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Background/Aims: Phthalate exposure is associated with altered reproductive function, but 

little is known about associations between phthalate and hormone levels in midlife women.

Methods: This cross-sectional analysis includes 45–54-year-old pre- and perimenopausal women 

from Baltimore, MD and its surrounding counties enrolled in the Midlife Women’s Health 

Study (n=718). Serum and urine samples were collected from participants once a week for 

four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, 

testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone 

(FSH), and anti-Müllerian hormone (AMH), and geometric means were calculated for each 

hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites 

from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific 

gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from 

common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, 

∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum 

of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of 

phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health 

factors. We also explored whether associations differed by menopause status, body mass index 

(BMI), and race/ethnicity.

Results: Most participants were non-Hispanic white (67%) or black (29%), college-educated 

(65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite 

concentrations than other U.S. women. Overall, the following positive associations were observed 

between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics 

(%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ:7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP 

(%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics 

(%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 

12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with 

progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) 

with AMH. Associations of phthalate metabolites with hormones differed by menopause status 

(strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in 

obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for 

estradiol and AMH).

Conclusions: We found that phthalate metabolites were positively associated with several 

hormones in midlife women, and that some demographic and lifestyle characteristics modified 

these associations. Future longitudinal studies are needed to corroborate these findings in more 

diverse midlife populations.

INTRODUCTION

Phthalates are commonly used to impart strength and flexibility to a variety of plastic 

products (1, 2). Additionally, low molecular weight phthalates are often used in personal 

care products to stabilize scents and colors (1, 2). Phthalates are non-covalently bound to 

the products in which they are used, allowing them to leach from products over time and 

resulting in human exposure on a daily basis (3, 4). Phthalates used in food and consumer 

good production can lead to human exposure by ingestion of foods contaminated with 

phthalates through processing or packaging and dermal absorption through use of phthalate
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containing personal care products and clothing (2, 5, 6). Additionally, people undergoing 

medical procedures are exposed to phthalates directly via medical devices (7, 8). Further, 

humans are exposed through routes such as inhalation of house dust and air contaminated 

with phthalates (9). Although phthalate exposure is ubiquitous in humans, exposure levels 

vary between populations and even sex. Women have higher exposure to phthalates than 

men, potentially due to their greater use of personal care products compared to men (10, 11). 

In fact, studies often find that phthalate metabolites are detectable in 99–100% of samples 

submitted by women (12, 13), making women an especially vulnerable population.

Phthalate exposure is of concern because phthalates have been shown to have endocrine 

disrupting capabilities (14–18). Epidemiological studies have shown that phthalates are 

associated with altered hormone levels in both men and women (19–22). Although several 

epidemiological studies have focused on phthalate exposure in a variety of populations, few 

studies have investigated health outcomes associated with phthalate exposure in mid-life 

women. Some studies in older women have shown associations between phthalates and 

health outcomes such as bone mineral density, hot flash experience, and weight change (23–

25). However, less is known about the relationship between phthalates and health outcomes 

during the menopausal transition (i.e. perimenopause) because most studies have thus far 

investigated women that classify as either pre- or postmenopausal.

The transition into the menopausal state is an event known for its hormonal fluctuations and 

discomforts. This transition begins when the ovaries undergo follicular exhaustion, which 

results in a shift in the hormonal milieu during the menopausal transition (26). In a cycling 

woman, the ovary is the primary source of the sex steroid hormones estradiol, progesterone, 

and testosterone (27). These sex steroid hormones interact with the hypothalamus and 

pituitary to affect the production of the gonadotropins, follicle stimulating hormone (FSH) 

and luteinizing hormone (LH), from the pituitary. As the ovary produces fewer sex 

steroid hormones with age, the negative feedback exerted by the ovarian hormones on the 

hypothalamus and pituitary is alleviated, leading to an increase in the release of FSH and 

LH (28). Additionally, in cycling women, anti-Mϋllerian hormone (AMH) is synthesized by 

cells within small, growing ovarian follicles, leading to high levels of AMH during prime 

reproductive years (29). Depletion of the ovarian reserve during aging leads to a loss of 

follicles that produce AMH, and subsequently, AMH levels decline (26). Thus, the hormonal 

profile of the non-cycling woman (i.e. postmenopausal) can generally be characterized as 

having lower levels of sex steroid hormones and AMH and higher levels of gonadotropins 

(30).

The primary objective of this study was to address a gap in previous knowledge about the 

associations between phthalate levels and hormones that fluctuate during the menopause 

transition. To do so, we investigated the overall associations of common urinary phthalate 

metabolites with reproductive hormones including estradiol, testosterone, progesterone, sex 

hormone binding globulin (SHBG), AMH, and FSH in the Midlife Women’s Health Study 

(MWHS). Because hormone levels may differ in women based on menopause status, midlife 

body mass index (BMI), and race/ethnicity, the secondary objective of this study was to 

evaluate differences in associations of phthalate metabolites with reproductive hormones by 

these characteristics (31–35).
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METHODS

Midlife Women’s Health Study Cohort

The Midlife Women’s Health Study Cohort (MWHS) is a longitudinal population-based 

study that recruited women from Baltimore, MD (USA) and its surrounding counties 

between the ages of 45 and 54 in 2006–2015. The full study protocol has been previously 

published (34). Briefly, women were eligible if they had 3 or more periods within the past 

12 months (pre- or perimenopausal), had no history of oophorectomy or hysterectomy, were 

not on hormone therapy, were not taking botanical supplements to alleviate menopausal 

symptoms, were not on oral contraceptives, were not pregnant, were not undergoing cancer 

treatment, and had no history of ovarian, breast, or endometrial cancer. The current study 

focused on year 1 of MWHS and included a total of 718 women who had information about 

reproductive hormones, urinary phthalate metabolite concentrations and/or specific gravity, 

and covariates (described in the statistical analysis section). All women gave written and 

informed consent according to procedures that were approved by the University of Illinois 

Review Board.

