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a b s t r a c t

The COVID-19 has now spread all over the world and causes a huge burden for public health and world
economy. Drug repositioning has become a promising treatment strategy in COVID-19 crisis because
it can shorten drug development process, reduce pharmaceutical costs and reposition approval drugs.
Existing computational methods only focus on single information, such as drug and virus similarity
or drug–virus network feature, which is not sufficient to predict potential drugs. In this paper, a
sequence combined attentive network embedding model SANE is proposed for identifying drugs based
on sequence features and network features. On the one hand, drug SMILES and virus sequence features
are extracted by encoder–decoder in SANE as node initial embedding in drug–virus network. On the
other hand, SANE obtains fields for each node by attention-based Depth-First-Search (DFS) to reduce
noises and improve efficiency in representation learning and adopts a bottom-up aggregation strategy
to learn node network representation from selected fields. Finally, a forward neural network is used
for classifying. Experiment results show that SANE has achieved the performance with 81.98% accuracy
and 0.8961 AUC value and outperformed state-of-the-art baselines. Further case study on COVID-19
indicates that SANE has a strong predictive ability since 25 of the top 40 (62.5%) drugs are verified
by valuable dataset and literatures. Therefore, SANE is powerful to reposition drugs for COVID-19 and
provides a new perspective for drug repositioning.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Coronaviruses are systematically classified into the genus Coro-
avirus of the family Coronaviridae of the order Nidovirales [1].
hey are a group of enveloped, positive-strand RNA viruses [2]
ith non-segmented genomes of about 30,000 nucleotides and
iameter of about 80-120nm [3]. Coronaviruses are widespread
n nature [4] and prone to mutate, but it only infects vertebrates.
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ttps://doi.org/10.1016/j.asoc.2021.107831
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Coronavirus has been widely concerned since 2000 owing to it
has caused three serious outbreaks in the world to date, including
the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 [5]
and Middle East Respiratory Syndrome (MERS-CoV) in 2012 [6]
and the epidemic we are experiencing COVID-19 (SARS-CoV-2)
in 2019 [7]. To date, the COVID-19 outbreak has now spread to
6 continents including more than 60 countries [8], causing more
than 112 millions of people infected, 2.5 millions of deaths [9,10]
and the economic losses of over 300 billion dollars [11,12]. As a
result, developing or discovering effective drugs is so important
for preventing public health from being threaten by COVID-19
and reigniting global economy. However, traditional drug devel-
opment experiments are often time-consuming, costly and risky,
which decides that it is unrealistic to develop new effective drugs
to treat COVID-19 in a short time. Therefore, it is urgent to adopt
a new method to accelerate the drug discovery process and find
effective drugs for COVID-19 treatment.

Drug repositioning [13] as an effective method to find new
uses of existing drugs has received much attention and a large
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umber of studies have been conducted and grow exponen-
ially [14] in recent years. According to the records [15], there
re in total 94 cases in which a repositioned drug made it to
he market, such as Aspirin [16], Thalidomide [17] and Silde-
afil [18]. More importantly, in addition to the advantages in
ime and cost, drug repositioning still has a number of advantages
n drug adverse effects avoiding and economy [19]. Therefore,
rug repositioning is a promising strategy for accelerating drug
dentifying of COVID-19 and minimizing the translational gap in
rug development.
At the beginning of the development of drug repositioning,

iological methods such as molecular docking, account for the
ajority. Molecular docking can directly determine drug tar-
ets, but it usually requires experiments on all drugs, which
s lack of efficiency. In recent years, benefiting from the rapid
evelopment of machine learning and artificial intelligence, com-
utational methods are gradually proposed and applied widely
n the field of bioinformatics. According to the methods used in
omputational models, these methods can be grouped into two
lassifies: similarity-based and network-based. Similarity-based
ethods focus on drug similarity and protein similarity, and

ecommend drugs according to similarities. Though similarity-
ased methods utilized the basic information of drug and other
olecules comprehensively, they only get the information or
imilarities in 2D space and have the limitation in high dimension
etwork or graph structure data.
With the considerable advancements in social network and

nowledge graph, network representation learning becomes a
ignificant research tool in many fields. In drug repositioning
ask, a host of network-based models have been proposed in
he last several years. The network-based methods, including
andom Walk, graph neural network and knowledge graph em-
edding model, are employed to learn the network topology
eature and repurpose potential drugs for diseases. Compared
ith similarity-based methods, network-based methods have the
tronger learning ability and can capture complex information
n high dimension space. However, network-based methods still
ave limitations in computational efficiency and lacking of node
asic information. To address the above limitations, in this paper,
e proposed a sequence combined attentive network embedding
odel SANE to repurpose drugs for COVID-19 by integrating drug
MILES and virus sequence information into an attention-based
re-search network embedding. Firstly, we collected drug SMILES
nd virus sequence information as their basic information. Si-
ultaneously, we also collected a valuable drug–virus interaction
ataset HDVD. Secondly, encoder–decoder is adopted to extract
equence feature. Then, in order to improve the efficiency of
ANE, an attention-based Depth-First-Search (DFS) is applied to
ecrease network scale and reduce noises. After that, an attentive
etwork embedding is used to learn representation for each node
y aggregating basic information. By this way, the final repre-
entation contains both basic information and network topology
nformation. In summary, our main contributions are as follows:

