropathy is based on the presence of specific sensory deficits, 

discovered through examination and validated by structural and functional assessments. 

Structural assessment relies on skin biopsy71–75 for nerve fiber assessment that combines 

quantification of intraepidermal nerve fiber density (IENFD) and dermal nerve bundles. 

Functional assessment involves quantitative sensory testing, pain-related and laser induced 

potential recording, and single axon recording using microneurography.76 Noninvasive 

measures, such as quantifying axon-reflex mediated vasodilation (LDIflare technique)77–79 

and measuring nerve conduction velocity,80,81 have also been investigated to evaluate 

abnormal sensory nerves. These measures have shown the reduction in cutaneous 

innervation in biopsies of diabetic human subjects based on reduced immunoreactivity to 

PGP9.5 (detecting sensory neurons) and a variety of neuropeptides (particularly calcitonin 

gene-related peptide (CGRP), substance P (SP), and neuropeptide Y) (Table III).71,72 

Characteristic findings in human diabetic skin include fewer and more fragmented nerves 

throughout the dermis82,83 and reduction in nerve afferents in the epidermis84–88 and 

papillary dermis,89 even in the absence of clinically-detectable sensory neuropathy.90 

Diabetic subjects can show markedly reduced amplitudes and neural conduction velocities 

associated with nerve fiber loss.91 Similar changes in the anatomy of cutaneous sensory 

afferents have also been observed in rodent models of diabetes, in which different 

subpopulations of DRG neurons, such as the sodium channels NaV1.8 or the G-protein 

coupled receptor MrgD (member D of the Mas-related G-protein coupled receptors or 

Mrgprs), can be precisely identified by making use of the genetic expression of fluorescent 

markers.

Reduction in VEGFR-expressing dermal blood vessels82,92 and presence of a low-grade 

inflammatory cell infiltration93 have been associated with the innervation abnormalities 

in diabetes.90 Despite these known abnormalities, the role of cutaneous innervation and 

specific neuronal subsets in normal healing is more poorly understood than the role of other 

tissue types, such as the vasculature, keratinocytes, fibroblasts, and immune cells.94–106

POOR WOUND HEALING AND REDUCED INNERVATION: RESULTS FROM 

EXPERIMENTAL DENERVATION

Skin nociceptive effectors modulate gene expression of extracellular matrix (ECM), 

transcription factors, cytoskeleton, proteases, receptors, intracellular transducers, and 

adhesion molecules,107 suggesting a role in wound healing. Studies in the chick embryo 

suggest a positive reciprocal association between nerves and wound repair.108 Chemical 

and surgical denervation studies support a role for cutaneous innervation in wound healing, 

with reduction in small nerve fibers by at least 70% leading to features of poor wound 

repair.109 Reduction of sensory nerves by subcutaneous capsaicin treatment in nondiabetic 

mice and rats delayed re-epithelialization, reduced epidermal stem cell migration, and 

suppressed angiogenesis and VEGF expression.110–112 In both nondiabetic and diabetic 
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mouse models, chemical ablation of sympathetic nerves using intraperitoneal injection of 6­

hydroxydopamine (6-OHDA) delayed wound re-epithelization and reduced inflammation,113 

but in leptin-deficient diabetic mice also increased wound contraction.114

Surgical denervation in nondiabetic mice, rats, and rabbits led to markedly delayed closure 

of wounds on the ear pinnae and dorsum and have shown delayed wound contraction,115 

altered keratinocyte proliferation,116 delayed re-epithelialization,117 and reduced granulation 

tissue.118 Transplantation into denervated wounds of skin-derived precursors (SKPs),119 a 

population of neural crest-related stem cells within the dermis that participate in cutaneous 

nerve regeneration,120 leads to wound cell proliferation, increased nerve fiber density, and 

higher neuropeptide levels (nerve growth factor [NGF], SP, and CGRP) in mice.