Demographic and lifestyle characteristics

At the baseline visit, participants filled out a detailed questionnaire about their demographic 

information, as well as lifestyle characteristics such as alcohol consumption, physical 

activity, and smoking status. Information on racial and ethnic background was obtained by 

asking women to choose their most representative race/ethnicity from the following options: 

Caucasian/white, African American/black, Hispanic, Asian, or other. Alcohol consumption 

was ascertained by asking women whether they consumed 12 alcoholic drinks in the past 

year (answer: yes, no). Women self-reported their leisure physical activity compared to 

others, and this was categorized as physically active much more or more than others, as 

much as others, or less or much less than others. Lifetime smoking status was self-reported 

as current, former, or never. Women who reported having at least 1 menstrual period within 

the last 3 months and at least 11 menstrual periods over the last year were considered 

premenopausal. Women were classified as perimenopausal if they experienced at least one 

menstrual period over the last year, but not the past 3 months, or if they experienced a 

menstrual period within the past 3 months, but had experienced 10 or fewer menstrual 

periods over the last year. At clinic visits, women were asked to list medications (over the 

counter and prescription) that they were currently taking. Additionally, at the first clinic 

visit, women had their height and weight measured by clinic staff and values rounded to the 

nearest 0.5 pound and 0.5 inch. Body mass index (BMI) in kg/m2 was calculated using the 

National Institutes of Health on-line BMI calculator.

Collection and measurement of hormones

Women visited the clinic once a week for up to four consecutive weeks for collection 

of serum samples. Visits to the clinic occurred in the morning to minimize fluctuation 

in hormones (36, 37). Levels of circulating hormones were measured in serum samples, 

which were stored at −20 °C prior to measurement. DRG® enzyme-linked immunosorbent 

assay (ELISA) kits were used to measure levels of estradiol, progesterone, testosterone, and 

SHBG. Lypocheck® from Bio-Rad Laboratories was used as a control with known values 
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for estradiol, progesterone, testosterone, and SHBG for every assay of these hormones. All 

samples, controls, and standards were run in duplicates. The limits of detection (LODs) 

for estradiol, progesterone, testosterone, and SHBG were 9.714 pg/mL, 0.045 ng/mL, 0.083 

ng/mL, and 0.77 nmol/L, respectively. The inter- and intra-assay %CVs were all ≤ 10.0, with 

the exception of estradiol which was ≤ 14.9.

Aliquots of serum from the first visit of each patient were submitted to the University 

of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core for 

measurement of levels of AMH and FSH. AMH was assayed via ELISA, and FSH was 

measured via radioimmunoassay (RIA). The LODs for AMH and FSH were 0.2 ng/mL and 

0.1 mIU/mL, respectively. The intra- and inter-assay %CVs for AMH were 3.9 and 6.2, 

respectively. The intra- and inter-assay %CVs for FSH were 3.2% and 4.9%, respectively.

Measurement of phthalate metabolites in urine

During the same visit in which women donated serum, spot urine samples were also 

collected. Each woman provided at least one and up to four urine samples (sample 

number was dependent on the number of clinic visits completed by each woman), which 

were pooled for each participant to measure phthalate metabolite concentrations. Due 

to the short half-lives of phthalates in the body and high within person variability of 

measured concentrations, previous studies have shown that a pooled sample better represents 

phthalate exposure compared to a single urine sample (38, 39). Urine samples were stored 

at −80 °C prior to measurement. Phthalates were measured in pooled urine samples 

via isotope dilution high-performance liquid chromatography negative-ion electrospray 

ionization-tandem mass spectrometry (HPLC-MS/MS) at the Metabolomics Center of the 

Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign. 

Phthalate metabolites measured included: mono-2-ethylhexyl phthalate (MEHP), mono-(2

ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl)phthalate (MEOHP), 

mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(3-carboxypropyl) phthalate 

(MCPP), mono-benzyl phthalate (MBzP), monoethyl phthalate (MEP), monobutyl phthalate 

(MBP), and mono-isobutyl phthalate (MiBP). The limits of detection (LOD) for each 

phthalate metabolite were as follows: MEHP: 0.2 ng/mL; MEHHP: 0.05 ng/mL; MEOHP: 

0.1 ng/mL; MECPP: 0.05 ng/mL; MCPP: 0.05 ng/mL; MBzP: 0.05 ng/mL; MEP: 0.1 

ng/mL; MBP: 0.05 ng/mL; and MiBP: 0.1 ng/mL. In addition, the intra-assay and inter

assay CVs were below 5%. Further, all standard curves had correlation coefficient values 

larger than 0.992 and all runs included internal standards.

