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Identification of markers 
that distinguish adipose tissue 
and glucose and insulin metabolism 
using a multi‑modal machine 
learning approach
Josefin Henninger1,2, Björn Eliasson1,2, Ulf Smith1,2 & Aidin Rawshani1,2,3*

The study of metabolomics has improved our knowledge of the biology behind type 2 diabetes and 
its related metabolic physiology. We aimed to investigate markers of adipose tissue morphology, 
as well as insulin and glucose metabolism in 53 non-obese male individuals. The participants 
underwent extensive clinical, biochemical and magnetic resonance imaging phenotyping, and 
we also investigated non-targeted serum metabolites. We used a multi-modal machine learning 
approach to evaluate which serum metabolomic compounds predicted markers of glucose and insulin 
metabolism, adipose tissue morphology and distribution. Fasting glucose was associated with 
metabolites of intracellular insulin action and beta-cell dysfunction, namely cysteine-s-sulphate and 
n-acetylgarginine, whereas fasting insulin was predicted by myristoleoylcarnitine, propionylcarnitine 
and other metabolites of beta-oxidation of fatty acids. OGTT-glucose levels at 30 min were predicted 
by 7-Hoca, a microbiota derived metabolite, as well as eugenol, a fatty acid. Both insulin clamp and 
HOMA-IR were predicted by metabolites involved in beta-oxidation of fatty acids and biodegradation 
of triacylglycerol, namely tartrate and 3-phosphoglycerate, as well as pyruvate, xanthine and liver 
fat. OGTT glucose area under curve (AUC) and OGTT insulin AUC, was associated with bile acid 
metabolites, subcutaneous adipocyte cell size, liver fat and fatty chain acids and derivates, such as 
isovalerylcarnitine. Finally, subcutaneous adipocyte size was associated with long chain fatty acids, 
markers of sphingolipid metabolism, increasing liver fat and dopamine-sulfate 1. Ectopic liver fat was 
predicted by methylmalonate, adipocyte cell size, glutathione derived metabolites and fatty chain 
acids. Ectopic heart fat was predicted visceral fat, gamma-glutamyl tyrosine and 2-acetamidophenol 
sulfate. Adipocyte cell size, age, alpha-tocopherol and blood pressure were associated with visceral 
fat. We identified several biomarkers associated with adipose tissue pathophysiology and insulin and 
glucose metabolism using a multi-modal machine learning approach. Our approach demonstrated the 
relative importance of serum metabolites and they outperformed traditional clinical and biochemical 
variables for most endpoints.

Obesity is a multifactorial and heterogeneous disorder that is generally associated with metabolic alterations 
such as insulin resistance and type 2 diabetes, as well as a major risk factor for cardiovascular- morbidity and 
mortality. Adipose tissue constitutes of subcutaneous-, visceral- and peripheral “ectopic” fat depots, but func-
tional variations in adipose tissue depots mediate discrepancies in metabolic and atherosclerotic risk. Failure of 
adipocyte growth and differentiation results in acquired lipodystrophy and pathologic fat accumulation. Upon 
excess caloric intake, energy is preferably stored in subcutaneous adipose tissue, which initially expands by 
hyperplastic growth, but in predisposed individuals, the subcutaneous adipose tissue fails to do so and instead 
exhibits cell dysfunction associated with adipocyte hypertrophy, mild inflammation and fibrotic remodeling. 
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Adipose tissue dysfunction is considered a hallmark of type 2 diabetes and a major contributor to the develop-
ment of insulin resistance, which in addition to β-cell dysfunction and impaired insulin secretion, forms the 
cornerstones of type 2 diabetes biology1–3.

Understanding of biological mechanisms underpinning these conditions is constantly evolving and the addi-
tion of metabolomics has resulted in improved diagnosis and prognosis of metabolic disorder, increased our 
understanding of adipocyte biology and insulin- and glucose metabolism4,5. Previous research indicates that 
metabolites reflecting glycolytic and tricarboxylic acid cycle (TCA) intermediates, branched-chain and aromatic 
amino acids, and long-chain fatty acids are associated to metabolic disorders6–8.