Experimental intracutaneous excision axotomy in human subjects with diabetes and 

neuropathy leads to slower healing than in healthy controls.121 Punch biopsies of the distal 

thigh skin were performed, followed by concentric overlapping biopsies at various time 

points. Compared to healthy controls, the diabetic wounds had reduced re-epithelialization 

and granulation tissue, poor vascularization, and diminished dermal innervation and 

Schwann cells in the axotomy site.121 Blood vessel growth into the excision site preceded 

dermal nerve fiber regeneration in both diabetics and nondiabetics, suggesting that blood 

vessels act as a framework for later axon and Schwann cell growth.121 Diabetic subjects 

with epidermal denervation through capsaicin treatment also showed delayed rates of 

reinnervation when compared to healthy controls.121

Prevention of nerve degeneration improves healing.

Neuropathy has been noted in many of the rodent models of diabetes and poor wound 

healing (Table IV). The degree of obesity and severity of diabetes vary in these 

models.89,109,122 In general, obese mice with more severe diabetes show a more severe 

wound healing impairment. Regardless of the extent of diabetes and obesity, however, 

the reversal of neuropathy has been shown to be convergent with improvement in wound 

healing. Knockout of GM3 synthase (with resultant ganglioside GM3 reduction) reversed 

both the neuropathy (characterized by loss of sensory neurons and increased sensitivity 

to pain with von Frey testing) and the wound healing defect in mice fed a high-fat diet, 

regardless of the extent of obesity or diabetes.123 Diet-induced obese diabetic mice with 

selective chemokine receptor CXCR4 deletion from Nav1.8-positive dorsal root ganglia 

(DRG) neurons failed to develop of mechanical allodynia and small fiber degeneration, 

despite diet-induced obesity and diabetes.124 Antagonism of CXCR4 by AMD 3100, a small 

molecule inhibitor, improved wound healing in db/db mice. These observations suggest 

some potential therapeutic directions for diabetic neuropathy and improved healing.

Cutaneous afferents are not static, but undergo remodeling based on environmental cues. 

Deep wounding has been linked to active retraction of preexisting axons from the wound 

region in streptozotocin-induced (type 1) diabetic mice, as evidenced by reduced expression 

of the growth-related axon plasticity marker, GAP43.125 In contrast, superficial perturbation 

may increase remodeling. Hair clipping in transgenic mice with fluorescent axons led to 

epidermal proliferation, increases in the expression of follicular stem cell markers, and axon 

remodeling.126 Schwann cells in peripheral nerves also possess exceptional plasticity. Injury 

NOWAK et al. Page 6

Transl Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to peripheral nerves has been shown to activate peripheral glia by reprogramming them into 

“repair cells”, which prompts glial cell dedifferentiation, proliferation, and dissemination 

into the wound bed to promote healing.127 Better understanding of these responses is 

important for uncovering the role of nerve plasticity in normal and diabetic wound repair.

A COMPLEX NETWORK OF SENSORY NERVES IN MOUSE SKIN

As indicated above, our understanding of the subtypes of sensory nerves in skin is rapidly 

evolving through transcriptomic128–130 and proteomic big data analysis of murine (and more 

recently monkey and human) DRGs. More than a dozen morphologically, physiologically, 

and genetically distinct primary somatosensory neuron subtypes have been described based 

on studies that utilize single cell RNA-sequencing techniques and microarrays.128,131–134 

For example, studies of the molecular properties and receptor and ion channel expression 

of DRG neurons have led to identification of the neuropeptide Y (NPY) receptor,135 

MRGPRs,136 voltage gated Na+ (Nav) channels,137,138 transient receptor potential (TRP) 

channels,138–140, ATP receptors (such as purinoceptor P2 × 3 and P2 × 4),141 and tyrosine 

kinase receptors (TRKs)142 (Table II). The TRP family of receptor ion channels are 

major signal detectors and transducers in nociceptive neurons and, with Nav1.8 143 and 

MRGPRD,144 are thought to play a major role in transmitting the sensation of chronic skin 

pain.

More recently, the number of DRG neuron subtypes in mice and human has expanded into 

at least 14 subtypes, although the ultimate degree of heterogeneity may well be greater. 