Statistical Analysis

To evaluate associations of midlife urinary phthalate metabolite concentrations with 

hormone concentrations, covariates were chosen a priori and based on previous literature 

that informed a directed acyclic graph (Supplemental Figure 1). We assessed correlations 

among all covariates to evaluate potential multicollinearity issues and found that none of 

the covariates were strongly correlated with each other. Final statistical models evaluating 

overall associations of urinary phthalate metabolite concentrations with midlife hormones 

were adjusted for age, race/ethnicity, employment status, education, annual family income, 

marital status, menopausal status, alcohol consumption status, smoking status, physical 

Chiang et al. Page 5

Environ Int. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activity, midlife BMI, and current medication use. Age and income were included as 

continuous variables, while the other covariates were categorized with reference groups 

set as shown in Table 1. For our secondary objective, we a priori stratified our analyses 

as follows: pre- versus perimenopausal women; under-/normal weight (BMI < 25.0 kg/m2), 

overweight (BMI ≥ 25.0 – 29.9 kg/m2), versus obese (BMI ≥ 30.0 kg/m2) women; and 

non-Hispanic white versus black/other women. All stratified models included the previously 

listed covariates.

Urinary phthalate metabolite concentrations and serum hormone concentrations below the 

LOD were converted to the LOD/√(2). Because estradiol, testosterone, progesterone, and 

SHBG concentrations were assessed in multiple samples per participant, the geometric 

means of these hormones were calculated and used in statistical analyses. To account for 

differences in urine dilution, phthalate metabolite measurements were adjusted for specific 

gravity (SG) using the following formula: Pc = P[(1.018 − 1)/(SGi − 1)], where Pc is the 

specific gravity adjusted concentration, P is the measured concentration (ng/mL), 1.018 

is the median specific gravity of the overall MWHS population included in this analysis, 

and SGi is the specific gravity of each woman’s pooled urine sample (40). Specific gravity

adjusted phthalate metabolite concentrations were used to approximate exposure to common 

phthalate parent compounds. DEHP metabolites (MEHP, MEHHP, MEOHP, MECPP) were 

molar converted and summed (nmol/mL) to estimate exposure to DEHP (∑DEHP). The 

concentrations of the other major urinary phthalate metabolites (MCPP, MBzP, MEP, MBP, 

MiBP) were not molar converted (ng/mL). Additional phthalate sums (nmol/mL) were 

created to estimate phthalate exposure based on sources of exposure (personal care products, 

plastics) and potential biological mechanism (anti-androgenic). MEP, MBP, and MiBP were 

molar summed to estimate exposure to personal care product phthalates (∑PCP), while 

MCPP, MBzP, MEHP, MEHHP, MEOHP, MECPP were molar summed to estimate exposure 

to phthalates found in plastics (∑Plastics). Phthalate metabolites that were shown in in vitro 
and in vivo studies to have anti-androgenic properties (MBzP, MEHP, MEHHP, MEOHP, 

MECPP, MBP, MiBP) were molar summed to approximate exposure to anti-androgenic 

phthalates (∑AA) (17, 41, 42). All phthalate metabolites were also molar-covered and 

summed to estimate total phthalate metabolite concentrations (∑Phthalates).

We used linear regression models to assess overall and stratified associations of midlife 

urinary phthalate concentrations with midlife hormones. We first evaluated overall 

associations of continuous phthalates with hormones. Both phthalate and hormone 

concentrations were natural log-transformed to better approximate normality assumptions 

in these generalized linear regression models. Second, we evaluated dose-response 

relationships of phthalates with hormones by categorizing urinary phthalate concentrations 

into quartiles; hormones were transformed as previously described. For our second 

objective, linear regression models were stratified by menopause status, midlife BMI, and 

race/ethnicity to evaluate differences in associations between phthalate metabolites and 

hormones by these factors.

All statistical analyses were conducted in SAS 9.4 (version 14.3, SAS Institute) using 

PROC GLM. In models where phthalates were assessed as continuous measures (objectives 

1 and 2), β-estimates and 95% confidence intervals (CIs) were back-transformed using 
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the equation [((2.00)β – 1)*100] to represent a percent change in hormones for each two

fold increase in phthalate concentration. For models where phthalates were categorized in 

quartiles, β-estimates and 95% CIs were back-transformed using the equation [(eβ – 1)*100] 

to represent the percent change in hormones among women in quartiles two (Q2), three 

(Q3), and four (Q4) of urinary phthalate concentrations, compared to the lowest quartile 

(Q1). We tested for linear trends (Plinear trend) across quartiles by assessing separate linear 

regression models that treated the ordinal phthalate variables as continuous. For models 

evaluating stratified associations of phthalates with hormones, we formally tested for effect 

modification (Pint) in linear regression by including multiplicative interactions between 

phthalates and menopause status, phthalates and race/ethnicity, and phthalates and BMI. 

However, we reported all stratified associations regardless of Pint significance.

RESULTS

MWHS demographics and lifestyle characteristics

At the time of enrollment, all women were between the ages of 45 and 54 years, with 65% 

of women being 49 years or younger (Table 1). In terms of racial background, 66% were 

non-Hispanic white and 34% were black or of other racial/ethnic background. The majority 

of the women were employed (80%), had a college education or higher (65%), and were 

premenopausal (64%). Most women reported being at least occasional drinkers (66%) and 

over half had a midlife BMI ≥ 25 kg/m2 (60%). Over half of women were never smokers 

(54%), 36% were former smokers, and only 10% were current smokers.