(1) we address the drug repositioning task from network per-
pective and design an efficient attention-based DFS network
mbedding to identify potential drugs against COVID-19;
(2) we integrate the drug and virus basic sequence informa-

ion into network embedding to enhance information granularity,
hich also contributes to accuracy improvement;
(3) we use attention-based DFS to reduce redundancies and

oises before representation learning;
(4) we test proposed model SANE and the results show that

ANE achieves the new state-of-the-art results with significant
mprovements over baselines.

The article is organized as follows. In the next section, we

ntroduce the related works and the motivation of our work.

2

In Section 3, we introduce the datasets used in our work and
elaborate the three sub-models contained in SANE. The experi-
ment settings and detailed experimental results are provided in
Section 4. We discuss the results obtained by SANE in Section 5
and Section 6 concludes this article.

2. Related work

Our research work is inspired by two lines of research: the in-
herent limitations of traditional similarity-based methods and the
remarkable success of network representation learning algorithm
in the interaction prediction of molecular network.

2.1. Similarity-based methods for drug repositioning

According to the resources used in similarity-based models,
they can be divided into two groups: single-source similarity and
multi-source similarity. The models using single-source similarity
are simple and understandable. For example, the research work
conducted by Li et al. [20] calculated the drug pair similarity
based on drug structural information and repurposed drugs ac-
cording to drug similarity. Afterwards, with the development
of bioinformatics, more interactions data related to drugs are
available, such as drug–target interactions, drug–disease inter-
actions, protein sequence and disease structural information. As
a result, the similarity in that stage was calculated by multi-
source. Zhang et al. [21] integrated drug chemical structures,
drug target proteins and drug–disease associations to extract
similarity matrices of drugs and diseases, respectively and pre-
dicted potential drugs based on collaborative filtering. Moreover,
Azad et al. [22] addressed drug repositioning by compiling het-
erogenous information for an exhaustive set of small-molecule
drugs and integrated multiple sources to calculate drug similarity.
Currently, similarity-based methods are also used to repurpose
drugs for COVID-19 and there are a large number of works [23,
24] have been done on COVID-19. Meng et al. [25] proposed a
similarity constrained matrix factorization model to identify new
drug–virus interactions by calculating drug SMILES (Simplified
Molecular Input Line Entry System) similarity and virus sequence
similarity. Though similarity-based methods have been widely
used and achieve good performances, they are still limited in
2D space as the similarity is calculated between two molecules,
which lead to the lacking of global perspective.

2.2. Network-based methods for drug repositioning

Different from similarity-based methods, network-based meth-
ods address drug repositioning from a global perspective. This
kind of methods concentrate on network topology feature learn-
ing based on network representation learning algorithms. For
example, Luo et al. [26] proposed an efficient approach to capture
global information of drug based on Random Walk for drug
repositioning to prioritize candidate drugs for disease and the
proposed approach outperformed similarity-based methods. Sim-
ilarly, multi-sources are also used in network-based methods.
In 2017, Luo et al. [27] integrated drugs, proteins, diseases and
side-effects information to construct a heterogeneous network
for drug–target interactions and repurposing existing drugs and
validated experiment proved that the repositioned drug they
found was able to prevent inflammatory disease. Network-based
methods are also used to repurpose drugs for COVID-19, Zeng
et al. [28] integrated multi-source to build a comprehensive
knowledge graph to discover drugs for COVID-19 by using knowl-
edge embedding method RotatE and achieved a promising result
with 41 repositioned drugs identified. However, network-based

methods often focus on the network structure, but ignore the
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Fig. 1. The overview of SANE. (A) shows the data collecting, (B) shows feature extracting and attention-based DFS, (C) denotes representation learning and (D) is
forward neural network for classifying.
–

node attribute, such as drug SMILES and virus sequence. Addition-
ally, network-based methods may suffer from high computational
complexity and low efficiency, which limits the application in
large scale network.