These subtypes are based on coupling single cell RNA sequencing (scRNA-seq) and single­

cell polymerase chain reaction (PCR) confirmation128,145 with in vivo whole-cell patch­

clamp recording of randomly selected DRG neurons. Moreover, another interesting benefit 

of a single cell transcriptional approach is the possibility of discovering transcriptional 

plasticity associated with pathological states, which may increasingly guide our choice 

of therapeutic targets. Determining the functional consequences of different types of 

transcriptomal patterning is of great interest (Table V).146 The rapid progress in determining 

sensory neuronal subsets involved in pain promises to open the door to delineating their 

roles in diabetic neuropathy and wound healing. Transcriptome profiling of DRG neurons 

has now been performed in rodents with and without pathological conditions, such as 

chronic pain induced by inflammation or injury133,147,148 and diabetes.149 In rats, 66 RNA 

transcripts related to inflammation, hyperalgesia/analgesia, cell growth, and cell survival 

were differentially expressed between diabetics and controls. Diabetics showed not only an 

increase in pain-related genes, but in regenerative-related genes, suggesting an attempt to 

switch to a regenerative program.149

Early studies suggest differences between human and mouse sensory neuronal subsets.

Importantly, early studies of scRNA-seq of human DRGs have shown differences in the 

subsets of mouse (see Table VI) vs human peripheral afferents.150 An integrative analysis 

with RNA-seq data of human and mouse DRGs revealed broad conservation of nociceptor­

enriched genes (eg, P2XR3 [P2 × 3 receptor], SCN10A [Nav1.8], SCN11A [Nav1.9], 

NTRK1 [TrkA], and MRGPRD [MRGPRD]) across mouse and human DRGs,151 although 
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the relative expression of different subsets and co-expression of markers on various subsets 

differed between mice and humans.150 For example, in situ hybridization by multiplex 

RNAscopy showed overlap of CGRP and P2 × 3R neuronal subpopulations present in 

human lumbar DRGs, but not in mouse DRGs.152 Differences in the mRNA expression 

patterns of human vs mouse DRGs for transient receptor potential channels, cholinergic 

receptors, potassium channels, and sodium channels was also found.152 Overall, there is 

only partial concordance of preclinical results related to wound healing in vitro (57%) and 

in small laboratory mammals (53%) with clinical results in humans.153 These differences 

between human and mouse DRG subsets and their function may explain the poor correlation 

in results of preclinical rodent vs human clinical trials in response to therapeutics for 

diabetic healing.

Given these molecular and electrophysiological differences between rodent and human 

DRG sensory neuron and cutaneous afferent subtypes, it will be crucial to validate the 

molecular mechanisms underlying impaired wound healing in diabetes and the potential 

therapeutic targets using human samples (eg, human 3D skin equivalent models of 

diabetes154 and diabetic wound biopsies). Nevertheless, transcriptional heterogeneity among 

neuronal clusters contributes to the functional specificity and responses to cutaneous stimuli 

of specific neuronal subtypes in both mice and humans. Given the diversity of neurons, 

elucidating key neuronal subpopulations in the context of diabetic neuropathy would 

advance our understanding of impaired diabetic wound healing.

BIDIRECTIONAL COMMUNICATION BETWEEN NEURONS AND OTHER 

CELLS IN HEALTHY AND DIABETIC SKIN

More recently, attention has focused on neuropeptides, such as CGRP and SP (one set 

of neurotransmitters typically released by many DRG neurons), and neuromodulators 

(acting on neurons) as messengers for bidirectional communication between skin cells 

and nerve afferents, including in studying wound repair. In skin, neuropeptides released 

by peripheral sensory nerves bind to receptors on a variety of skin cells, among them 

keratinocytes,155–157 dermal vascular endothelial cells,158,159 dermal dendritic cells,160,161 

Langerhans cells,162–165 mast cells,166,167 and fibroblasts168 (Table III). Neuropeptide­

specific receptor expression in both neuronal and skin cells suggest a close functional 

interaction between neurons and skin.169 In addition, epidermal cells (keratinocytes, 