MWHS urinary phthalate metabolite concentrations

Median (25th, 75th percentile) urinary concentrations of phthalate metabolites are presented 

in Table 2. Greater than 99% of women had detectable concentrations (≥ LOD) of all urinary 

phthalate metabolites (data not shown). Median phthalate metabolite concentrations from 

our study were generally higher than those in a nationally representative sample of 45–54

year-old women from the National Health and Nutrition Examination Survey (NHANES), 

likely due to different subpopulations of women in the MWHS and NHANES studies and 

measurements of urinary metabolites by different laboratories. However, it is important to 

note that the 25th and 75th percentiles overlapped in metabolite levels between the two 

studies.

MWHS plasma hormone concentrations

Plasma hormone concentrations from year 1 of the MWHS are presented in Figure 1. 

Median (range) hormone concentrations were as follows: estradiol, 49.9 pg/mL (6.9 – 

349.3); testosterone, 0.3 ng/mL (0.1 – 4.3); progesterone, 0.6 ng/mL (0.05 – 17.7); SHBG, 

64.4 nmol/L (9.0 – 264.8); FSH, 11.3 mIU/mL (0.1 – 161.0); and AMH, 0.1 ng/mL (0.1 – 

8.3).

Overall associations of urinary phthalates with hormones

In linear regression models where phthalate metabolites were modeled continuously, select 

phthalates were positively associated with estradiol, testosterone, progesterone, and AMH, 

but not with SHBG or FSH (Table 3). Specifically, 2-fold increases in ∑DEHP, ∑Plastics, 
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and ∑AA were associated with 4.9% (95%CI: 0.5, 9.6), 5.1% (95%CI: 0.3, 10.0), and 

7.8% (95%CI: 2.3, 13.6) higher estradiol concentrations, respectively. Additionally, each 

2-fold increase in MiBP was associated with 6.6% (95%CI: 1.5, 12.1) higher testosterone 

concentrations, whereas 2-fold increases in MBP and ∑AA were associated with 8.5% 

(95%CI: 1.2, 16.3) and 9.0% (95%CI: 1.3, 17.4) higher AMH concentrations, respectively. 

Lastly, 2-fold increases in ∑DEHP, ∑Plastics, MEP, ∑PCP, ∑Phthalates, and ∑AA were 

associated with 4.6 – 12.9% higher progesterone concentrations.

In analyses where phthalate metabolites were modeled in quartiles, phthalates were 

associated with all hormones, except for SHBG (Figure 2, Supplemental Table 1). 

Specifically, compared to those in Q1, estradiol concentrations were 18.7% (95%CI: 4.3, 

35.0) higher in women at ∑AA Q4 (Plinear trend = 0.07; Figure 2a), whereas progesterone 

concentrations were 24.4% (95%CI: 1.8, 51.9) and 26.1% (95%CI: 3.8, 53.2) higher, 

respectively, in women in the highest quartile of ∑Phthalates (Plinear trend = 0.05) and 

∑AA (Plinear trend = 0.04; Figure 2c). Compared to those in the lowest quartile, testosterone 

concentrations were 14.7% (95%CI: 0.0, 31.6) higher in women at MEP Q3 (Plinear trend 

= 0.81), as well as 18.5% (95%CI: 3.7, 35.5) and 23.0% (95%CI: 7.3, 41.0) higher, 

respectively, in women at MiBP Q2 and Q4 (Plinear trend = 0.05; Figure 2b). However, 

testosterone concentrations were 13.1% (95%CI: 0.5, 24.0) lower in women at ∑DEHP Q2 

(Plinear trend = 0.28) compared to those in Q1. Compared to those in the lowest quartile, 

AMH concentrations were 23.1% (95%CI: 2.6, 47.7) and 19.9% (95%CI: 0.1, 43.7) higher 

in women at MBP Q2 and Q4 (Plinear trend = 0.09), and 20.7% (95%CI: 0.7, 44.6) higher in 

women at ∑AA Q3 (Plinear trend = 0.03; Figure 2f). Lastly, FSH concentrations were 31.3% 

higher (95%CI: 4.1, 65.5) higher in MEP Q3 compared to Q1 (Plinear trend = 0.88; Figure 2e).

Associations between phthalate metabolites and hormones stratified by menopause 
status

Associations of phthalates with estradiol, FSH, and AMH were only observed in 

premenopausal women (Table 4), in whom ∑DEHP, ∑Plastics, and ∑AA were positively 

associated with estradiol concentrations, MBzP, ∑Plastics, and ∑AA were negatively 

associated with FSH, while ∑AA was positively associated with AMH. Conversely, MiBP 

was positively associated with testosterone only in perimenopausal women (Table 4). 

Associations of phthalates with progesterone were observed in both pre- and perimenopausal 

women, but they differed depending on the phthalate metabolite (Table 4). ∑DEHP, 

∑Plastics, and ∑AA were positively associated with progesterone in premenopausal women, 

whereas ∑Phthalates was positively associated with progesterone in perimenopausal women.

Associations between phthalate metabolites and hormones stratified by BMI

Associations of phthalate metabolites with estradiol were only observed in under-/normal 

weight women (Table 5). Specifically, ∑AA was positively associated with estradiol. 

