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Abstract

Background: As our understanding of the etiology and mechanisms of cancer becomes more 

sophisticated and the number otf therapeutic options increases, phase I oncology trials today 

have multiple primary objectives. Many such designs are now ‘seamless’, meaning that the 

trial estimates both the maximum tolerated dose and the efficacy at this dose level. Sponsors 

often proceed with further study only with this additional efficacy evidence. However, with this 

increasing complexity in trial design, it becomes challenging to articulate fundamental operating 

characteristics of these trials, such as (i) what is the probability that the design will identify an 

acceptable, i.e. safe and efficacious, dose level? or (ii) how many patients will be assigned to an 

acceptable dose level on average?

Methods: In this manuscript, we propose a new modular framework for designing and evaluating 

seamless oncology trials. Each module is comprised of either a dose assignment step or a dose

response evaluation, and multiple such modules can be implemented sequentially. We develop 

modules from existing phase I/II designs as well as a novel module for evaluating dose-response 

using a Bayesian isotonic regression scheme.

Results: We also demonstrate a freely available R package called seamlesssim to numerically 

estimate, by means of simulation, the operating characteristics of these modular trials.

Conclusions: Together, this design framework and its accompanying simulator allow the clinical 

trialist to compare multiple different candidate designs, more rigorously assess performance, better 

justify sample sizes, and ultimately select a higher quality design.
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1 Background

Current phase I oncology trial designs are often ‘seamless’ in nature [1], meaning both 

a maximum tolerated dose (MTD) and an initial efficacy estimate at this dose level are 

sought. Trial sponsors may be unwilling to proceed with further study without this additional 

efficacy evidence [2]. We recently designed such a trial for relapsed/refractory indolent 

lymphoma. The objective was to estimate the MTD and obtain preliminary estimates of 
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efficacy as measured by complete response. Success for this trial reflects the seamless 

perspective: the primary objective is to identify a dose level that is both tolerable and 

efficacious. As in all such trials, a key statistical concern is the potential for uncertainty to 

compound across objectives. Future success in the pipeline depends upon the current trial 

correctly estimating both the MTD and the response rate at this estimated MTD.

Our understanding of both the etiology and mechanisms of many cancers has increased 

over the past decades, and the number of therapeutic options has correspondingly increased. 

However, one characteristic remaining relatively static is that most trial designs are still 

variants of the ‘3+3’ algorithm [3, 4]. This is notable given that the canonical reference 

for this design recommends against its use [5]. The continued use of the 3+3 instead of 

demonstrably superior alternatives such as the continual reassessment method [CRM, 6] 

highlights a persistent gap between method and practice in this area, which is widened by 

the multifaceted objectives of seamless oncology trials.

We argue that this gap can be bridged with an accessible framework for seamless trial 

design and the software for simulating such designs. To that end, this paper has two primary 

contributions. First, we develop a modular perspective for seamless oncology trial design, 

which decomposes complex designs with multiple decision points into simpler components. 

This atomic approach individualizes the choices required for seamless designs, thus 

providing a framework to evaluate the effect of each choice on overall performance. Second, 

we present a seamless trial design simulator to conduct this performance assessment, 

implemented in the R statistical environment [7–10] as a freely available package called 

seamlesssim [11]. Users can evaluate the impact of each design choice with respect to 

important operating characteristics.

Many model-based designs for recommending dose levels based upon safety and efficacy 

have been proposed, including the bivariate CRM [bCRM, 12], ‘EffTox’ [13], the 

trivariate CRM [TriCRM, 14], and others [15–26]. Some of these designs have even been 

implemented in trial practice, like the use of an EffTox design to assess the performance of 

sitravatinib and nivolumab in renal cell cancer [27] or a trial of FLAG-IDA and ponatinib in 

myeloid leukemia [28], or the use of the bivariate CRM in a trial on T cell co-stimulators for 

solid tumors [29]. However, these examples aside, the uptake of these advanced designs has 

been slow, and protocols often try to satisfy these dual objectives under the 3+3 framework. 

For example, a trial may estimate an MTD using the 3+3 and then, under the assumption 

that it has been correctly identified, enroll an additional ‘expansion cohort(s)’ of subjects 

at a fixed dose level(s) and/or in different subpopulations in order to evaluate efficacy 

[30–33]. An extreme example of this is the KEYNOTE-001 trial of pembrolizumab, which 

started as a 3+3 trial of 10 subjects across three dose levels and subsequently evolved into 

a multi-amendment trial enrolling a total of 1235 subjects across multiple expansion cohorts 

[34, 35]. As of 2016, there were at least four other phase I trials enrolling more than 1000 

patients [36].

