Skip to main content
. 2021 Aug 2;115(4):365–382. doi: 10.1007/s00422-021-00884-8

Table 2.

Model parameters used for simulating learning. See Table 1 for abbreviations

Varying values (default value)
Learner parameters Task parameters
σm2 ση2 α Target amplitude (units of σm) Reward criterion (R(t) = 1 if: …)
1 1 0 0 Random:
50% of trials
4 4 0.1 2 Adaptive (median):
If EP < target: median(EPt-1:t-10) ≤ EP ≤ target + 1
If EP within fixed reward zone: target – 1 ≤ EP ≤ target + 1
If EP > target: target – 1 ≤ EP ≤ median(EPt-1:t-10)
9 16 0.15 4 Adaptive (mean):
If EP < target: EP¯t-1:t-10 ≤ EP ≤ target + 1
If EP within fixed reward zone: target – 1 ≤ EP ≤ target + 1
If EP > target: target – 1 ≤ EP ≤ EP¯t-1:t-10
16 36 0.2 6 Fixed:
If EP within fixed reward zone: target – 1 ≤ EP ≤ target + 1
25 64 1 8 Fixed with lower target fraction (target fraction = 2):
If EP within fixed reward zone: target – 1 ≤ EP ≤ target + 1

† The input ση2 is equal to the exploratory variance used following non-successful trials in the model of Cashaback19 and Therrien16. Using a variability control function (see Eq. 10, Fig. 3), it defines the two exploratory variances in the Therrien18 model, and a whole range of variances in the Dhawale19 model

‡ The values 0.1, 0.15 and 0.2 are not used in the Therrien16 and Therrien18 models, as their learning parameter is fixed at 1 (Eq. 4)