Skip to main content
. 2021 Aug 23;39(1):385–403. doi: 10.1007/s10460-021-10255-5

Table 11.

Regression results for use and importance variables

pct_sold vbsc_rank1 vbsc_top3
Intercept 42.812*** − 1.009 1.636*
(8.657) (1.065) (0.994)
Farm characteristic
acres − 0.299** − 0.056 0.228
(0.136) (0.048) (0.140)
gfi − 0.074*** 0.001 − 0.012***
(0.026) (0.004) (0.004)
pct_farminc − 0.038 0.000 0.005
(0.047) (0.005) (0.008)
Commodities produced
meats&dairy 4.447 − 0.286 − 0.309
(4.140) (0.297) (0.339)
hortcrop − 0.187 − 1.016*** − 0.480
(5.620) (0.276) (0.397)
agroncrop − 12.434*** 0.802 0.194
(3.921) (0.616) (0.359)
Region (base = Midwest)
Northwest 4.580 − 0.658 − 0.185
(4.667) (0.534) (0.663)
Pacific − 5.495 − 0.470 − 0.662
(5.448) (0.700) (0.630)
Northeast 1.891 − 1.046* − 1.155
(4.706) (0.605) (0.724)
Southeast 17.402 ** 0.496 − 1.049*
(7.255) (0.620) (0.620)
Operator characteristic
female − 8.337** − 0.237 − 0.643**
(3.748) (0.242) (0.312)
age − 0.147 0.024* 0.009
(0.128) (0.014) (0.012)
Number of obs 225 226 226
p-value for F/χ2 test 0.000 0.000 0.000
Pseudo R-squared 0.014 0.086 0.101

*, **, and *** signify statistical significance at the 0.1, 0.05, and 0.01 levels, respectively

The numbers in parentheses are standard errors adjusted for VBSC clusters. The pct_sold equation is estimated using tobit regression with the dependent variable censored at 0 and 100. The vbsc_rank1 and vbsc_top3 equations are estimated using logit regression