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Abstract

Aims/hypothesis Research using data-driven cluster analysis has proposed five novel subgroups of diabetes based on six measured
variables in individuals with newly diagnosed diabetes. Our aim was (1) to validate the existence of differing clusters within type 2
diabetes, and (2) to compare the cluster method with an alternative strategy based on traditional methods to predict diabetes outcomes.
Methods We used data from the Swedish National Diabetes Register and included 114,231 individuals with newly diagnosed
type 2 diabetes. k-means clustering was used to identify clusters based on nine continuous variables (age at diagnosis, HbA,
BM], systolic and diastolic BP, LDL- and HDL-cholesterol, triacylglycerol and eGFR). The elbow method was used to determine
the optimal number of clusters and Cox regression models were used to evaluate mortality risk and risk of CVD events. The
prediction models were compared using concordance statistics.

Results The elbow plot, with values of & ranging from 1 to 10, showed a smooth curve without any clear cut-off points, making
the optimal value of &k unclear. The appearance of the plot was very similar to the elbow plot made from a simulated dataset
consisting only of one cluster. In prediction models for mortality, concordance was 0.63 (95% CI 0.63, 0.64) for two clusters,
0.66 (95% C10.65, 0.66) for four clusters, 0.77 (95% C1 0.76, 0.77) for the ordinary Cox model and 0.78 (95% CI10.77, 0.78) for
the Cox model with smoothing splines. In prediction models for CVD events, the concordance was 0.64 (95% CI1 0.63, 0.65) for
two clusters, 0.66 (95% CI1 0.65, 0.67) for four clusters, 0.77 (95% C10.77, 0.78) for the ordinary Cox model and 0.78 (95% CI
0.77, 0.78) for the Cox model with splines for all variables.

Conclusions/interpretation This nationwide observational study found no evidence supporting the existence of a specific number
of distinct clusters within type 2 diabetes. The results from this study suggest that a prediction model approach using simple
clinical features to predict risk of diabetes complications would be more useful than a cluster sub-stratification.

Keywords Cardiovascular diseases - Cluster analysis - Diabetes complications - Diabetes mellitus type 2 - Epidemiology -
Mortality

Abbreviations LADA  Latent autoimmune diabetes of adulthood
ANDIS All New Diabetes in Scania NDR National Diabetes Register of Sweden
GADA GAD autoantibodies
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' Institute of Medicine, University of Gothenburg, Sahlgrenska clinical presentation, disease course and outcome. Both the
University Hospital, Gothenburg, Sweden expression and the progression of the disease are influenced
2 National Diabetes Register, Centre of Registers, by several different complex processes, making it difficult to
Gothenburg, Sweden predict prognosis and therapeutic response in affected individ-
3 Institute of Cardiovascular and Medical Sciences, University of uals. A better characterisation and understanding of this
Glasgow, Glasgow, UK heterogeneity may provide powerful tools to improve care
@ Springer

Published online: 31 May 2021


http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-021-05485-5&domain=pdf
http://orcid.org/0000-0002-1639-0213
mailto:Moa.lugner@gu.se

1974

Diabetologia (2021) 64:1973-1981

What is already known about this subject?

e Arecently published study proposed a novel sub-stratification of diabetes with five different subgroups, using

cluster analysis

e |t was shown that the clusters differed in disease progression and risk of complications, and therefore it was stated
that the sub-stratification might represent a first step towards precision medicine in diabetes

e This topic has received a considerable amount of scientific interest, although some researchers have questioned
the clinical value and the cluster method’s ability to predict disease outcome and treatment response

What is the key question?

e (an the existence of differing clusters within type 2 diabetes be validated and is the cluster sub-stratification more
useful than traditional methods to predict diabetes outcomes?

What are the new findings?

e We could not find any evidence supporting the existence of a distinct number of clusters within type 2 diabetes

e Models based on simple variables outperformed models based on clusters in terms of predicting mortality or CVD

events

How might this impact on clinical practice in the foreseeable future?

e The cluster approach does not have sufficient predictive accuracy or cluster stability to currently be considered for
implementation in a clinical setting, and using commonly available measurements in prediction models for each
patient is more informative when predicting diabetes outcomes

and outcomes for patients, making this an area of interest for
many researchers.