Recently, our research group presented data that certain metabolites correlated to genetic predisposition to 
type 2 diabetes, impaired glucose tolerance, insulin resistance, adipocyte hypertrophy, and to ectopic fat accu-
mulation, in healthy and lean study participants with- and without heredity for type 2 diabetes9.

In this study, using adipose tissue biopsies and magnetic resonance spectroscopy, we set out to investigate can-
didate markers for morphological characterization of subcutaneous adipose tissue and dysfunction, along with 
markers for visceral adipose tissue and lipid accumulation in ectopic depots. In addition, we investigated markers 
of insulin- and glucometabolism based on clinical characteristics, biochemical variables, non-targeted metabo-
lites and magnetic resonance spectroscopy data. For this end, we constructed multi-modal predictive machine 
learning models to manage this high-dimensional dataset, with emphasis on untargeted serum metabolomics.

Methods
Ethics statement.  All subjects received oral and written information and gave informed consent to par-
ticipate. The study protocol was approved by the local Ethical Committees at the Sahlgrenska Academy at the 
University of Gothenburg (approvals 384-12 and T803-13). The study was performed in agreement with the 
Declaration of Helsinki.

Study population.  We recruited 53 subjects via newspaper advertisements and through earlier studies per-
formed at the laboratory. Inclusion criteria were male sex and general good health. The data collection of bio-
chemical variables, radiological examinations and clinical variables have been described previously9.

Clinical variables.  Lifestyle factors, as well as number of relatives diagnosed with type 2 diabetes mellitus, 
were evaluated through a questionnaire filled out in the laboratory.

Body weight and height, and waist and hip circumferences were recorded. We used bioelectrical impedance 
(single frequency, 50 kHz; Animeter, HTS, Odense, Denmark) to determine the proportions of body fat and 
lean body mass. Blood pressure was measured with a mercury sphygmomanometer in a sitting position after a 
5 min rest.

Biochemical variables.  After 12  h of fasting all subjects underwent an OGTT (75  g glucose orally) to 
assess glucose tolerance status. Samples for measurement of plasma glucose and serum insulin were drawn after 
0, 30, 60 and 120 min. Using fasting plasma insulin and fasting plasma glucose from the OGTT, we calculated a 
HOMA-IR index using the formula HOMA-IR = (fasting plasma glucose x fasting plasma insulin)/22.510. M and 
M/I following euglycemic clamps were used to validate the HOMA-IR.

To determine the first and second phases of insulin secretion, an intravenous glucose tolerance test (IVGTT) 
was performed after another overnight fast. A bolus of glucose (300 mg/kg in a 50% solution) was given within 
30 s into the antecubital vein. Samples for the measurement of plasma glucose and insulin (arterialised venous 
blood) were drawn at − 5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50 and 60 min. Using the trapezoidal method, we calculated 
the acute and the late insulin responses, i.e. incremental area under the insulin curve, (AIR, 0–10 min; LIR, 
10–60 min). These parameters were not included in prediction models due to co-linearity with oral glucose 
and insulin tolerance tests. Preliminary prediction models suggested that OGTT derived predictors had greater 
relative importance, compared to IVGTT predictors.

All subjects underwent a hyperinsulinemic euglycaemic clamp (insulin infusion: 240 pmol m−2 min−1 for 
120 min), after another 12 h fast, to asses insulin sensitivity11. Whole blood glucose was clamped at 5.0 mmol/l 
for the next 120 min by infusion of 20% glucose at various rates according to glucose measurements performed at 
5 min intervals (YSI, Yellow Springs Instrument Company, OH). The M value (insulin sensitivity) was calculated 
as the mean glucose infusion rate during the last 30 min of the clamp adjusted for total body weight. M/I was 
calculated as the M-value corrected for steady-state insulin concentrations.

Plasma glucose was measured using standard laboratory methods (Department of Chemistry, Sahlgrenska 
University Hospital, Gothenburg, Sweden). Plasma insulin was measured at the University of Tübingen, Germany, 
by micro-particle enzyme immunoassay (Abbott Laboratories, Tokyo, Japan).