3. Materials and methods

Proposed model involves five steps: (i) data collecting, (ii) ex-
ract sequence feature by encoder–decoder, (iii) reduce network
oises and redundancies by attention-based DFS, (iv) extract net-
ork global feature by network representation learning, and (v)
se the forward neural network to help suggest potential thera-
eutic drug scores for COVID-19. The whole model can be view in
ig. 1. Before introducing proposed model, some notations used
hould be illustrated. Lowercase bold letters (e.g. v ∈ Rd) denotes
ectors and uppercase boldface letters (e.g. M ∈ Rm×n) denotes
atrices.

.1. Data collecting

In the study, we collected the recently constructed human
rug–virus interactions network (HDVD) [25] as the training
ataset to measure the model performance. HDVD assembled
significant number of experimentally validated drug–virus in-

eraction entries from literature by text mining technology. The
tatistics of HDVD is shown in Table 1 and all the interactions in
DVD are supported by experiments.
In addition, we also collected basic information of drugs and

iruses contained in HDVD. Drug SMILES is one of the most popu-
ar molecular structure 1D representations. Thus, we downloaded
he drug SMILES from DrugBank (V5.1.7) [29]. Generally, virus
s represented by its RNA or DNA sequence. As a result, the
enome nucleotide sequences of viruses are downloaded from the
ational Center for Biotechnology Information (NCBI).
3

3.2. Sequence Feature Extraction by Encoder–Decoder

In data collecting stage, we have collected drug SMILES and
virus genome nucleotide sequences. Both drug SMILES and virus
genome nucleotide sequences are the most representative molec-
ular representations and have been widely used to extract fea-
tures respectively. Different from previous work, we adopted
encoder–decoder to extract sequence information. In fact, encoder
decoder can be viewed as a variant of Recurrent Neural Network
(RNN). Long Short-Term Memory (LSTM) as one of the widely
used basic units in RNN is also adopted in this work. We used Bi-
LSTM in encoder layer and LSTM in decoder layer. The advantages
of encoder–decoder structure in this work is that it can accept
unequal length input and process the long sequence reasonably.

We denote the input as seq, which represents the drug SMILES
or virus sequence. Firstly, an embedding layer is needed to trans-
fer the unequal sequence to a machine understandable vector
s ∈ Rd. Secondly, the embedding vector is sent into encoder layer
to obtain encoder output, hidden state and cell state. Thirdly,
encoder output is sent into decoder layer as its input and initialize
decoder layer using hidden state and cell state. Then, the final
output is obtained after decoder layer processing. Specifically,
both encoder layer and decoder layer are stacked by LSTM as
shown in Fig. 2 and single LSTM is shown in Fig. 3. Therefore,
the encoder–decoder process can be formulated by:

s = embedding (seq) (1)

encoderoutput , hiddenstate, cellstate = Bi − LSTM (s) (2)

decoderoutput = softmax
(
LSTM

(
encoderoutput , initialstate

))
(3)

Each LSTM unit mainly completes the following task: receive
current data, transmit previous information, send information to
next unit and update current cell state. Unlike the traditional
RNN, LSTM controls the inflow and outflow of information by
setting up three gates, which are input gate, forget gate and
output date. In particular, input gate is responsible for processing
the input of the current sequence position. Suppose the current
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t

Fig. 2. The structure of encoder–decoder. The yellow circle nodes represent input at different time. In encoder layer, the blue block represents forward LSTM unit
and the red block represents reverse LSTM unit. The word in them denotes the output of a single unit. The middle layer in diagram is encoder output and then it
is sent into decoder layer. The purple block represents LSTM unit in decoder layer and green nodes represent the output of decoder.
Table 1
The statistics of HDVD dataset.
Dataset #Drugs #Virus #Interactions #Data Type

HDVD 219 34 455 Confirmed human drug–virus interactions
Table 2
Results of five-fold cross-validation achieved by SANE on HDVD dataset.
Method Fold ACC. (%) F1 Score (%) AUC AUPR

Five-fold CV

1 84.62 85.42 0.9322 0.9175
2 75.82 78.00 0.8493 0.8428
3 87.91 88.89 0.9327 0.9354
4 72.53 75.25 0.8681 0.8701
5 89.01 89.58 0.8984 0.7879
Average 81.98±6.62 83.43 ± 5.79 0.8961 ± 0.0335 0.8707 ± 0.0529
time is t and we denote the last time output as ht−1 and current
ime input as xt . The input gate as the pink lines shown in Fig. 3.
can be formulated by:

it = σ
(
W iht−1

+ U ixt + bi
)

(4)

αt
= tanh

(
W aht−1

+ Uaxt + ba
)

(5)

Here, it can be viewed as a probability that how much informa-
tion will be passed in and αt represents the information that
the current unit receiving. The second gate, forget gate as the
cyan lines shown in Fig. 3. is responsible for processing the
hidden state from last time. The forget gate can be formulated
by following and f t represents that how much previous hidden
information can be transmitted into current unit.