With the aim of providing a refined classification of diabe-
tes, Ahlqvist et al. recently proposed five novel subgroups,
using data-driven cluster analysis in the All New Diabetes in
Scania (ANDIS) cohort [1]. The clusters were based on six
measured variables: GAD autoantibodies (GADA), age at
diagnosis, BMI, HbA,. and HOMA estimates of beta cell
function and insulin resistance. The first cluster was defined
by the presence of GADA, therefore consisting of individuals
with autoimmune diabetes (type 1 diabetes and latent autoim-
mune diabetes of adulthood [LADA]). Four type 2 diabetes
clusters were then described based on the absence of GADA
and varying degree of differences in the other mentioned vari-
ables. Using observational follow-up, Ahlqvist et al. were also
able to show that the clusters differed in disease progression
and risk of diabetes complications. The authors argued that the
results represented a first step towards precision medicine in
diabetes, and that sub-stratification may help to tailor and
target early treatment to patients who would benefit the most.

The aforementioned study generated a great deal of scien-
tific interest for this topic, and since it was published other
researchers have applied the same clustering algorithm to
different populations with results similar to the clusters origi-
nally proposed [2—6]. This suggests that the same clustering
algorithm applied across different populations will produce
similar clusters.
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Even so, other researchers have questioned the value of this
approach in terms of its utility for prediction of disease
progression and therapeutic response [3, 7]. Dennis et al. used
data from the ADOPT and RECORD trials and identified
clusters that were similar to those described in the original
study. They then compared the ability of a cluster approach
to predict disease progression and treatment response with
models based on simple continuous clinical features. The
latter outperformed the cluster approach, leading the authors
to the conclusion that the clinical relevance of the cluster
approach is limited [3].

Cluster analysis is a complex field, and it is generally diffi-
cult to determine whether the clusters identified are in fact
corresponding to a real underlying phenotypic grouping and
are not just a result of dependency among variables. Cluster
analysis is, in fact, dividing data objects into groups based
only on information found within the data. The cluster algo-
rithms will produce clusters wherever the variables used are
correlated. Thus, the real challenge does not lie in creating
clusters, but rather in demonstrating that the clusters created
truly have captured a natural structure within the data, and also
that they can add clinical value. In the present nationwide
observational study using data from newly diagnosed individ-
uals within the National Diabetes Register of Sweden (NDR),
we aimed to find out if we could verify the existence of clus-
ters of people with type 2 diabetes. To evaluate clinical utility,
we compared the cluster method with an alternative strategy
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based on simple clinical features to predict cardiovascular
events and mortality risk.

Methods

Study design This study is a population-based cohort study of
individuals in Sweden with newly diagnosed type 2 diabetes
and aged 40 years or older, using data from the NDR and
linking it to several national Swedish health registries through
each unique Swedish personal identification number. We
defined type 2 diabetes as diabetes in patients >40 years at
diabetes diagnosis, treated with diet with or without oral
glucose-lowering agents. Clinical characteristics at baseline
and data on severe adverse events were obtained using
NDR, the Swedish National Patient Register and the cause
of death register.

The Regional Ethical Review Board of the University of
Gothenburg approved the study which conformed with the
Helsinki Declaration of 1964, as revised in 2013, concerning
human and animal rights.

NDR has been described previously [8]. This register
includes information on risk factors, complications of diabe-
tes, and medications for patients aged 18 or older. Each patient
provides consent for inclusion in the register, and virtually all
individuals in Sweden with diabetes are included [9]. The
Swedish National Patient Register contains nationwide hospi-
tal discharge information, diagnoses and procedures from all
specialist care (in-hospital and outpatient); data on ICD-10
codes, procedure codes and date of contact. Diagnoses in the
Swedish National Patient Register are registered according to
the International Classification of Disecases (ICD) 9th and 10th
revision. The cause of death register contains nationwide
cause of death data based on death certificates, classified
according to ICD-10.