The favorable outcome of KEYNOTE-001 was unusual: a recent study found that only 3.4% 

of phase I oncology trials that opened between Jan 1, 2000 and Oct 31, 2015 led to eventual 

approval [37], which is consistent with reported success rates from an earlier study [38]. 
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Stopping dose-escalation after a small number of subjects, as in the 3+3, risks ending at too 

low of a dose [31]; the subsequent expansion may stop for lack of efficacy, when a higher 

dose level might have been found to be efficacious. Or escalation might have occurred too 

quickly, and lower dose levels, in addition to being safer, are equally efficacious, which 

would only be revealed through a more methodical exploration of efficacy across the full 

range of dose levels. This piecemeal approach to seamless trial design makes difficult a 

formal assessment of operating characteristics and highlights the challenges of quantifying 

the implications of multiple sequential decision trials.

Recognizing these weaknesses, the FDA published draft guidance on designing seamless 

oncology trials [1, 39]. However, because the FDA does not make design recommendations, 

this guidance does not resolve the tension between logistical simplicity on the one hand 

and a rigorous quantification of uncertainty on the other. To that end, this paper outlines a 

modular framework that captures the decision points made in designing a seamless oncology 

trial and gives several possible options for each decision. Section 2 describes each module 

and presents our specific design choices intended to adhere to the FDA guidance. We present 

a freely available trial simulator, implemented in an R package called seamlesssim and 

an accompanying vignette, both available via GitHub [11], allowing the user to evaluate 

and compare many design options at once. Section 3 demonstrates this simulator with a 

numerical study. We show that sensible choices for each module exist, and we provide the 

computational tools for clinical trialists and statisticians to make this assessment.

2 Methods

2.1 Conceptual Framework

Our framework encompasses many styles of early phase, seamless-type trials. We allow for 

two stages, both enrolling cohorts of subjects to an assigned dose level(s) and following 

for toxicity or response endpoints; the second stage may be dropped if a certain response 

threshold is not achieved in the first stage. Each stage is subdivided into two ‘modules’, one 

for dosing subjects and one for assessing efficacy, for up to four modules total. Figure 1 

provides a high-level schematic of our framework.

This paper defines a ‘seamless design’ to be any valid combination of the four modules. 

Since each module can be selected independently of the remaining modules, with some 

exceptions, there are many possible designs. Some modules can be skipped altogether, and 

thus our schema includes both classical phase I dose-escalation designs, such as the 3+3 or 

the CRM, and two-stage phase II designs [40]. It also yields novel hybridizations of the two, 

and we elucidate the benefits and pitfalls of these hybridizations. The specific choices for 

each module that we have considered are summarized in Table 1. Throughout this document, 

we use a typewriter font family to refer to the simulator and its inputs.

Remark 1—Our “1st stage” and “2nd stage” terminology are not synonymous with the 

traditional phase 1 and phase 2 terminology. Rather, the seamless framework means that 

phase 1 and phase 2 occur throughout both stages. As we will show, the staging protects 

patients by allowing to stop for futility.
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The data to be collected for each subject are dose level, occurrence of dose limiting toxicity 

(DLT), and indicator of response. The true MTD is the dose level with true probability of 

DLT closest to some pre-specified threshold, usually between 0.25 and 0.35. The objective 

of seamless oncology trials is typically to establish that the true response probability at 

the true MTD exceeds some minimal efficacy boundary. Well-designed seamless trials 

should guard against two distinct errors: the MTD may be incorrectly estimated and/or the 

estimated response rate may be inefficient or biased. Either error decreases the probability of 

correctly estimating the efficacy at the true MTD, and moreover, the consequences of either 

error may be different.

Remark 2—Because our goal is simplicity, the modules currently implemented assume that 

the probabilities of DLT and response for each dose are mutually independent. However, 

additional modules that relax this assumption could be implemented.

2.2 Module 1: Dose Assignments for 1st Stage

An initial cohort of n1 subjects is enrolled and followed for DLT and/or response, which 

are assumed to be binary. Subjects may be adaptively assigned to one of several dose levels 

based upon the observed dose-toxicity relationship in the previous subjects, or all subjects in 

this module may be enrolled to a fixed dose level, and the sole primary endpoint is response. 

Depending on the aims of the trial, a dose-modifying or fixed-dose module is possible.