Langerhans cells, and Merkel cells) can also express neuroactive molecules and participate 

in neurogenic inflammation.170 For example, ATP, neurotrophins, and cytokines171,172 are 

secreted by keratinocytes and are capable of modulating sensory neurons. Keratinocytes 

have been shown to communicate with nonpeptidergic (ie, MrgD+/IB4-binding C fibers) 

and deeper projecting peptidergic C fibers, as well as Aδ fiber nociceptors.131,132,173–175 

For example, ATP release by keratinocytes activates P2 × 4 receptors on sensory neurons to 

relay touch perception from skin, but P2 × 4 knockdown in mice also dampens the firing rate 

of deeper afferents.173 Furthermore, skin cells are capable of releasing axon guidance cues 

through netrins and semaphorins, which may direct nerve fiber growth.176,177
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NEUROPEPTIDES AS MEDIATORS IN CUTANEOUS WOUND HEALING

Although barely detectable in unstimulated skin, neuron-derived neuropeptides are 

significantly increased by wounding98 and direct chemical and electrical stimulation.178–182 

In fact, increases in specific neuropeptides are linked temporally to the inflammation, 

proliferation, and migration phases of wound healing (Fig 1). Several neuropeptides, among 

them CGRP, SP, corticotropin releasing factor (CRF), α-melanocorticotropin releasing 

hormone (α-MSH), neurotensin (NT), neurokinin A (NKA), and neuropeptide Y (NPY), 

mediate important wound healing functions (Table III). These neuropeptides have also been 

shown to influence vasodilation183,184 and inflammatory responses,185 which are critical to 

normal healing in animal models.

Chronic nonhealing wounds and skin from subjects with diabetes and disease-associated 

peripheral neuropathy have increased expression and activation of neutral endopeptidase 

(NEP),186 a cell surface metalloprotease that degrades SP. Consistent with the observation 

in humans, over-expressed NEP in mutant diabetic mice diminishes the proinflammatory 

effects of SP that promote healing.187 Similarly, genetically modified nondiabetic mice 

without neuropeptide Y receptor (NPY-2Ra)188 or CGRP112 have a significant delay in 

cutaneous wound healing and decreased neovascularization. In diabetic mouse models, 

neuropeptide application to wounds, including neurotensin (NT)189 and SP,190 improves 

healing, variably reducing the inflammatory cell infiltrate,191 increasing angiogenesis,192 

and increased fibroblast proliferation and collagen deposition.193 In nondiabetic mice, 

intraperitoneal injection of α-MSH194 before skin wounding antagonizes inflammation, 

accelerates wound healing, and improves collagen fiber organization. A more holistic 

investigation into which neuropeptides are predominantly impacted by diabetes (especially 

human) is needed.

ANIMAL MODELS OF NEUROPATHY AND DIABETIC WOUND HEALING

Rodents are commonly used models for wound healing studies, but have been criticized 

because of the propensity of rodent skin to heal by contraction, rather than primarily by 

re-epithelialization, and the marked difference in epidermal thickness (ie, mice have 2–3 

layers vs the 7–10 layers of human epidermis).195,196 Nevertheless, several murine models 

of diabetes and associated neuropathy (Table IV) have been splinted to prevent wound 

contracture and encourage healing by re-epithelialization.197,198 Rodent models traditionally 

utilize wounds on the back rather than the typical human location on the foot, although 

an open full-thickness excision wound on the footpad of T2D rodents has recently been 

used.199 Despite their limitations, rodent models are the most feasible and cost-effective 

systems for studying genetic or biochemical alterations in sensory nerves or nerve subsets 

and their impact on wound healing in diabetes.110,200

Larger animals, however, can also serve as models of diabetes for studies with neuropeptide 

supplementation or tracking changes in cutaneous nerves. Rabbit ears as the site for 

wound experiments have the advantage being cartilaginous (naturally splinted) to limit 

contraction.201,202 The alloxan-induced type 1 diabetic rabbit model was used to show 

dysregulation in cytokine and neuropeptide gene expression in diabetic wounds.95,97 
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Similarly, a rabbit model of diabetic neuroischemic wound healing illustrated how a 

combination of a high M1/M2 ratio, failure to mount postinjury cytokine response, and 

diminished neuropeptide expression, contribute to wound-healing impairment in diabetes.95