In this study we defined CVD events as first post-index
occurrence of any of the following diagnoses captured by
the patient register: ischaemic heart disease (ICD codes 120—
125), cardiac arrest (ICD codes 146.0, 146.1 and 146.9), intra-
cerebral haemorrhage (ICD code 161), cerebral infarction
(ICD code 163) or stroke, not specified as haemorrhage or
infarction (ICD code 164).

Statistical methods Means and SDs are presented for contin-
uous variables, and percentages for categorical variables.
Missing data were imputed using a single stochastic imputa-
tion from a multiple chained equation procedure [10].

The cluster analysis is based on the k-means algorithm
using imputed and normalised observations on age, BMI,
HbA,., systolic BP, diastolic BP, HDL-cholesterol, LDL-
cholesterol, triacylglycerol and kidney function (¢GFR) from
individuals with newly diagnosed type 2 diabetes [11, 12].
The k-means algorithm is based on the Euclidean distance

and is therefore sensitive to differences in scales between vari-
ables, and so the data were normalised prior to the cluster
analysis. The normalisation was made by subtracting the vari-
able mean from each observation and then dividing it by the
variable SD ensuring that all variables have mean zero and SD
one. The elbow method was used to search for optimal
number of clusters evaluating up to ten clusters. The elbow
method is a heuristic method that uses the relation between
cluster variability, measured by the within-cluster sum of
squares, to support the identification of an optimal number
of clusters [13]. Essentially, the k~-means cluster analysis is
performed multiple times with different values of &, and the
within-cluster sum of squares is calculated and plotted for
each k. The optimal number of clusters is inferred as a point
on the elbow plot beyond which there is only a small reduction
on the within-cluster variability, visually represented as the
‘bend’ of the elbow.

To get a reference for what the elbow plot would look like
in the absence of any clusters, we estimated the covariance
matrix for the normalised NDR data and simulated data from a
normal distribution with the estimated covariance matrix.
These simulated data have the same variance—covariance
structure as original real data but consist only of one cluster.
We evaluated up to ten clusters on the simulated data, which
gave a hint of what the elbow plot would look like in the
absence of any clusters.

Three additional methods were used to assess the optimal
number of clusters on a sampled dataset consisting of 20,000
observations. The silhouette method evaluates how well each
object lies within its cluster and can be used to estimate the
mean distance between clusters [14]. The silhouette coeffi-
cients range from —1 to +1, where a high value indicates that
the object is well matched to its own cluster and poorly
matched to neighbouring clusters. A negative value indicates
that the object might have been assigned to the wrong
cluster. The gap statistics compare the total intra-cluster
variation between observed data and reference data with
a random uniform distribution (a distribution with no obvi-
ous clustering) for different values of k£ [15]. The optimal
value of k is interpreted as the one that maximises the
gap, meaning that the clustering structure is far away from
the uniform null distribution. In this analysis, 50 bootstrap
samples were used. The Hopkins statistic measures the
clustering tendency of a dataset by comparing the distance
between each point and its nearest neighbour in the
observed data with the distance to the nearest point in a
simulated uniformly distributed dataset [15]. Values close
to zero indicated no cluster tendency and values close to
one indicated a strong clustering tendency.

Cluster models with up to seven clusters were evaluated as
categorical predictors of mortality and incidence of CVD
using Cox proportional hazard models. The cluster-based
predictor models were benchmarked against two different
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Table 1 Descriptive statistics for the total population and for four clusters
Variable Total population Cluster 1 Cluster 2 Cluster 3 Cluster 4
(N=114,231) (n=12,133) (n=27,888) (n=41,555) (n=32,825)

Sex, female 43.1 32.0 44.5 49.5 38.0
Age at diagnosis, years 62.8+12.78 57.0+11.68 65.4+9.70 71.5+£9.01 51.8£9.99
BMI, kg/m? 30.5+£5.65 31.6+5.97 30.8+£5.19 28.0+4.26 32.9+6.17
HbA ., mmol/mol 54.3+£17.10 89.5+21.12 50.9+10.88 49.0+10.09 50.9+10.48
HbA|., % 7.1 10.3 6.8 6.6 6.8
Systolic BP, mmHg 137.2+17.37 137.8+£15.98 155.8+14.88 132.0+13.07 127.9+11.69
Diastolic BP, mmHg 79.6+10.04 82.9+9.60 88.6+8.20 73.3£7.69 78.7+7.82
Triacylglycerol, mmol/l 2.0£1.33 3.8+2.55 1.8+0.90 1.6+0.78 2.0+£0.98
HDL-cholesterol, mmol/l 1.2+0.38 1.0+0.28 1.3+0.35 1.4+0.43 1.1+0.27
LDL-cholesterol, mmol/l 3.1+1.00 3.5+1.08 3.4+0.99 2.8+0.92 3.1+0.94
eGFR, ml min~' [1.73 m]~? 84.8+24.57 97.1£26.99 80.7+19.85 71.9+18.35 100.0£23.69
Country of birth