Associations of phthalate metabolites with SHBG were only observed in overweight women, 

in whom MCPP was negatively associated with SHBG (Table 5). Associations of phthalates 

with progesterone were only observed in obese women, in whom ∑DEHP, ∑Plastics, 

MEP, ∑PCP, ∑Phthalates, and ∑AA were positively associated with progesterone (Table 

5). Associations of phthalates with FSH and AMH were observed in both under-/normal 
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weight and obese women, but they differed depending on the phthalate metabolite (Table 

5). Specifically, ∑DEHP and ∑AA were negatively associated with FSH in obese women, 

but MBzP was negatively associated, while MEP and ∑PCP were positively associated with 

FSH in under-/normal weight women. Additionally, MBzP was positively associated with 

AMH in under-/normal weight women, while MBP was positively associated with AMH in 

obese women.

Associations between phthalate metabolites and hormones stratified by race/ethnicity

Associations of phthalate metabolites with estradiol, testosterone, and AMH were only 

observed in non-Hispanic white women (Table 6). Specifically, ∑DEHP, ∑Plastics, and ∑AA 

were positively associated with estradiol, MiBP was positively associated with testosterone, 

and MCPP and ∑AA were positively associated with AMH. However, associations of 

phthalate metabolites with progesterone were observed in both non-Hispanic white and 

black/other women (Table 6). Specifically, MCPP and ∑Plastics were positively associated 

with progesterone in black/other women, while ∑Phthalates was positively associated with 

progesterone in non-Hispanic white women.

DISCUSSION

In the present study, we found that several phthalate metabolites were positively associated 

with both sex steroid and protein hormones. This particular trend was unexpected due 

to previous in vitro and in vivo studies, as well as observational studies suggesting that 

phthalates inhibit steroidogenesis (11, 17, 21, 43, 44). Previous observational studies 

evaluated these associations in men and women during their reproductive life, as well as 

in children, which may account for these discrepancies given that our study population is 

in midlife. We also found that some associations of phthalate metabolites with hormones 

differed by menopause status, midlife BMI, and race/ethnicity, which may provide critical 

information as to which midlife populations may be more susceptible to the endocrine 

disrupting effects of phthalates. Overall, our results suggest that phthalates may disrupt 

steroidogenesis through different mechanisms involving more than simple inhibition.

Overall associations of phthalates with hormones

We found that phthalates primarily found in plastic food packaging (i.e. ∑DEHP and 

∑Plastics) and those shown to have anti-androgenic activity (i.e. ∑AA) share positive, linear 

associations with estradiol. ∑AA displayed positive relationships with estradiol in women 

in the third and fourth quartiles as well, further demonstrating the strength of this positive 

association. These results are consistent with a study in U.S. pregnant women (45–47) and 

some studies conducted in pregnant women and women between the ages of 16 and 45 that 

have found positive associations between some phthalate metabolites such as MiBP, MBzP 

(46), and MBP and estradiol (48), all of which are components of the ∑AA measurement 

used in our study. However, some of our results are inconsistent with some experimental 

studies showing that phthalate exposure decreases estradiol levels in rodents (17, 49). Our 

results also differ from a study in Japanese pregnant women and a recent study in pre- 

and postmenopausal women from NHANES, which showed that DEHP was associated with 

lower serum estradiol concentrations (22).
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We also observed associations of phthalates with testosterone and progesterone. While we 

did not observe an overall linear association between ∑DEHP and testosterone, our findings 

from quartile analyses showing negative associations between ∑DEHP and testosterone are 

consistent with experimental studies showing that DEHP has anti-androgenic properties (59, 

63–65). However, we also found that MEP (quartile) and MiBP (linear and quartile) were 

positively associated with testosterone, which is not consistent with most studies (66–68). 

Although one observational study showed that prenatal MiBP exposure was associated with 

increased peripubertal testosterone in girls (69), a cross-sectional study using data from 

NHANES cycles 2013–2016 found that MEP, MiBP, and ∑DEHP were associated with 

reduced testosterone, and these associations were strongest in 40–60 year old females (22). 

Our study population acutely targeted women within a narrow age range to capture the 

menopausal transition, which may also account for discrepancies in our findings. Most 

notably, we found that ∑DEHP and MEP were positively associated with progesterone, and 

these were driving the associations observed for ∑Plastics, ∑PCP, ∑Phthalates, and ∑AA 

with progesterone. However, previous studies in animals and humans found equivocal results 

regarding these associations as those studies have reported positive and negative associations 

of phthalates with progesterone (60, 70).

Overall associations of phthalates with non-steroid hormones (i.e. AMH, FSH, and SHBG) 

were less frequent. We found that MBP and ∑AA were positively associated with 

AMH in both linear and quartile analyses. Few studies have investigated associations 

between phthalates and AMH, but one research group found inverse associations between 

concentrations of MBP and AMH in follicular fluid (50), but also reported in an earlier 

study in the same group of women that MBP shared a positive association with serum 

AMH, similar to what we observed in our population (51). We also observed that MEP was 

positively associated with FSH in quartile analyses. However, two studies, one in healthy 

16–45 year old women and the other in healthy 11–88 year old men found that some 

phthalate metabolites (but not MEP) were positively associated with FSH (48, 52). Lastly, 

we observed no associations between phthalates and SHBG. These results are consistent 

with studies in peripubertal girls and pregnant women (53–55). Overall, our results and 

those from previous studies further illustrate the complex relationships that phthalates can 

share with different hormones and that these associations may also differ across populations. 