From each subject we obtained a subcutaneous abdominal adipose tissue biopsy to assess subcutaneous adi-
pose tissue cell size. The biopsies (approximately 1–200 mg) were obtained with a needle aspiration technique, 
and further processed to evaluate adipose tissue cell size as previously stated9,12. All metabolites were measured 
in serum after a 12 h fast.

Radiological variables.  Magnetic resonance imaging (MRI) was used to assess the amount of intra-
abdominal and subcutaneous fat. Localised 1H-magnetic resonance spectroscopy was used to assess liver fat 
and heart lipids. MRI and MRS were performed using a 1.5 T MR-system (Intera/Achieva, software release 3.2) 
using the vendor’s 16 channel SENSE XI Torso coil (Philips Medical Systems, Best, The Netherlands). The soft-
ware used included a research package enabling navigator triggered MRS and a field map based B0-shimming. 
MRI images were evaluated at the level between the 4th and 5th lumbar vertebrae using T1 weighted axial 
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images. MRI data was processed using an in-house developed segmentation program written in MatLab (MAT-
LAB R2014b, The MathWorks Inc., USA). The surface of intra-abdominal and subcutaneous adipose tissue was 
quantified. Bone, muscle, lean tissue as well as inter-muscular fat were excluded. The fat fractions are reported 
as ratios to total body volume. MRS liver data and MRS cardiac data were processed using the jMRUI software. 
Magnetic resonance methods have been further reported in previous scientific works9.

Statistical analysis.  Baseline characteristics for clinical-, biochemical-, metabolic- and imaging markers 
are presented as mean ± SD, for all study participants and cluster subgroups identified with k-means clustering 
method (Table 1).

Scaling of predictors in dataset.  We construct extreme gradient boosting models to identify predictors 
for certain endpoints. These decision trees are generally considered invariant to monotonic transformations of 
features and node splits on one scale has a corresponding split on the transformed scale. However, extreme gra-
dient boosting includes a linear booster and in the case of regularized regression, these models could be sensi-
tive to feature scaling. Therefore, we have constructed both primary machine learning analyses based on Pareto 
scaled values for predictors and ancillary analyses of unscaled predictors. The ancillary analyses are presented 
in supplementary Appendix.

Prediction models.  Predictive machine-learning models were constructed with extreme gradient boost-
ing, a decision-tree-based ensemble non-parametric algorithm that applies a gradient boosting framework. Our 
multi-modal and high-dimensional data necessitates a robust and validated predictive machine learning model 
to examine relative variable importance, i.e. predictive ability of a broad range of predictors.

Extreme gradient boosting applies parallelized implementation for sequential tree construction with tree 
pruning depending on negative loss criterion and splits up to the max depth, backwards tree pruning, defined 
through hyperparameter optimization, includes sparsity awareness and uses LASSO and Ridge regularization to 
prevent overfitting. Hyperparameter optimization was performed for each machine-learning model on the entire 
dataset, subsequent to automated grid search for number of trees, maximum depth of a tree, L2 regularization, 
learning rate, the fraction of observations, parameters to be randomly sampled for each tree and the minimum 
sum of weights of all observation required in a tree node. Finally, each optimized model was validated with 
repeated cross-validation, using 5 to 10 iterations for various models proved to be optimal and allowed for hyper-
parameter optimization to be based on the entire dataset. Moreover, in each prediction model, in parallel with 
our examination of optimal number of folds for the repeated cross-validation, we also scrutinized the pattern for 
feature importance to present a final model with maximum consistency in feature importance. For each outcome, 
five different machine learning models were constructed. We assessed feature importance on the entire dataset 
(henceforth referred to as the complete dataset), and four additional prediction models that included various 
data pre-processing techniques for dimension reduction of metabolomics data. For each outcome, features with 
highest relative importance from the five different prediction models were afterwards presented in a final figure. 
A graphical illustration is presented in the supplementary Appendix (Fig. S6), which demonstrates the model 
construction, optimization and validation for primary analyses. A similar modeling approach was performed 
for identical outcomes on the unscaled dataset and these results are presented in Figs. S3–S5.