Sweden 80.1 77.1 72.5 82.9 85.5

Nordic countries (excl. Sweden) 53 49 44 6.3 5.5

Europe (excl. EU27 & Nordic countries) 3.0 3.7 4.0 2.9 22

EU27 (excl. Nordic countries) 2.5 24 2.3 2.7 2.7

Mediterranean countries 0.4 0.5 0.5 0.4 0.4

Middle East 45 5.6 8.8 2.7 1.9

Asia 1.5 22 29 0.6 0.7

South America 0.7 1.0 1.1 0.5 0.4

North America & Oceania 0.2 0.3 04 0.2 0.1

Africa 1.6 2.5 3.0 0.8 0.5

Data are means + SD or percentages

Clinical characteristics for the NDR population as a total and divided into four clusters

The cluster analysis is based on the k-means algorithm using imputed and normalised observations on age, BMI, HbA ., systolic BP, diastolic BP,
triacylglycerol, HDL-cholesterol, LDL-cholesterol and eGFR from individuals with newly diagnosed type 2 diabetes

The regions represent countries of birth grouped in larger areas

Cox models that used all the nine underlying variables as
independent variables. The first one was a simple proportional
hazards model where each of the variables were included as
main effect only. The second one was a more complex model
that used smoothing splines with three df for each variable.
This makes it more flexible since the splines allow for poten-
tial nonlinear effects of each variable.

The prediction models were compared using concordance,
defined as the proportion of pairs of individuals in the data
where the model and the observed outcome are concordant
[16]. In other words, the person in the pair with the lower risk
experiences the observed outcome later than the person with
the higher risk score. A value of 1 represents perfect
concordance.

The statistical analysis was performed using R 4.0.2
(CRAN https://cran.r-project.org/) and specifically the mice
package (version 3.33.0) for imputation, the cluster (version
2.1.0), NBclust (version 3.0) and factoextra (version 1.0.7)
packages for the cluster analysis.
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Results

This study included 114,231 individuals from the NDR, and
baseline characteristics of the population are given in Table 1.
The mean age was 62.8 years and 43.1% of the individuals
were women. Mean BMI was 30.5 kg/m2 and the mean HbA |,
was 54.3 mmol/mol (7.4%). HDL-cholesterol, LDL-
cholesterol and triacylglycerol was 1.2, 3.1 and 2.0 mmol/l,
respectively. Mean eGFR was 84.8 ml min~' [1.73 m] 2 and
mean systolic and diastolic BP was 137.2 mmHg and
79.6 mmHg, respectively. The median follow-up time was
5.2 years with IQR from 3.7 to 7.3.

The elbow method was performed by calculating the
within-cluster sum of squares with & ranging from 1 to 10 to
visualise the optimal number of clusters for the studied popu-
lation (Fig. 1a). The elbow plot showed a smooth curve with-
out any clear cut-off points, making the optimal value of k&
unclear. A simulated dataset was created consisting only of
one cluster, and an elbow plot was made using the same
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Fig. 1 Elbow plot for real dataset (a) and elbow plot for simulated dataset
(b). (a) The elbow plot is made by calculating the within-cluster sum of
squares with & ranging from 1 to 10 in the NDR population. (b) A multi-

variate normal distribution is fitted to the data (the same data as used for
the clustering), producing a vector of estimated averages and a covariance

technique as for the real dataset (Fig. 1b). This elbow plot had
a similar appearance as the one made with the real dataset,
with a smooth curve and no clear cut-off points.