f t = σ
(
W f ht−1

+ U f xt + bf
)

(6)

The third gate, output gate, controls the output of current unit,
which can be denoted as ht and as the green lines shown in
Fig. 3. During this process, there is another parameter is added
to the calculation, called cell state C . Cell state is updated by
input gate and forget gate. Thus, the output of current unit can
be represented by:

C t
= C t−1

⊙ f t + it ⊙ αt (7)

ot = σ
(
W oht−1

+ Uoxt + bo
)

(8)

ht
= ot tanh⊙

(
C t) (9)
4

In our work, encoder–decoder aims to learn sequence feature.
As a result, the encoder output is the concatenation of forward
LSTM representation and reverse LSTM representation. We de-
note the final output of forward LSTM as hn and the output of
reverse LSTM as h′n. Then, the encoder output, hidden state and
cell state can be rewritten by:

encoderoutput = hiddenstate =
[
hn

; h′n] (10)

cellstate =
[
Cn

; C ′n] (11)

3.3. Depth-first-search based on attention

Previous network representation learning models can be
grouped into three groups (MF-based, DW-based and NN-based)
according to learning strategy. Unlike these existing models,
a preprocess is used in proposed model for accurate learning,
called attention-based DFS, which is shown in Fig. 4. It has the
advantage of reducing noises and redundancies and promoting
accuracy of representation learning.

In detail, there are two hyperparameters in this process, which
are search depth and sampling number. Search depth represents
the maximum layer and sampling number controls the selected
neighbor number. At each depth, we select top N targeting neigh-
bor nodes by its attention weight, where N is equal to sampling
number. The attention weight is calculated by neighbor node
sequence eneigh and head node sequence ehead obtained from



X. Su, Z. You, L. Wang et al. Applied Soft Computing 111 (2021) 107831

F
o

m
c
b
e
i
a

S

Fig. 3. The diagram of a single LSTM unit. The red line represents common part, which is the output from last unit. The blue line represents input of current time.
orget gate denoted by cyan line, the pink line represents input gate and the green line represents the output gate. Cell state is denoted by orange line and the
utput of current unit is denoted by green line.
Fig. 4. The diagram of DFS-based on attention with search depth is 2 and
sampling number is 2. The black circle represents the search depth and the lines
between drugs and viruses denote real interactions. The linewidth represents
attention weight. The red and yellow lines denote selected nodes and the
number in it represents search path.

encoder–decoder layer, which is formulated by:

score
(
ehead, eneigh

)
= eheadT eneigh (12)

In real training process, the attention-based DFS is imple-
ented for each node. In order to decrease the computational
omplexity, the attention weight can be calculated as following
efore DFS. Suppose the interaction matrix is I ∈ RN(d)×N(v), drug
mbedding matrix is D ∈ RN(d)×d and virus embedding matrix
s V ∈ RN(v)×d, where d represents embedding dimension, the
ttention weight can be calculated by:

coreattention = (DTV ) × I (13)
5

Fig. 5. Receiver operating characteristic (ROC) curves of various methods on
HDVD dataset.

Fig. 6. Precision–recall (PR) curves of various methods on HDVD dataset.
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Fig. 7. Receiver operating characteristic (ROC) curves of different variants on
HDVD dataset.

Fig. 8. Precision–recall (PR) curves of different variants on HDVD dataset.

3.4. Global feature extraction

After applying attention-based DFS to decrease graph scale
nd reduce noises, network embedding is used to learn network
opology feature. Conceptually inspired by spatial-based GNN
ethod [30]. Our work here can be regarded as that the targeted
ode is represented by nodes in its DFS network. The DFS network
an be understood as the view of targeted node in different layers.
For first layer, neighbor representation N1 (t) of targeted node

t is calculated by attention weights and neighbor initial repre-
sentation obtained from encoder–decoder layer, which can be
formulated by:

N1 (t) =

∑
j∈V1(t)

score
(
et , ej

)
ej (14)

V1 (t) represents receptive field of targeted node t in first layer.
Then, using first receptive field representation to update targeted
node:

R1 (t) = update (et ,N1 (t)) (15)

With the increasement of layer, updating each node in DFS
network using its receptive field in next layer. Therefore, the
whole process is a recursive process and can be represented by:
 a

6

Rd (t) =

⎧⎪⎪⎨⎪⎪⎩
ei , d = 0

update

⎛⎝Rd−1(t),
∑

j∈Vd(t)

score
(
et , ej

)
ej

⎞⎠ , 0 < d < depth

(16)

Here, inspired by previous work [31], we also designed three
kinds of update or aggregation function, including sum, concate-
nation and neigh. After obtaining the node representation, the
concatenation of drug representation and virus representation is
sent into a forward neural network for predicting the probability
of interaction and sigmoid function is used in forward neural
network.

