Skip to main content
. 2021 Aug 24;25(24):15345–15362. doi: 10.1007/s00500-021-06137-x

Table 2.

Summary of DL-based methods for COVID-19 pneumonia classification. C.V refers to cross-validation, Tr refers to training, Val refers to the validation, AE refers to autoencoder. Sens refers to the sensitivity. Spec refers to the specificity. Acc refers to the accuracy

Author Modality Dataset 2D/3D All data All COVID-19 Network and technique C.V Sens (%) Spec (%) Acc (%)
Narin et al. (2020) CXR COVID-19/normal 2D 3141 341 5 pretrained CNNs 5 / / 96.1
COVID-19/pneumonia 1834 99.5
COVID-19/bacterial 3113 99.7
Wang et al. (2020d) CT COVID-19/pneumonia/normal 3D 1,266 924 DNN / Tr: 78.93 Val: 80.39 Tr: 89.93 Val: 81.16 /
Song et al. (2020) CT COVID-19/normal/bacterial 2D 275 88 DRE-Net / 93 96 99
Khalifa et al. (2020) CXR Pneumonia dataset 2D 624 50 GAN + TL / / / 99
Apostolopoulos and Mpesiana (2020) CXR COVID-19/normal/bacterial 2D 1427 224 MobileNet v2 10 98.66 96.46 94.72
Misra et al. (2020) CXR COVID-19/pneumonia/normal 2D 6008 184 Three ResNet models 5 / / 93.9
Khoshbakhtian et al. (2020) CXR COVID-19/pneumonia/normal 2D 8850 498 AE : COVIDomaly 3 / / 76.52
Nour et al. (2020) CXR COVID-19/pneumonia/normal 2D 2905 219 CNN+k-NN+SVM / / / 98.70
Aslan et al. (2020) CXR COVID-19/pneumonia/normal 2D 2905 219 ANN+AlexNet / / / 98.97
Oh et al. (2020) CXR COVID-19/pneumonia/normal 2D 502 180 ResNet-18 / 76.90 100 /
Hall et al. (2020) CXR COVID-19/pneumonia/normal 2D 2905 219 Ensemble:Resnet50 and VGG16 10 / / 91.24
Jaiswal et al. (2020) CXR COVID-19/normal 2D 2492 1262 TL and DenseNet201 / / / 99.82
Das et al. (2020) CXR COVID-19/pneumonia/normal 2D / / Xception / 97.09 97.29 97.40
Ismael and Şengür (2020) CXR COVID-19/normal 2D 380 180 5 pretrained models + SVM / / / 94.7
Gupta et al. (2020) CXR COVID-19/pneumonia/normal 2D 2905 219 Pretrained models / / / 99.08
COVID/non-COVID 99.53
Makris et al. (2020) CXR COVID-19/pneumonia/normal 2D / / 5 pretrained CNNs / / / 95
Afshar et al. (2020) CXR Bacterial, Non-COVID Viral, COVID-19 2D / / 5 COVID-CAPS / 90 95.8 95.7
Minaee et al. (2020) CXR COVID-19/normal 2D 5000 184 5 TL+pretrained models / 100 98.3 /
Maghdid et al. (2020) CXR+CT COVID-19/normal 2D 526 238 TL+AlexNet model / 72 100 94.1
Benbrahim et al. (2020) CXR+CT COVID-19/normal 2D 320 160 TL+InceptionV3 and ResNet50 / 72 100 99.01
Islam et al. (2020) CXR COVID-19/pneumonia/normal 2D 4575 1525 LSTM+CNN / 99.2 99.9 99.4
Yang et al. (2020a) CXR COVID-19/pneumonia/normal 2D 4,448 2,479 3D Inception V1 10 / / 95.78
101 52 98.08 91.30 93.3
Zulkifley et al. (2020) CXR COVID-19/pneumonia/normal 2D 1343 446 Conditional GAN : LightCovidNet 5 / / 97.28
Heidari et al. (2020) CXR COVID-19/normal 2D Total: 8504 Training: 6899 Total: 445 Training: 366 TL VGG-16 model / 98.0 100 94.5
Shalbaf et al. (2020) CT COVID-19/normal 2D 746 349 TL+ Ensemble of 15 pretrained models / / / 85
Goel et al. (2020) CT COVID-19/normal 2D 2482 1252 AE+random forest / / 98.77 97.87
Hemdan et al. (2020) CXR COVID-19/normal 3D 50 25 COVIDX-Net / 100 80 /