We recommend the model-based CRM for module 1 [6, 10] (crm, Table 1). In this design, 

the first subject is assigned to a pre-specified starting dose. A statistical model is fit to 

estimate the DLT probabilities for each dose based upon the first subject’s data; this model is 

usually fit using Bayesian methods to account for sparsity in the data. The MTD is estimated 

after the first subject, and the next subject is assigned to the new estimated MTD. With each 

subsequent enrollment, the MTD is re-estimated using all previous subjects’ data.

There are usually safety constraints accompanying the CRM to avoid unsafe escalation [41]. 

These include never escalating more than one dose level per subject, never escalating before 

at least one subject has completed a full DLT window at the current dose, and stopping the 

trial for toxicity if no dose falls below the toxicity threshold.

We have implemented other options for module 1 in our simulator, including the 3+3 

algorithm (3pl3); a de-escalation scheme that lowers the assigned dose whenever some 

percentage of subjects experience a DLT at the current dose level (empiric); and a fixed 

dose-assignment scheme (fixed). None of these alternatives explicitly estimate the MTD but 

instead simply assign dose levels according to a rule-based algorithm.

2.3 1st Stage Futility Analysis (Module 2)

Due to the longer timeframe typically required to observe response, it may be infeasible 

to re-evaluate the dose-response curve after each subject as is done with the dose-toxicity 

curve. Rather, it is common to assess efficacy at a few discrete time points during the trial. 

Module 2 demarcates the first such time point in our framework. Module 1 ends after dose 

assignments have been made for n1 subjects, and module 2 occurs when response has been 

measured for them.
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Module 2 is a gatekeeper: if the probability of finding evidence for efficacy at the end of 

the trial, given the data thus far, is low, then the trial should stop. If module 1 assigned all 

n1 subjects to the same dose level, then module 2 can be as simple as requiring a minimum 

number of responders in order to proceed (min_num_resp). In the absence of any subsequent 

modules, this would be the single-stage design of A’hern [42]. If dose assignments vary 

from subject to subject, such that the actual number of subjects at the estimated MTD is 

likely to be less than n1, then it would make more sense to require a minimum proportion 

of responders in order to proceed (min_pct_resp). Even this may be insufficient, as simply 

requiring a proportion does not take into account uncertainty in observed response rates; this 

can be achieved by calculating a confidence interval for the probability of response at the 

estimated MTD, e.g. based on the inverted score test [inverted_score 43].

We also implement a Bayesian version (bayes, Table 1), which, assuming that the efficacy 

at the estimated MTD is a random variable, calculates the posterior probability that efficacy 

at the MTD exceeds some minimal response rate. The trial continues only if this posterior 

probability exceeds some prespecified value. It is common to assume that the distribution of 

the random variable is Beta, with hyperparameters a1 > 0 and a2 > 0, which can be linked 

to prior beliefs about the mean historical response probability, a1/(a1 + a2), and the historical 

effective sample size, a1 + a2. This is akin to the prior elicitation approach of Mayo and 

Gajewski [44].

One limitation facing all of the above approaches when the dose-assignment scheme in 

module 1 is adaptive is that the number of subjects at the estimated MTD can be highly 

variable. As an extreme example, suppose that, after the n1th subject, the dose-assignment 

mechanism updates the estimated MTD to a never-before-tried dose level. If no dose

response model is in place, and assuming a Bayesian perspective, then the distribution 

of the MTD’s efficacy will be entirely prior-driven. This is undesirable behavior if there 

is evidence that the response rate at the dose level just above the estimated MTD is itself 

quite low, the knowledge of which would actually suggest stopping for futility. A parametric 

dose-response model, e.g. logistic regression or a CRM-type model, could help overcome 

this limitation. Alternatively, one could impose a weaker assumption that the true probability 

of response is simply non-decreasing between dose levels. To this end, our recommendation 

for module 2 is a novel Bayesian variant of isotonic regression that we have developed 

(bayes_isoreg, Table 1), which we briefly describe in Supplement 1. In standard isotonic 

regression, observing a large response rate at a lower dose level would be taken as evidence 

that the response rates at high dose levels are also large and, conversely, observing a small 

response rate at a higher dose level is taken as evidence that the response rate at low dose 

levels is also small [45]. Standard isotonic regression may be inadequate under sparse data 

scenarios, and our Bayesian variant addresses this limitation.