3.5. Performance evaluation

In the experiment, Adam algorithm is adopted to optimize
all trainable parameters and five-fold cross-validation is used
to evaluate the performance of proposed method. The approved
drug–virus associations as positive samples are randomly divided
into training, validation and testing sets in the 8:1:1 manner, and
we randomly sample the complement set of positive samples as
negative samples, with an equal number of positive and nega-
tive samples in all phase. Moreover, two evaluation indicators
are adopted to verify proposed model performance, including
accuracy (ACC.), F1 Score, which can be defined as following
formulations:

ACC . =
TP + TN

TP + TN + FP + FN
(17)

1 Score =
2TP

2TP + FP + FN
(18)

P, TN, FP and FN in the formulation represent the number of
orrectly predicted positive samples, correctly predicted negative
amples, incorrectly predicted samples and incorrectly predicted
egative samples, respectively. Additionally, the area under the
eceiver operating characteristic (ROC) curve (AUC) and the area
nder precision–recall curve (AUPR) are calculated to reflect the
odel performance more comprehensively.

. Experiments

.1. Experimental settings

There are four hyperparameters in proposed model, including
earch depth, sampling number at each layer, learning rate and
mbedding dimension. We conducted grid search to obtain the
ptimal values of parameters. We set the parameters search
epth and sampling number in the range from 1 to 8 with step of
and found that the model achieved the best performance when

he search depth was set as 3 and sampling number was set as
. We set the embedding dimension in the range from 8, 16, 32,
4, 128, 256 and the model performed best when it was set as
2. Then, we set the learning rate in the range from 0.0 to 0.05
ith step of 0.0002 and found that the model obtained better
erformance when learning rate was 0.005. The detailed results
ill be discussed in later section Parameter Sensitivity Analysis.
s a result, we select the search depth as 3, sampling number as
and embedding dimensionality of 32 for each node and we set

he learning rate as 0.005 during the training process.
In addition, in order to prove the predictive ability of proposed

odel, we also select four types of computational models as
aseline models, including similarity-based models and repre-
entation learning-based models (MF-based models, RW-based
odels and NN based models). We select two representative
omputational models for each type. For example, SCPMF [25]
nd IMCMDA [32] of similarity-based models, Laplacian [33] and
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Fig. 9. Effect of parameters search depth and sampling number on SANE performance. (A) Effect of parameters search depth and sampling number on proposed
model accuracy. (B) Effect of parameters search depth and sampling number on proposed model F1 Score. (C) Effect of parameters search depth and sampling number
on proposed model AUC value. (D) Effect of parameters search depth and sampling number on proposed model AUPR value.
Graph Factorization [34] of MF-based models, Deepwalk [35] and
Node2Vec [36] of RW-based models and LINE [37] and SDNE [38]
of NN-based models. The parameters used in these baseline mod-
els are the same as their initial work.

4.2. Results and analysis

In the experiment, five-fold cross-validation is used to test
roposed model on HDVD dataset. The proposed model perfor-
ance is listed in Table 2. According to the results, it can be
bserved that proposed model achieved the prediction accuracy
f 81.98% and its standard deviation was 0.662. As for the other
valuation indicators, proposed model obtained 83.43%, 0.8961
nd 0.8707 on F1 score, AUC and AUPR, respectively.
To prove the effectiveness of proposed model, we compared

t with above-mentioned baseline models using five-fold cross-
alidation for predicting drug–virus interactions. Table 3 showed
he detailed results among four evaluation indicators and we
lso plotted ROC and PR curves to express the results intu-
tively (see Figs. 5 and 6). On the basis of experiment results,
7

Fig. 10. The performance of SANE with the changes of learning rate.
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Table 3
Results achieved by baseline models and SANE on HDVD dataset.
Model type Method ACC. (%) F1 Score (%) AUC AUPR

Similarity-based SCPMF 66.93 ± 6.31 69.35 ± 4.89 0.8631 ± 0.0456 0.5090 ± 0.0382
IMCMDA 59.82 ± 6.89 60.41 ± 6.78 0.6423 ± 0.0683 0.1649 ± 0.0463

RL-MF-based Laplacian 67.36 ± 2.74 65.38 ± 3.13 0.7217 ± 0.0323 0.6743 ± 0.0163
GF 80.11 ± 2.83 81.10 ± 2.26 0.8541 ± 0.0247 0.7954 ± 0.0201

RL-RW-based Deepwalk 77.14 ± 3.29 78.23 ± 2.88 0.8066 ± 0.0232 0.7085 ± 0.0166
Node2Vec 78.57 ± 3.15 79.64 ± 2.69 0.8347 ± 0.0258 0.7600 ± 0.0239