Using the silhouette method with values of & ranging from
1 to 10, the mean silhouette width was highest for £ equal to 2.
Howeyver, for all values of k the silhouette score was close to 0,
ranging from 0.00-0.15 (Fig. 2a). When using the gap statis-
tics, there was only a slight hint towards 1 being the optimal
value of k (Fig. 2b). The Hopkins statistic for clustering
tendency was 0.15.

Given the failure to identify a specific number of clusters,
we nevertheless proceeded to investigate modes with up to
five clusters. The baseline characteristics for four clusters are
described using standard descriptive statistics for the nine
continuous variables used in the analysis (Table 1). Cluster 1
was characterised by a relatively low age at diagnosis, high
HbA,, relatively high BMI, BP, LDL-cholesterol and triacyl-
glycerol, and low HDL-cholesterol. Individuals in cluster 2
were older at diagnosis and had lower HbA ;. levels and
BMI. They had the highest BP of all subgroups. The age at
diagnosis was highest in cluster 3, and they had the lowest
levels of HbA . and BMI. They also had low BP, LDL-
cholesterol and triacylglycerol levels. This was also the cluster
with the lowest eGFR levels. Cluster 4 were the youngest at
diagnosis and had the highest BMI of the subgroups. Their
HbA,. levels were high, and their eGFR levels were the
highest of all groups (Fig. 3).

When comparing our clusters to the ones described in the
ANDIS cohort, cluster 4 is most comparable with MOD (mild
obesity-related diabetes) since it has the highest BMI and low
age at diagnosis [1]. Cluster 3 resembles MARD (mild age-
related diabetes) with the highest age at diagnosis and low
BMI and HbA . levels. Cluster 1 is closest to SIDD (severe
insulin-deficient diabetes) with the highest HbA . levels and
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matrix. The estimated averages and covariance matrix are then used to
simulate a dataset of the same size and structure as the data used for the
real cluster analysis, except that the simulated data only have one cluster.

The simulated data are then subjected to the same k-means clustering
algorithm as the observed data

relatively low age at diagnosis. Cluster 2 and SIRD (severe
insulin-resistant diabetes) are fairly well matched since they
both have relatively high age at diagnosis and low HbA,.
levels.

To evaluate the ability to predict mortality risk and CVD
events, comparisons were made for the different numbers of
clusters using Cox regression models. Concordance was
calculated for Cox models based on 2-7 clusters, as well as
a Cox model with the variables as they are and a Cox model
with splines for all variables. In prediction models for mortal-
ity, concordance was 0.63 (95% CI 0.63, 0.64) for two clus-
ters, 0.66 (95% CI 0.65, 0.66) for four clusters, 0.77 (95% CI
0.76, 0.77) for the ordinary Cox model and 0.78 (95% CI1 0.77,
0.78) for the Cox model with splines for all variables. In
prediction models for CVD events, the concordance was
0.64 (95% CI 0.63, 0.65) for two clusters, 0.66 (95% CI
0.65, 0.67) for four clusters, 0.77 (95% CI 0.77, 0.78) for
the ordinary Cox model and 0.78 (95% CI 0.77, 0.78) for
the Cox model with splines for all variables (Table 2).

Discussion

In this nationwide study, using data from 114,231 individuals
in the NDR, we found no robust evidence supporting the
existence of a specific number of clusters within type 2 diabe-
tes based on the use of common clinical variables. The fact
that we were unable to establish an optimal number of clusters
within the studied population implies that the cluster division
may be arbitrary. This is further illustrated by the similarity of
the different elbow plots, where one is made from the real
dataset and one is made from a simulated dataset with only
one cluster. The smooth appearance of the plots is to be
expected in the simulated data since it does not contain any
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Fig. 2 Silhouette method on sampled dataset (a) and Gap statistics on
sampled dataset (b). (a) The silhouette method was performed on a
sampled dataset consisting of 20,000 observations. The vertical dashed
line indicates that the mean silhouette width was highest for k£ equal to 2 in
this study. The Silhouette method is used to evaluate how well each
person lies within their cluster and to estimate the mean distance between
clusters. The silhouette coefficients range from —1 to +1, where a high
value indicates that the individuals are well matched to their own clusters
and poorly matched to neighbouring clusters. (b) Gap statistics were
performed on a sampled dataset consisting of 20,000 observations, using
50 bootstrap samples. The gap statistic compares the total intra-cluster
variation between observed data and reference data with a random
uniform distribution (a distribution with no obvious clustering) for differ-
ent values of k, the number of clusters. The optimal value of & is
interpreted as the one that maximises the gap, in the figure indicated by
the vertical dashed line