2.4 Dose Assignments for 2nd Stage (Module 3)

Seamless trials often enroll a second cohort of n2 subjects, either using an adaptive dose

assignment scheme or at a fixed dose level, sometimes called a ‘dose expansion cohort’ 

[DEC, 30]. Module 3, which delineates this next set of dose assignments, can be any of the 

options used in module 1, but the starting dose is now the estimated MTD from module 1. 

Boonstra et al. Page 5

Clin Trials. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



An expansion cohort starting at the estimated MTD with or without a simple de-escalation 

rule would be simulated using empiric or fixed, respectively (Table 1).

Because the estimated MTD is subject to uncertainty, we recommend that module 3 

continue adaptive dose assignments and re-estimation of the MTD [31, 32]. Under this 

recommendation, an entirely new CRM could be initiated, starting at the previously 

estimated MTD (crm), or the CRM from module 1 could resume at the exact state it ended at 

in module 1 (continue_crm). Alternatively, a new 3+3 starting at the estimated MTD could 

be selected (3pl3). Finally, module 3 can be skipped altogether if no second stage is required 

(none).

2.5 Dose Recommendation (Module 4)

A final efficacy analysis is conducted at the end of the trial, either using all enrolled 

subjects’ data or data from just the second stage. The design choices for module 4 are the 

same as for module 2, and all of the same options exist (bayes, bayes_isoreg, inverted_score, 

min_num_resp, and min_pct_resp).

3 Results

3.1 Trial Simulator: Description

We present a numerical study of our seamless trial simulator to demonstrate how it can 

be used to compare the performance of heterogenous seamless trial designs. Code and 

instructions for recreating the simulation study, which makes use of our seamlesssim R 

package, are available in a separate GitHub repository [46], and the instructions are reprinted 

in Supplement 2. Ten data-generating scenarios were considered; the true dose-toxicity and 

dose-response curves are given with the results in Figures 2–4 and Figure S2 in Supplement 

1. For all scenarios, the true MTD was the dose level with true probability of DLT closest 

to 0.25 but not exceeding 0.30, and an ‘acceptable’ dose level was defined as any dose level 

with true probability of DLT not exceeding 0.30 and true probability of response at least 

0.20. Based on this definition, two scenarios (numbers 7 and 9) had no acceptable dose 

levels, and three scenarios (1, 3, and 10) had two acceptable dose levels. The remaining five 

had exactly one acceptable dose level.

We compared six designs comprising combinations of modules: two choices of dose

assignment mechanism each combined with three different efficacy analyses. All designs are 

described in Table 2. The first dose-assignment mechanism is a ‘3+3’ algorithm (module1 

= 3pl3), which will have a maximum sample size of 6 patients per dose level, or n1 = 

30 patients, followed by a fixed DEC of size n2 = 35 (module3 = empiric); the DEC 

enrolls subjects at the estimated MTD from the ‘3+3’ algorithm and only de-escalates if 

the observed DLT rate after the first 10 patients in the cohort exceeds 33%. The second 

dose-assignment mechanism is a CRM (module1 = module3 = crm) with n1 = 25 and n2 = 

35 subjects in the first and third modules, respectively.

We evaluated three sets of efficacy analyses. The first utilized a Bayesian futility analysis 

(module2 = bayes) and a final Bayesian analysis (module4 = bayes); the second conducted 

only a final Bayesian analysis (module4 = bayes); and the third implemented our Bayesian 
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isotonic regression at the end (module4 = bayes_isoreg). To compare between all six 

designs, the module 2 and module 4 efficacy parameters were set so that the probability 

of recommending the MTD in scenario 9 was about 0.10. This corresponds to a type I error 

(false positive) rate of 0.10, since the MTD is not acceptable in this scenario. For each of the 

60 combinations of six designs and ten scenarios, we ran 2000 simulated trials.

3.2 Trial Simulator: Results

Figures 2 and 3 display the simulation-based probability of recommending any dose and 

whether or not that recommendation was a good one. Each figure gives a set of three 

designs, grouped by choice of dose-assignment mechanism. When at least one dose level 

is acceptable, as in scenarios 1–6, 8, and 10, there are three possible outcomes to the trial 

– no recommendation, recommendation of an unacceptable dose, or recommendation of an 

acceptable dose – and when no dose levels are acceptable, as in scenarios 7 and 9, there are 

two possible outcomes – no recommendation or recommendation of an unacceptable dose.