Porcine skin is thought to be most similar to human skin with respect to anatomy 

(including neuroanatomy), immune cells, and collagen biochemistry, although the dermal 

microvascular density is less than in human skin.203,204 In contrast to the relatively 

poor concordance of rodent with human wound healing study results, pig models were 

78% concordant with human studies regarding wound healing therapies.203 In the porcine 

neuropathic pain model, as in human neuropathic pain,205 cutaneous (especially epidermal) 

small caliber C and Aδ afferents are decreased, keratinocyte expression of Nav1.7, the 

endothelin A receptor, and CGRP are increased (all expected to lead to nociceptor excitatory 

algesia), and expression of the keratinocyte endothelin B receptor, which mediates inhibitory 

analgesic mechanisms, is decreased.205

The Ossabaw pig is a relatively new model of T2D206 and has been used to study wound 

healing impairment. Ossabaw swine are obesity-prone. When fed a high-fat diet, they 

develop at least 5 of the 6 criteria of the metabolic syndrome, including primary insulin 

resistance, obesity with significant visceral adipose expansion, hypertriglyceridemia and 

increased LDL: HDL cholesterol, mild hypertension, and coronary artery disease.206,207 

Wounds in high fat diet Ossabaw pigs have exaggerated and persistent inflammation, lower 

abundance of endothelial cells in the granulation tissue (impaired vascularization), reduced 

fibroblast markers, and disorganized granulation tissue.208 Ocular neuronal and vascular 

alterations in the early time course of diabetic retinopathy pathogenesis were observed by 

electron microscopy in young Ossabaw pigs,209 suggesting that the diabetic Ossabaw pig 

model may be used for examining neurologic influences and treatment responses in diabetic 

wound healing that could more easily translate to humans with diabetes and chronic wounds.

IN VITRO MODELS OF WOUND HEALING

As an additional means to consider the impact of diabetic conditions in human models, 

researchers have studied cocultures of human skin cells and/or neurons210 to mimic in 

vivo conditions.211–214 Primary human keratinocytes cocultured with rat cutaneous primary 

afferent DRGs have up-regulated NGF production, and show both directed neurite outgrowth 

and enhanced keratinocyte proliferation, further emphasizing the dynamic interaction of 

sensory neurons and keratinocytes.215 A 3D coculture system of injured human skin 

explants with either rat sensory neurons or neuropeptides enabled the study of sensory 

neuron and neuropeptide influences on wound healing processes. The cocultures with rat 

sensory neurons promoted keratinocyte and fibroblast proliferation, stimulated collagen 

expression, and increased the enzymatic activity of matrix metalloproteins; addition of the 

neuropeptides led to human dermal fibroblasts proliferation, adherence, differentiation into 

myofibroblast, and increased matrix metalloprotein enzymatic activities in the early phases 

of wound healing.99 The quality of most 3D models is compromised, however, by having 

nonhuman components, with all-human cell models preferred.
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Primary human dorsal root ganglia (DRG) from cadavers216 or sensory neurons from 

induced pluripotent stem cells217 have also been cultured with cutaneous immune cells, 

keratinocytes, or fibroblasts.218–220 A coculture model of human keratinocytes and neural 

crest cell-derived sensory neurons demonstrated functional cross-talk between cell types 

through Ca2+ imaging experiments.221,222 A tissue-engineered skin model of peripheral 

nerve regeneration by incorporating collagen sponge populated with human endothelial cells 

and/or human fibroblasts was used to assess the influence of endothelial and epidermal cells 

on neurite growth. Spontaneous formation of numerous thick myelin sheaths surrounding 

motor fibers after long-–term culture was observed.223

In vitro human 3-dimensional (3D) tissue models (human skin equivalents) have also 

been engineered to resemble normal human skin in their morphology, proliferation, 

differentiation, and transcriptional patterns and responses.224 These models have been 

adapted to study the keratinocyte-fibroblast interactions in diabetes during wounding using 