clusters, but we should see a marked difference in the plot
from the real data, if it did in fact consist of separate concep-
tually meaningful groups. We then created a model with four
clusters, to match the number of clusters with participants with
type 2 diabetes in the ANDIS cohort, since the fifth cluster in
the ANDIS cohort consisted of patients with type 1 diabetes
and LADA [1]. The four clusters created in our study were
sufficiently alike to assign similar cluster labels to those used
in the original study. This is to be expected since the variables
are dependent on each other and therefore will relate to one
another in a predictable way across different populations.
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What we were able to show with the elbow plot is that the
cluster quality is not markedly better when using four clusters
than when using any other number of clusters. This contra-
dicts the belief that the clusters, at least those derived from
commonly available clinical characteristics worldwide, repre-
sent different diseases with separate underlying aetiologies
that make them naturally fall into separate compartments.

A recently published study used data from the DEVOTE,
LEADER and SUSTAIN trials and assigned individuals
based on Euclidean distance to nearest cluster centre instead
of a de novo cluster analysis. To evaluate the accuracy of the
cluster assignment, a ratio between the smallest and the
second smallest Euclidean distance to the ANDIS cluster
centres was calculated. Across all three trial cohorts, this ratio
showed a weak patient—cluster association with numbers clos-
er to one than to zero [5]. However, the only variables used to
form the clusters in this study were HbA ., age at diagnosis
and BMI, which might have influenced the result of the cluster
replication. Still, this can be used to illustrate one important
deficit of the clustering approach. Many individuals will have
almost the same chance of being allocated into several clusters
and will therefore be forced into one cluster even though the
probability of being assigned to a different cluster is only
marginally smaller.

A question raised in the original article on clusters in diabe-
tes was if patients can move between clusters as the disease
progresses [1]. A recent study performed cluster assignment
according to distance to the nearest cluster centre at baseline
and then again after 5 years and found that 23% of the partic-
ipants had changed cluster after 5 years’ disease duration [6].
This is natural, since the cluster allocation is based on vari-
ables that can change over time, making the cluster assign-
ment time dependent.

With the aim of evaluating the clinical utility of the cluster
approach, we calculated and compared concordance for differ-
ent prediction models and found that models based on simple
variables outperformed models based on clusters in terms of
predicting mortality risk or CVD events. This was indepen-
dent of numbers of clusters, although the concordance
increased slightly as the numbers of clusters increased. This
has been demonstrated previously by Dennis et al., who for
instance showed that even though the incidence of chronic
kidney disease differed between clusters, eGFR at baseline
was a better predictor of time to chronic kidney disease [3].
This can be explained by the fact that clustering leads to loss
of information. The same variables that are used to assign
individuals into broad clusters could instead be used as the
exact value to predict outcome and therapeutic response for
each individual, making the care more personalised and
precise. The multifaceted pathophysiology of type 2 diabetes
integrates many aspects of lifestyle, genes, environment and
potentially programming. Each person with diabetes has
different contributions from each with further changes across
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the diabetes life course [17]. Hence, it might be overly opti-
mistic to assume that participants can be easily demarcated
into a small number of distinct clusters that would add clinical
precision and value.