However, additional studies, especially in midlife, are needed to corroborate our findings.

Differences in associations by menopause status

We found that associations of phthalates with estradiol, progesterone, and FSH were 

strongest in premenopausal women. Namely, ∑AA, ∑Plastics, and ∑DEHP were all 

positively associated with estradiol and progesterone in premenopausal women. Coinciding 

with this finding is that ∑AA and ∑Plastics were also negatively associated with FSH in 

premenopausal women. Inverse relationships between estradiol and FSH are expected due to 

the negative feedback loop wherein FSH stimulates estradiol production and estradiol in turn 

suppresses FSH production. Studies have shown that phthalates are capable of modulating 

steroidogenic enzymes responsible for rate-limiting steps in the steroidogenesis pathway 

(56–58). Thus, it is possible that these effects may be due to direct phthalate-induced 

alterations of steroidogenic enzyme and/or activity. We speculate that these effects may be 
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muted or not present in perimenopausal women because the entire hypothalamic-pituitary

gonadal (HPG) axis in perimenopausal women may be less sensitive to phthalate-induced 

changes or that the ovary itself is less sensitive to phthalate-induced changes due to the 

transition into menopause.

Differences in associations by midlife BMI

While we found that associations of phthalates with most hormones differed by 

midlife BMI, the most consistent associations were observed with progesterone. Most 

notably, positive associations of ∑DEHP, ∑Plastics, MEP, ∑PCP, ∑Phthalates, and ∑AA 

were positively associated with progesterone in obese women only. Adipose tissue is 

metabolically active with the capability to synthesize and metabolize sex steroid hormones 

(59). Additionally, the link between phthalates and obesity broadens the possibilities for 

the relationships that may exist between phthalates, adiposity, and hormone levels (60, 

61). It is possible that phthalate-induced disruption in one steroidogenic organ (i.e., the 

ovary or the adipose tissue) can lead to compensatory action by the other. Alternatively, 

it is possible that subtle actions on both the ovary and the adipose tissue in women with 

less adipose mass are less detectable than when in overweight and obese women, thus 

leading to relationships being observed in overweight and obese women only. The complex 

relationships that are likely to exist between phthalates, adipose tissue, and hormone levels 

merit further investigation.

Differences in associations by race/ethnicity

In race/ethnicity stratified analyses, positive associations of phthalate metabolites with 

estradiol and AMH were consistently strongest in non-Hispanic white women. Comparison 

to existing literature is difficult due to the lack of studies that investigate the interaction of 

hormones, race/ethnicity, and phthalates. However, one study that investigated the changes 

in hormones in different races found that African American women had a more rapid 

decline in estradiol concentrations during the menopausal transition than non-Hispanic white 

women (62). Although not a direct comparison, the study partially supports our findings 

in that we observed many different positive associations between phthalate measures and 

hormone levels, but we did not observe that black/other women had positive relationships 

between any phthalate measures and estradiol. However, this finding contrasts somewhat 

with other studies that have found that African American women have higher estradiol 

levels than non-Hispanic white women pre- and post-menopause (63, 64). Circulating 

hormone concentrations can be influenced by body composition and stress, which could 

also contribute to racial/ethnic differences in measured hormone levels, as well as result 

in differential impacts of phthalates on hormones in non-Hispanic white versus black 

women (65, 66). This highlights the need for further investigation into the complex 

relationships between race/ethnicity, phthalate exposure, and hormones to fully appreciate 

the vulnerability of certain populations.

Strengths and limitations

Our study has limitations and strengths. Due to the cross-sectional nature of our analyses, 

we are unable to make conclusions about temporality of associations between phthalates 

and hormones. Further, it is possible that some women in our study experienced irregular 
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menstrual cycles, which could impact hormone levels. However, to counterbalance the 

variability of menstrual cycles and timing during the cycle for collection of samples, we 

collected four blood samples that represent each week of a woman’s menstrual cycle for 

hormone assessment and averaged these hormone concentrations for a more stable outcome 

measure. Further, the majority of the women in our study were either non-Hispanic white or 

black, leaving other races and ethnicities underrepresented in our study. While we a priori 
identified and adjusted for important confounders (i.e. sociodemographic characteristics, 

behavioral factors, and menopausal status), there may be unobserved or unmeasured 

confounding not accounted for in our statistical models, which could bias our observed 

associations. For example, diet is an important source of phthalate exposure and may also 

influence circulating hormone concentrations (67, 68)(69, 70). Given that we were unable 

to control for diet, we may be overestimating associations between phthalates and hormones 

levels. Selection bias is also possible if participants with higher phthalate levels had certain 

characteristics that would impact their hormones. If selection bias exists, it could potentially 

lead to an under- or overestimation of the strength of our observed associations.

Major strengths of our study included the use of a pooled sample for assessing urinary 

phthalate metabolites, which is important given the short half-lives phthalates have in the 

body. Additionally, we were also powered enough to detect some differences in associations 

of phthalates metabolites with hormones by menopausal status, BMI, and race/ethnicity, 

revealing populations that are potentially more susceptible to the endocrine disrupting 

effects of phthalates. In addition, this was a multi-racial cohort of midlife women and one 

of the first studies to provide evidence of associations between urinary phthalate metabolites 

and hormone levels during a time period of rapid hormonal changes for women—midlife.