RL-NN-based LINE 66.26 ± 1.76 65.24 ± 1.56 0.6913 ± 0.0305 0.6950 ± 0.0279
SDNE 80.55 ± 3.78 80.86 ± 3.42 0.8599 ± 0.0270 0.8091 ± 0.0170

Proposed Model SANE 81.98±6.62 83.43 ± 5.79 0.8961 ± 0.0335 0.8707 ± 0.0529
Table 4
Results achieved by variants of SANE on HDVD dataset.
Model ACC. (%) F1 Score (%) AUC AUPR

SANE-ED 70.77 ± 3.97 73.78 ± 2.90 0.7671 ± 0.0257 0.7443 ± 0.0242
SANE-A 74.28 ± 7.93 75.28 ± 5.24 0.8088 ± 0.0452 0.7504 ± 0.0419
SANE-Sum 79.74 ± 6.88 74.48 ± 5.98 0.8300 ± 0.0395 0.7974 ± 0.0537
SANE-Con 73.63 ± 6.74 74.77 ± 6.10 0.8284 ± 0.0401 0.7832 ± 0.0533
SANE 81.98±6.62 83.43 ± 5.79 0.8961 ± 0.0335 0.8707 ± 0.0529
Table 5
Top 40 potential drugs against COVID-19 predicted by SANE.
Rank Accession

number
Drug name Evidence

1 DB00558 Zanamivir PMID: 15200845
2 DB04786 Suramin –
3 DB00811 Ribavirin PMID: 22555152
4 DB06412 Oxymetholone PMID:12815555; PMID:32194980
5 DB00932 Tipranavir –
6 DB13729 Camostat PMID: 22496216
7 DB02187 Equilin PMID: 27169275; PMID: 32194980
8 DB01065 Melatonin PMID: 25262626; PMID: 20070490
9 DB15622 Triazavirin –
10 DB13393 Emetine PMID: 32147496
11 DB01072 Atazanavir –
12 DB11758 Cenicriviroc –
13 DB01029 Irbesartan PMID: 32129518
14 DB12129 Tideglusib –
15 DB07715 Emodin PMID: 21050882; PMID: 16940925
16 DB00715 Paroxetine PMID: 29272110; PMID: 32194980
17 DB01004 Ganciclovir PMID: 32166607
18 DB00970 Dactinomycin PMID: 1335030; PMID: 32194980
19 DB01394 Colchicine PMID: 28795759; PMID: 32194980
20 DB00959 Methylprednisolone –
21 DB14126 Tenofovir PMID: 32222463
22 DB13609 Umifenovir PMID: 18756809
23 DB13879 Glecaprevir –
24 DB00864 Tacrolimus –
25 DB01103 Quinacrine PMID: 23301007; PMID: 31307979
26 DB00290 Bleomycin –
27 DB13068 Nim811 –
28 DB00539 Toremifene PMID: 31474372
29 DB01211 Clarithromycin –
30 DB15661 EIDD-2801 PMID: 32253226
31 DB00477 Chlorpromazine PMID: 8811199; PMID: 23529728
32 DB00244 Mesalazine PMID: 17555580
33 DB00608 Chloroquine PMID: 32074550
34 DB00478 Rimantadine PMID: 31133031; PMID: 15288617
35 DB01264 Darunavir PMID: 32671131
36 DB01024 Mycophenolic Acid PMID: 5799033
37 DB00594 Amiloride –
38 DB00441 Gemcitabine PMID: 24841273
39 DB06290 Simeprevir –
40 DB01118 Amiodarone –
it can be found that proposed model achieved superior perfor-
mance and outperformed those previous representative or state-
of-the-art methods: SCPMF (AUC = 0.8631, AUPR = 0.5090),
MCMDA (AUC = 0.6423, AUPR = 0.1649), Laplacian (AUC =

.7217, AUPR = 0.6743), Graph Factorization (AUC = 0.8541,
AUPR = 0.7954), Deepwalk (AUC = 0.8066, AUPR = 0.7085),
8

Node2Vec (AUC = 0.8347, AUPR = 0.7600), LINE (AUC = 0.6913,
AUPR = 0.6950) and SDNE (AUC = 0.8599, AUPR = 0.8091). This
is mainly because that proposed model SANE can capture high-
dimension feature compared with similarity-based methods and
SANE is able to learn both node basic information and drug–virus
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Fig. 11. The performance of SANE with the changes of embedding dimension.

etwork topology information when compared with representa-
ion learning-based methods.