3D models with human diabetic foot ulcer fibroblasts embedded into the bed underlying 

normal keratinocytes.154 Healing is delayed, with reduced keratinocyte migration to re­

epithelialize the wound and impaired extracellular matrix deposition compared to 3D 

cultures with foot fibroblasts from healthy controls.154,225 Incorporating neurons (and 

vasculature) into this model could be useful in understanding the influence of nerves 

in diabetic healing. Indeed, a tissue-engineered wound healing model made of: i) a 

perforated epidermal compartment with green fluorescent human keratinocytes; ii) a dermal 

compartment; and iii) sensory neurons demonstrated the impact of sensory neurons on 

wound closure via secretion of neuropeptide SP.96 Microfluidic cell culture systems226,227 

also provide a platform for probing functional properties of neurons and investigating 

neuronal-non-neuronal cell crosstalk.

FUTURE THERAPEUTIC PERSPECTIVES

Beyond cell cultures and 3D skin equivalents, the development of 3D printed skin 

equivalents offers the ability to incorporate skin features that traditional cell cultures lack, 

such as blood vessels and glands. A recently developed vascularized 3D printed skin 

model composed of epidermis, dermis, and hypodermis reflected the complexity of the 

human skin, including epidermal stemness and stratification.228 Similarly, fabrication of 

synthetic biocompatible vascular networks in combination with electrospinning and 3D 

printing techniques enabled the study of cutaneous angiogenesis in a more physiologically 

relevant environment229 with endothelial cell migration and tube formation in vitro. The 

development of more dynamic in vitro approaches through tissue engineering allows closer 

modeling of native human cell behaviors and may be a potential avenue for human neuronal 

investigations.

CONCLUSIONS

Current treatment options for individuals with diabetic foot ulcerations are limited, resulting 

in amputations and a large unmet need for improved management, ideally based on 

understanding disease pathogenesis. Much of the basic research that addresses nerves in 

wound healing is associative, but nevertheless supports the notion that cutaneous sensory 
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innervation, local neuropeptide release, and other mediating factors affect healing, including 

in diabetic models.

At this time, therapies that can reduce the pain of diabetic neuropathy, such as gabapentin, 

pregabalin, duloxetine, and amitriptyline, do not reverse the neuropathy itself and have not 

been noted to ameliorate the wound healing issues.230 Better understanding of the specific 

roles of nerve subtypes within DRGs in wound healing will be critical and may well suggest 

novel therapeutic targets. While not without their limitations, emerging in vivo and in vitro 

large animal and human models provide an opportunity to further investigate the molecular 

and cellular features of wound repair and advance our understanding of neural involvement 

in wound healing pathology. Translation of these observations related to reversal of the 

neuropathy and better healing in animal models could lead to a disease-modifying approach.
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NT neurotensin

SP substance P

TNF-α tumor necrosis factor-α

TRKs tyrosine kinase receptors

TRP transient receptor potential

T2D type 2 diabetes

VEGF vascular endothelial growth factor
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Fig 1. 
Cellular mechanisms involved in normal wound healing and their impairment in chronic 

diabetic wounds. Top: In contrast to healing in normal skin (left), healing in diabetic skin 

(right) is impaired. Chronic diabetic wounds have an epidermis that migrates poorly, an 

influx of dysfunctional inflammatory cells, and surface biofilm. In addition to impaired 

proliferation and migration of fibroblasts and endothelial cells in diabetic wounds, sensory 

innervation is deficient, with a reduction in intraepidermal nerve fiber density. Bottom: 

Normal wound repair involves a temporal sequence of overlapping phases: hemostasis, 
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inflammation, cell proliferation and migration, and remodeling. Unlike normal wounds, 

chronic wounds are stalled in the inflammatory phase. Neuropeptides have crucial roles at 

each stage of wound repair and are dysregulated in diabetes. While tachykinins substance 

P (SP) and neuropeptide Y (NPY), as well as calcitonin gene-related peptide (CGRP) 

are downregulated during diabetic wound healing, corticotropin releasing factor (CRF), 

α-melanocorticotropin releasing hormone (α-MSH), and neurotensin (NT) are upregulated, 

contributing to delayed healing.
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