From Figure 2, which contains the 3+3-type designs, whether or not there is 

an interim futility analysis in module 2, i.e. comparing 3pl3:Bayes:DEC:Bayes to 

3pl3:none:DEC:Bayes, has relatively little impact on the probability of making a correct 

dose recommendation. This is not surprising, given that the DEC in module 3 is 

unlikely to change the estimated MTD unless extreme toxicity is observed, making this 

comparison analogous to that of a two-stage phase II design against a one-stage phase 

II design. In contrast, the use of a Bayesian isotonic regression in module 4 in place 

of independent beta priors on each dose level, i.e. comparing 3pl3:none:DEC:Bayes to 

3pl3:none:DEC:IsoReg, generally increases the overall probability of recommending a dose 

level. That is, the ‘No Rec (correct)’ and ‘No Rec (wrong)’ proportions are generally larger 

for 3pl3:none:DEC:Bayes, and the ‘Rec (unaccept)’ and ‘Rec (accept)’ proportions are 

generally larger for 3pl3:none:DEC:BIsoReg. These differences range from 1–4% across 

all ten scenarios. This is also an expected finding, since sharing information between dose 

levels allows the isotonic regression to more easily recommend dose levels.

Figure 3 gives the same sets of results for the CRM-type designs, all of which have 

the same maximum possible sample size of n1 + n2 = 60 subjects. As expected, the 

CRM-type designs select an acceptable dose with higher probability than the 3+3-type 

designs. Moreover, in contrast to Figure 2, the interim efficacy analysis has a greater effect 

on the final outcome of the trial, as seen from comparing CRM:Bayes:CRM:Bayes to 

CRM:none:CRM:Bayes. This is likely because of the final 35 patients of the trial, who 

are only enrolled to CRM:Bayes:CRM:Bayes if the module 2 efficacy analysis is passed. 

Comparing CRM:none:CRM:Bayes to CRM:none:CRM:BIsoReg, the isotonic regression 

generally increases the recommendation probability.

Figure 4 gives the distribution of dose assignments at subjects 10, 30, and 50 for the three 

CRM-type-designs. Analogous results for the 3+3-type-designs are given in Figure S2 of 

Supplement 1. For the CRM designs, as the trial proceeds, subjects are assigned to the 

preferred dose level in increasing proportions. Although the 3+3 designs generally assign the 

10th subject to the preferred dose with high probability, their performance degrades as the 

trial proceeds, meaning that the 30th and 50th subjects are often assigned to the preferred 

Boonstra et al. Page 7

Clin Trials. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dose level with small probabilities. This is an expected result given the known deficiencies 

of the 3+3, but the inclusion of the interim efficacy analysis would make it difficult to 

quantify these probabilities in the absence of this simulator. Comparing Figure 4 to Figure 

S2, CRM:none:CRM:BIsoReg is uniformly preferred to 3pl3:Bayes:DEC:Bayes except for 

scenarios 7 and 9, in which no dose levels are acceptable in truth. Based on this, we would 

conclude that CRM:none:CRM:BIsoReg would be improved with a choice of module 2 = 

bayes_isoreg, if we were actually proposing the design for a clinical protocol.

4 Conclusion

This paper characterizes seamless oncology trial design in a modular framework, which 

confers several advantages. It formalizes each decision needed for a seamless-type trial, 

including a provision for interim futility analyses. It puts forward a concrete definition of 

a ‘seamless trial’, namely any logically coherent set of modules. Because this modular 

framework is implemented in seamlesssim[11], a freely available R package and an 

accompanying vignette that together form the main contribution of this paper, it is possible 

to quantify design decisions’ impact on operating characteristics. By providing the trial 

simulator, we have made it simpler for clinical trialists to quantify seamless design 

decisions’ impact on operating characteristics. Even very heterogeneous designs can be 

compared using our simulator, which reports the same operating characteristics regardless 

of the module configuration. These advantages address three key challenges to the statistical 

design of seamless trials outlined in Hobbs, et al. [33]: lack of formal design for DECs, 

imprecise operating characteristics, and difficulties in implementing interim safety and 

futility analyses. Future extensions could use the time-to-event-CRM [47] in Modules 1 

and 3 as a means of handling late-onset toxicities. Another important direction would be to 

extend Modules 2 and 4 to estimate an optimal biological dose or minimum efficacious dose.

Although our primary goal was not to recommend a particular configuration of modules, our 

findings reiterate the importance of keeping the dose assignment mechanism open for the 

full duration of the trial and efficiently sharing information across dose levels and stages. 