.3. Ablation study

Proposed model is constructed by three basic units, including
ncoder–decoder for extracting sequence feature, attention-based
FS to reduce redundancies and noises, aggregation strategy to
alculate final representation. However, it is difficult to reflect
he effectiveness of each basic unit in general. As a result, we
onducted an ablation study to discuss the contribution of basic
nits and illustrate the reason why proposed model has a better
erformance than baseline models.
As a result, we redesigned four variants of proposed model,

hich were SANE-ED, SANE-A, SANE-Sum and SANE-Con. The dif-
erences between them and proposed model are that there are no
equence information and reduction in noises and redundancies
ontained in SANE-ED and SANE-A, respectively. The aggregation
trategy is different in SANE-Sum and SANE-Con when compared
ith proposed model. One is sum aggregation and the other is
oncatenation. The other settings of the four variants are the same
s proposed model. Five-fold cross-validation is used to test these
odels and the detailed results are listed in Table 4 and ROC
urves and PR curves are shown in Figs. 7 and 8.
Firstly, integrating drug SMILE sequence and virus sequence

an comprehensively improve the expressiveness of proposed
odel since proposed model obtained about 11%, 10%, 0.13 and
.13 higher performance than SANE-ED on accuracy, F1 score,
UC and AUPR, respectively. However, even if SANE-ED has a nor-
al performance, it still outperforms Laplacian and LINE on AUC
nd accuracy. Secondly, resulting from the experiment results be-
ween SANE-A and proposed model SANE, adopting attentive DFS
as a positive effect on model performance. Actually, other search
ethods can also be applied in this study, such as Breadth-First-
earch (BFS). But finally, we selected the DFS because it is a more
fficient way to select nodes, takes less memory and facilitate the
alculation of subsequent nodes. On the other hand, the perfor-
ance of SANE-A is better than half of baselines on accuracy, AUC
nd AUPR, which further indicates the positive influence of atten-
ive DFS. Furthermore, we also tested the variants with different
ggregation strategies. It can be found that aggregation functions
nfluence model results lightly. In fact, the model with both
ncoder–decoder and attentive DFS has overpassed more than a
alf of baseline models, but proposed model with neigh aggrega-
ion achieves the best performance over all evaluation indicators.
9

4.4. Hyperparameter sensitivity analysis

Hyperparameter sensitivity analysis is significant for the per-
formance of a model in different scenarios [25]. There are four hy-
perparameters used in proposed model, including search depth,
sampling number, learning rate and embedding dimension.

Firstly, we mainly focused on the search depth and sampling
number and conducted five-fold cross-validation on the HDVD
dataset to select parameters. Specifically, we investigated the
influence of search depth and sampling number by varying from
1 to 8. Fig. 9 shows the proposed model performances with
different parameter combinations. The x-axis represents search
depth, y-axis represents sampling number and z-axis represents
the value of evaluating indicator. As seen in Fig. 9(A)(B)(C)(D),
proposed model has a stronger predictive ability at lower depth
with same sampling number because more noises and irrelevant
information are introduced into computational model with depth
increasing. From this perspective and considering the model per-
formance, we finally select 3 as default search depth. In addition,
it also can be observed that the model has better performance
with sampling number increasing. Taking all the factors together,
including running time etc., we select sampling number as 4
owing to its the highest accuracy and AUC.

Secondly, learning rate is essential in training process, which
determines the convergence rate and performance of the model.
In order to obtain a robustness model, we tested the model
performance with different learning rate, increasing it from 0 to
0.05 with a step of 0.0002. The change of model performance is
shown in Fig. 10, the blue line represents epoch number and the
other two lines are evaluating indicators. On the basics of Fig. 10,
we finally choose 0.005 since it not only ensures the accuracy but
also the training speed of the proposed model.

Finally, embedding dimension is also one of the important
hyperparameters. We conducted embedding dimension experi-
ments by increasing from 8 to 256. According to Fig. 11, proposed
model achieved the best performance on accuracy, F1 score, AUC
and AUPR when embedding dimension is 32. As a result, the
default parameter of embedding dimension is 32.

4.5. Case study

In this section, case study is conducted to estimate the ability
of proposed model to identify potential drugs against COVID-19.
Specifically, COVID-19 virus sequence and 219 drug SMILES are
sent into proposed model and then rank them according to the
prediction score. After that, search predicted drugs in published
literatures and known COVID-19 drug repurposing database to
test proposed model predictive performance. In this way, we
listed all proposed model-predicted drugs that scored more than
0.98 for COVID-19 and showed the ranking, drug Accession Num-
ber, literature-reported evidence and scores in descending order.