CONCLUSION

Our study found that some phthalates were associated with several critical hormones in 

midlife women. Specifically, the following positive associations were observed: ∑DEHP, 

∑Plastics, and ∑AA with estradiol; MiBP with testosterone; ∑DEHP, ∑Plastics, MEP, 

∑PCP, ∑Phthalates, and ∑AA with progesterone; MBP and ∑AA with AMH. Additionally, 

associations of phthalate metabolites differed by menopausal status, BMI, and race/ethnicity. 

Specifically, associations of phthalate metabolites with estradiol, progesterone, and FSH 

were strongest in premenopausal women, with progesterone were strongest in obese women, 

and with estradiol and AMH were strongest in non-Hispanic white women. Although some 

of our findings were corroborated by previous studies, many contrasted with the current 

literature. The variability in strength and direction of association between phthalates and 

reproductive hormones highlights the need for future studies to investigate a wide range of 

exposure windows and to elucidate the mechanism(s) through which phthalates may act to 

disrupt the HPG-axis.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Phthalate metabolites were positively associated with estradiol levels in 

midlife women

• Phthalate metabolites were positively associated with testosterone levels in 

midlife women

• Phthalate metabolites were positively associated with progesterone levels in 

midlife women

• Phthalate metabolites were positively associated with anti-Müllerian hormone 

levels in midlife women

• Some demographic and lifestyle characteristics modify the associations 

between phthalate metabolites and hormones
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Figure 1. Hormone concentrations of women from MWHS (n=718).
Mid-life A) estradiol, B) testosterone, C) progesterone, D) sex hormone binding globulin 

(SHBG), E) follicle stimulating hormone (FSH), and F) anti-Mullerian hormone (AMH) 

concentrations. Results are presented as 1.5 times the interquartile range below and above 

the 25th and 75th percentiles (lower and upper endpoints of whisker), the 25th and 75th 

percentiles (lower and upper edges of box), median (line inside box), and mean (diamond). 

MWHS, Midlife Women’s Health Study.
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Figure 2. Associations of phthalate metabolites in quartiles with hormones (n=718).
Multivariable generalized linear models evaluated associations of urinary phthalate 

concentrations with A) estradiol, B) testosterone, C) progesterone, D) sex hormone binding 

globulin (SHBG), E) follicle stimulating hormone (FSH), and F) anti-Mullerian hormone 

(AMH). Data are presented as % change (filled circles) and 95% confidence interval (solid 

lines) comparing phthalate quartiles 2 (Q2), 3 (Q3), and 4 (Q4) to quartile 1 (Q1). Models 

were adjusted for age, race, employment status, education, income, marital status, alcohol 

consumption, smoking status, physical activity, medication use, menopausal status, and body 

mass index. Confidence intervals that do not cross the null are significantly different from 

quartile 1 at #P<0.10 and *P<0.05.
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Table 1.

Demographic and lifestyle characteristics of women from MWHS (n=718).

Demographic or Lifestyle Characteristic n (%)

Age (years)

45 to 49 469 (65.3)

50 to 54 249 (34.7)

Race/ethnicity

Non-Hispanic white (ref) 477 (66.4)

Black/Other
1 241 (33.6)

Employment status

Unemployed 143 (19.9)

Employed (ref) 575 (80.1)

Education

Some college or less 251 (35.0)

College graduate or higher (ref) 467 (65.0)

Annual family income ($)

<20,000 47 (6.5)

20,000 to 39,999 117 (16.3)

40,000 to 99,999 243 (33.8)

≥100,000 311 (43.3)

Marital status

Single 129 (18.0)

Married/Living with Partner (ref) 466 (64.9)

Widowed/divorced/separated 123 (17.1)

Menopausal status

Premenopausal (ref) 461 (64.2)

Perimenopausal 257 (35.8)

Alcohol consumption status

No drinks or <12 drinks over past year 246 (34.3)

At least 12 drinks over past year (ref) 472 (65.7)

Smoking status

Current 72 (10.0)

Former 258 (35.9)

Never (ref) 388 (54.0)

Leisure physical activity compared to others

Much more/more (ref) 258 (35.9)

As much 223 (31.1)

Less/much less 237 (33.0)

Body mass index (kg/m 2 )
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Demographic or Lifestyle Characteristic n (%)

Under-/normal weight (<25.0) (ref) 288 (40.1)

Overweight (≥25.0–29.9) 187 (26.0)

Obese (≥30.0) 243 (33.8)

Current medication use

None 306 (42.6)

Any (ref) 412 (57.4)

1
Other includes Hispanic, Asian, or other race/ethnicity. MWHS, Midlife Women’s Health Study.
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Table 2.

Phthalate metabolite concentrations in MWHS and NHANES.