With regard to this second point, an isotonic regression model for estimating dose-response 

curves, such as bayes_isoreg, is sensible. This approach could also be adapted as an option 

for module 1 or module 3, to estimate the dose-toxicity curve.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
A high-level schematic of our two-stage, four-module framework for Phase I/II seamless 

designs. Note that toxicity and efficacy are assessed concurrently in both stages, rather than 

a stark divide between the two objectives, with toxicity the priority in Stage 1, while efficacy 

is the focus of Stage 2. Trials may choose to stop after Stage 1 if the Module 2 interim 

efficacy analysis is not promising.
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Figure 2: 
Simulation-based probability of outcomes (based on 2000 simulations) for three designs 

(out of six total) across ten scenarios, separated into whether or not any dose level was 

recommended and whether or not that outcome was acceptable or not. The right-hand 

column gives the true generating toxicity and efficacy curves. Each row corresponds to a 

different scenario, and consecutive pairs of scenarios (1&2, 3&4, etc.) are linked in that they 

share a common dose-toxicity curve but differ in the dose-response curve. Figure 3 gives the 

same results for three different designs.
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Figure 3: 
Simulation-based probability of outcomes (based on 2000 simulations) for three designs 

(out of six total) across ten scenarios, separated into whether or not any dose level was 

recommended and whether or not that outcome was acceptable or not. The right-hand 

column gives the true generating toxicity and efficacy curves. Each row corresponds to a 

different scenario, and consecutive pairs of scenarios (1&2, 3&4, etc.) are linked in that they 

share a common dose-toxicity curve but differ in the dose-response curve. Figure 2 gives the 

same results for three different designs.
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Figure 4: 
Distribution of dose assignments at subjects 10, 30, and 50 (based on 2000 simulations) 

for three CRM-type designs (out of six total) across ten scenarios. The right-hand column 

gives the true generating toxicity and efficacy curves. Each row corresponds to a different 

scenario, and consecutive pairs of scenarios (1&2, 3&4, etc.) are linked in that they share 

a common dose-toxicity curve but differ in the dose-response curve. The proportion(s) 

corresponding to the preferred dose level are bordered by a solid box. If a trial has stopped 

for futility or safety, the patient was treated as having been assigned to dose level ‘0’. Figure 

S2 in Supplement 1 gives the same results for the three 3+3-type designs.
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Table 1:

Module options currently implemented in the seamless design trial simulator. The option names are in bold, 

and the names immediately below each option, which follow the ‘$’ symbol, give the inputs required for that 

option.

Stage 1 Stage 2

Module 1 Module 2 Module 3 Module 4

crm bayes crm bayes

$n $prob_threshold $n $prob_threshold

$skeleton $prob_means
$skeleton

† $prob_means

$starting_dose $prior_n_per
$beta_scale

† $prior_n_per

$beta_scale $dose_cohort_size $include_stage1_data

$dose_cohort_size $dose_cohort_size_first_only

$dose_cohort_size_first_only $earliest_stop

$earliest_stop

3pl3 bayes_isoreg 3pl3 bayes_isoreg

$starting_dose $prob_threshold $prob_threshold

$alpha_scale $alpha_scale

$include_stage1_data

empiric inverted_score empiric inverted_score

$n $ci_level_onesided $n $ci_level_onesided

$starting_dose $rule $include_stage1_data

$rule $first_patient_look

$first_patient_look $thresh_decrease

$thresh_decrease

fixed min_num_resp fixed min_num_resp

$n $number $n $number

$starting_dose $include_stage1_data

min_pct_resp
continume_crm

‡ min_pct_resp

$percent $n $percent

$include_stage1_data

none none none

†
these arguments are optional if module 1 is crm. If this is the case and these arguments are not provided, the module 1 options will be used.

‡
this option can only be selected if module 1 is crm because this indicates a simple continuation of that crm
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Table 2:

Choice of modules for six designs considered. The upper three designs will enroll up to n1 = 30 patients 

(cohorts of six for each of five dose levels) in module 1 and n2 = 35 in module 3; the lower three designs will 

enroll up to n1 + n2 = 60 subjects across both modules.

Design name module 1 module 2 module 3 module 4 max n1 + n2

3pl3:Bayes:DEC:Bayes 3pl3 bayes empiric bayes 65

3pl3:none:DEC:Bayes 3pl3 none empiric bayes 65

3pl3:none:DEC:BIsoReg 3pl3 none empiric bayes_isoreg 65

CRM:Bayes:CRM:Bayes crm bayes crm bayes 60

CRM:none:CRM:Bayes crm none continue_crm bayes 60

CRM:none:CRM:BIsoReg crm none continue_crm bayes_isoreg 60
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