According to the results Table 5, 7 of top 10 (70%), 13 of the top
20 (65%), 18 of the top 30 (60%) and 25 of the top 40 (62.5%) drugs
were verified by valuable dataset Excelra and literatures. For
example, Zanamivir, which achieved the highest score, can selec-
tively bind and inhibits virus neuraminidase-mediated cleavage
of sialic acid residues in host cell membrane-bound glycoprotein
receptors, preventing the release of progeny viruses from host
cell surfaces [39]. Studies in vitro revealed that Zanamivir inhibits
SARS coronavirus infection. The third drug, Ribavirin [40] was
initially recommended in clinical practice for the China 2019-
nCoV pneumonia diagnosis and Treatment Plan Edition 5-Revised.
As for the fifth drug Oxymetholone, it was found to be effec-
tive against wasting associated with HIV infection in a clinical
trial [41]. How it might be helpful in treating COVID19 infection
is debatable [42] but it has been recorded in Excela COVID-19
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rug repurposing dataset. The sixth drug, Camostat, can block
ARS-CoV-2 infection of lung cells and could be considered for
ff-label treatment of COVID-19 infections [43,44]. Owing to
quilin blocked the cellular entry of a pseudovirus formed by
n HIV-core packed with the Zaire Ebola virus glycoprotein in
n in-vitro experiment and Zaire Ebola and COVID-19 belong to
oronavirus [45]. Therefore, Equilin is recognized as a potential
rug to treat COVID-19 [42]. The eighth drug Melatonin has
een shown to target pathological alterations associated with an
bola infection [46] such as endothelial disruption, disseminated
ntravascular coagulation and multiple organ hemorrhage. Mela-
onin plays an inhibitory role on lung oxidative stress induced
y respiratory syncytial virus infection in mice [47] and it is also
onsidered as one of the potential drugs to treat COVID-19 [42].
dditionally, Ref. [48] indicated the combination of remdesivir
nd emetine therapy may provide better clinical benefits. These
mpirical results indicate that proposed model has a strong pre-
ictive ability and can narrow the scope of candidates for further
iological experiments.

. Discussion

Drug repositioning as an effective drug development method
rovides a far more rapid option on the clinic than traditional
rug discovery. In this study, we proposed a network-based
rug repositioning method SANE to identify potential drugs for
OVID-19.
There are three reasons why SANE has superior performances

nd outperforms representative models. First, SANE mines the
ssociations in a deeper level, compared with similarity-based
ethods. SANE preserves the local structural feature by adopt-

ng aggregating neighbor information and learns the network
opology by increasing the targeted node receptive field. By this
ay, SANE is not limited in 2D space, it can capture high di-
ensional and complex potential features. Second, compared
ith previous representative network-based methods, SANE in-
roduces drug SMILES and virus sequence into model as node
nitial feature, increasing information granularity. Though previ-
us work has integrated above two kinds of information, their
odels learn two features respectively and simply concatenate

hem together as the final representation. Unlike them, SANE
mbeds the attribute information into network representation
earning. By doing this, the representation obtained by SANE con-
ains not only network structural information but node attribute
nformation. Third, SANE adopts attention-based learning strat-
gy to ensure the stability and accuracy. Previous models select
he nodes or paths randomly, but in our study SANE selects the
eighbor nodes by attention weight, which is a more reasonable
trategy. Then, the model can concentrate on the crucial part of
etwork and reduce the random noises.
Though SANE performs well in COVID-19 drug repositioning,

t still faces some challenges. SANE will be limited by the in-
omplete sequences or information lacking due to the attribute
eature is extracted from drug SMILES or virus sequences. Besides,
hough SANE is able to get reliable initial node embeddings, it is
hallenged to maintain the node attribute similarity in the low
imension space.

. Conclusion

In this study, we proposed an attention-based computational
odel SANE to repurpose drugs for COVID-19 based on drug–
irus associations network. SANE integrated the drug SMILES and
irus sequence into attention-based network embedding to infer
ommercially available drugs that could be applied to experimen-
al therapy options against COVID-19. The result show that SANE
10
has a strong ability in associations prediction and outperforms
several classical network embedding models and similarity-based
models. Further case study on COVID-19 show that SANE is a
promising model to repurpose drugs against COVID-19 since 7 of
top 10, 13 of top 20, 18 of top 30 and 25 of top 40 drugs are
verified by recent literatures and some of them has been used
to COVID-19 treatment in clinical trials. We hope that predicted
approved drugs of SANE may be helpful in the future prevention
of the transmission of COVID-19.

However, there is still room for further improvement. In the
future, we will adopt various optimization methods [49] to fur-
ther improve the prediction performance. Moreover, we will
enlarge the network by integrating associations related to drugs,
such as drug–drug interactions and drug–target interactions, to
further enhance the information dimension, and adopt probability
based negative set sampling strategy to enhance the stability of
the model.
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