A major strength of the present study is its large population
size with nationwide scope with almost complete national

coverage. All included variables in the analysis are easily
measured and a common part of the clinical routine. In the
original article from ANDIS, hierarchical clustering was used
as part of the clustering analyses [1]. Owing to the large
dataset in the present study (n=114,231), this approach was
not a feasible choice as it requires an excess of 200 GB of

Table 2 Concordance for predic-

tion models for mortality and No. of clusters/model Mortality CVD

CVD events using 2—7 clusters,

an ordinary Cox model and a Cox Concordance 95% CI Concordance 95% CI

model with smoothing splines
2 cluster 0.63 0.63, 0.64 0.64 0.63, 0.65
3 cluster 0.63 0.63, 0.64 0.64 0.63, 0.65
4 cluster 0.66 0.65, 0.66 0.66 0.65, 0.67
5 cluster 0.66 0.65, 0.66 0.68 0.67, 0.69
6 cluster 0.65 0.65, 0.66 0.68 0.67, 0.68
7 cluster 0.66 0.66, 0.66 0.68 0.67, 0.69
PH Cox 0.77 0.76, 0.77 0.77 0.77,0.78
Spline Cox 0.78 0.77,0.78 0.78 0.77,0.78

PH Cox, Cox model with the variables as they are

Spline Cox, smoothing splines for all variables
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memory and therefore k-means clustering alone was used. For
the same reason, the elbow method was considered to be the
best choice to use when searching for the optimal number of
clusters. Alternative methods such as the silhouette method
and gap statistics are based on a distance matrix with all
pairwise distances which, for the full dataset, are extremely
computationally intensive. However, the silhouette method,
the gap statistics and the Hopkins statistics were performed
on a subset of the data (n=20,000). The silhouette method
and the gap statistics, like the elbow method, failed to provide
conclusive evidence for an optimal number of clusters. The
result of Hopkins statistics that assess the clustering tendency
was 0.15 for our dataset. Generally, when this value is below
0.5 it is considered unlikely that the dataset contains statisti-
cally significant clusters [18].

The clinical variables used in the cluster algorithm differed
between the original study and the present study, since
Ahlqvist et al. included homoeostatic model assessment of
two estimates of beta cell function and insulin resistance that
were not available in our dataset. This is a limitation of the
present study since insulin production and insulin sensitivity
are indeed important mechanisms in the complex pathogene-
sis of diabetes [19]. However, these measurements are not
available in the vast majority of clinical datasets worldwide.
Since C-peptide is not routinely obtained, and also varies
considerably between different laboratories, it may not yet
be an optimal variable to include in clinical prediction models
[20]. Although we did not have access to all of the variables
used in the original study, we did have access to several other
useful measurements such as eGFR, BP, HDL-cholesterol,
LDL-cholesterol and triacylglycerol, contributing to the accu-
racy of our model, and the definition of type 2 diabetes we
used most likely will exclude almost all individuals with type
1 diabetes or LADA. The differences in variables do not seem
to have affected the analyses in a significant way, since the
four clusters produced in our study were broadly similar to the
originally proposed clusters. Another limitation of the current
study is missing data. Missing data are unfortunately common
in NDR, as in most clinical observational datasets. To deal
with this, a single stochastic imputation was used since ‘miss-
ing at random’ was considered more realistic than ‘missing
completely at random’ in the dataset [21].

The choice to use concordance to evaluate the prediction
models was mainly driven by its relatively intuitive nature that
makes it easy to explain and understand. The main alternative
would be to use Heller’s R%, but the way the SE for the estimated
R? is defined makes it difficult to calculate confidence intervals
when used for penalised Cox models with smoothing splines.

The study from ANDIS was indeed important and mean-
ingful, pointing out the need for further individualisation and
precision medicine in diabetes. It also highlighted the fact that
a lot of the knowledge that we have already accumulated
regarding risk factors, differences in disease progression and
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therapeutic response has not yet been translated into clinical
practice. How to approach this gap between knowledge and
practice remains to be seen, and the future of precision medi-
cine in diabetes might very well include diagnostic algorithms
to define diabetes subtypes to guide therapeutic managements,
as predicted by EASD/ADA [22]. While we fail to identify a
specific number of clusters, that does not, however, mean that
there could be no true underlying clusters, but the results from
our study indicate that the cluster approach does not have
sufficient predictive accuracy or stability to currently be
considered for implementation in a clinical setting.

Conclusion In conclusion, using routinely available data in
clinical practice, we could not find evidence supporting the
existence of a distinct number of clusters within type 2 diabe-
tes. Furthermore, the results from this study suggest that an
alternative approach using simple clinical features to predict
risk of diabetes complications is more useful than a sub-
stratification approach.
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