Name Abbreviation MWHS (2006–2015) n=718 NHANES (2005–2016) n=757
1

Phthalate metabolitev Median (25th, 75th percentile) in ng/mL

Mono(2-ethylhexyl) phthalate MEHP 4.5 (2.7, 9.4) 1.2 (0.6, 3.1)

Mono(2-ethyl-5-hydroxyhexyl) phthalate MEHHP 33.7 (20.3, 58.1) 9.1 (3.4, 22.5)

Mono(2-ethyl-5-oxohexyl) phthalate MEOHP 12 (7.3, 22.3) 5.6 (2.1, 13.2)

Mono(2-ethyl-5-carboxypentyl) phthalate MECPP 25.8 (15.8, 48.1) 13.4 (5.6, 31.7)

Mono(3-carboxypropyl) phthalate MCPP 2.5 (1.3, 5.4) 1.4 (0.6, 3.4)

Monobenzyl phthalate MBzP 9.4 (5.4, 16) 4.1 (1.8, 10.4)

Monoethyl phthalate MEP 95.4 (47.4, 192) 58.8 (20.0, 179.6)

Mono-n-butyl phthalate MBP 19.7 (12.9, 32.6) 11.5 (5.4, 25.3)

Mono-isobutyl phthalate MiBP 16.3 (9.8, 26.1) 5.7 (2.6, 13.1)

Phthalate molar-converted sum Median (25 th , 75 th percentile) in nmol/mL

Sum of di(2-ethylhexyl) phthalate metabolites
∑DEHP

2 0.3 (0.2, 0.5) 0.1 (0.04, 0.2)

Sum of all plastic phthalate metabolites ∑Plastics
3 0.3 (0.2, 0.6) 0.1 (0.1, 0.3)

Sum of all personal care product phthalate metabolites ∑PCP
4 0.7 (0.4, 1.3) 0.4 (0.2, 1.2)

Sum of all phthalate metabolites ∑Phthalates
5 1.1 (0.7, 2) 0.7 (0.3, 1.8)

Sum of anti-androgenic phthalate metabolites ∑AA
6 0.5 (0.3, 0.8) 0.2 (0.1, 0.5)

1
Weighted phthalate concentrations for 45–54 year-old US women from combined NHANES cycles 2005–06, 2007–08, 2009–10, 2011–12, 

2013–14, and 2015–16. MWHS, Midlife Women’s Health Study; NHANES, National Health and Nutrition Examination Survey.

2
∑DEHP: MEHP, MEHHP, MEOHP, MECPP.

3
∑PCP: MEP, MBP, and MiBP.

4
∑Plastics): MCPP, MBzP, MEHP, MEHHP, MEOHP, MECPP.

5
∑Phthalates: all phthalate metabolites.

6
∑AA: MBzP, MEHP, MEHHP, MEOHP, MECPP, MBP, MiBP.
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Table 3.

Overall linear associations of phthalate metabolites with hormones (n=718).

Exposure Estradiol Testosterone Progesterone SHBG FSH AMH

% change in hormones (95%CI)

MCPP 1.2 (−1.7, 4.3) 0.1 (−3.0, 3.3) 2.4 (−2.1, 7.2) −2.2 (−4.5, 0.2) −1.9 (−6.9, 3.5) 4.2 (−0.1, 8.7)

MBzP 1.2 (−2.8, 5.4) −1.3 (−5.4, 3.0) 3.5 (−2.6, 10.0) 1.6 (−1.7, 4.9) −4.4 (−10.9, 2.7) 5.4 (−0.4, 11.6)

∑DEHP 4.9 (0.5, 9.6) 1.4 (−3.1, 6.1) 8.3 (1.5, 15.6) 0.9 (−2.5, 4.5) −3.7 (−10.8, 4.0) 4.1 (−2.1, 10.7)

∑Plastics 5.1 (0.3, 10.0) 1.6 (−3.2, 6.6) 9.8 (2.4, 17.7) 0.9 (−2.8, 4.7) −4.7 (−12.2, 3.4) 5.4 (−1.3, 12.5)

MEP −0.2 (−3.1, 2.7) 0.0 (−3.0, 3.0) 4.6 (0.1, 9.2) 0.3 (−2.1, 2.6) 4.2 (−1.0, 9.7) −1.8 (−5.7, 2.3)

MBP 2.0 (−3.0, 7.1) 2.9 (−2.3, 8.3) 6.2 (−1.4, 14.4) 1.1 (−2.8, 5.2) −5.2 (−13.1, 3.4) 8.5 (1.2, 16.3)

MiBP 4.0 (−0.8, 9.0) 6.6 (1.5, 12.1) 5.3 (−2.0, 13.1) 1.5 (−2.3, 5.5) −2.9 (−10.7, 5.6) 4.9 (−1.9, 12.1)

∑PCP 0.2 (−3.5, 4.1) 0.8 (−3.1, 4.9) 6.0 (0.2, 12.2) 0.9 (−2.1, 4.0) 3.7 (−2.9, 10.9) −0.1 (−5.3, 5.4)

∑Phthalates 2.3 (−2.1, 6.9) 1.1 (−3.4, 5.9) 9.0 (2.1, 16.5) 1.0 (−2.5, 4.6) 2.1 (−5.5, 10.4) 2.0 (−4.2, 8.5)

∑AA 7.8 (2.3, 13.6) 3.5 (−2.0, 9.3) 12.9 (4.4, 22.1) 2.0 (−2.2, 6.4) −6.9 (−15.1, 2.1) 9.0 (1.3, 17.4)

Data are presented as the % change in hormones for every 2-fold increase in phthalate metabolite (ng/mL or nmol/mL). Linear regression models 
adjusted for age, race/ethnicity employment status, education, income, marital status, alcohol consumption, smoking status, physical activity, 
medication use, menopausal status, and BMI. CI, confidence interval; AMH, anti-Mullerian hormone; BMI, body mass index; FSH, follicle 
stimulating hormone; SHBG, sex hormone binding globulin.
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