Feature extraction.  In this study, we applied different dimensionality reduction techniques to non-tar-
geted metabolomics parameters in order to reduce dimensions of feature space, whilst minimizing informa-
tion loss. The non-targeted metabolomics data contains an excessive number of predictors for this dataset and 
there are presumably an abundance of metabolites that may not have any relationship with the endpoints being 
investigated. Principal component analysis (PCA) was performed to project scaled metabolomics data into 
lower dimensional space, reveal inherent data structure and provide a reduced dimensional representation of 
the original parameters. Principal component analysis was performed on the metabolomics separately and each 
machine-learning model included the first 20 principal components, which comprised of 75% cumulative vari-
ance.

In addition, we used a non-linear dimension reduction method called T-distributed stochastic neighbor-
ing embedding with an initial PCA step, perplexity at 10, theta 0.5 and 500 iterations, the metabolomics data 
was ultimately presented as three unique dimensions that were included in every prediction model. Moreover, 
exploratory factor analysis (EFA) is considered a data reduction technique and aims at explaining the relationship 
of many observed variables by a relatively small number of factors. The number of factors for EFA was decided 
using a simulated parallel analysis. We generated regression scores with 12 factors for EFA, using varimax rota-
tion and minimum residual as factoring method.

Metabolomic data transformed with PCA, T-SNE and EFA were included in each gradient boosting model 
previous to automated grid search and hyperparameter optimization for the final model. Furthermore, we con-
structed two additional models that were based on recursive feature elimination with random forest and a 
complete dataset model that used all predictors (approximately 670 predictors). In the prediction models that 
demonstrated strong predictive ability for a parameter generated by means of dimension reduction techniques, 
we identified the unique predictors with peak scores in each dimension reduction model and included these 
predictors in the final linear regression model. In some instance, the predictions models based on the complete 
dataset or recursive feature elimination displayed similar metabolites as a model based on dimension reduction 
parameters. These metabolites were included once in the final linear regression model.
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Characteristics Entire cohort Cluster 1 Cluster 2 Cluster 3 p-value

N 53 14 20 19

Age (years) 42.26 (8.23) 38.36 (8.26) 40.26 (7.24) 46.79 (6.86) 0.004

Diastolic blood pressure (mmHg) 80.79 (9.99) 79.71 (9.78) 76.89 (8.89) 84.42 (9.69) 0.055

Systolic blood pressure (mmHg) 127.30 (12.24) 126.43 (11.27) 122.47 (13.30) 131.42 (9.89) 0.068

Body mass index kg/m2 25.57 (3.52) 23.23 (1.53) 25.94 (3.58) 27.20 (3.55) 0.003

Body weight (kg) 83.69 (13.13) 76.29 (9.57) 85.62 (12.69) 87.98 (13.37) 0.025

Waist circumference (cm) 90.30 (9.62) 84.21 (5.89) 91.24 (8.84) 93.47 (10.36) 0.014

Serum creatinine (micromol/L) 88.42 (10.49) 91.00 (10.93) 86.32 (10.87) 89.95 (8.34) 0.361

Waist to hip ratio 0.89 (0.06) 0.85 (0.05) 0.88 (0.05) 0.90 (0.06) 0.032

Resting hear trate (amount/min) 56.92 (7.64) 54.50 (5.00) 56.00 (7.33) 58.79 (9.00) 0.251

Serum TSH (mIE/L) 1.98 (1.01) 2.07 (1.03) 1.75 (1.02) 2.15 (1.03) 0.469

Serum sodium (mmol/L) 140.68 (1.76) 140.79 (2.22) 140.79 (1.55) 140.16 (1.42) 0.449

Serum white blood cell count 10^9/L) 4.73 (1.06) 4.15 (0.64) 4.78 (1.16) 5.01 (1.12) 0.065

Serum potassium (mmol/L) 4.29 (0.23) 4.25 (0.23) 4.31 (0.26) 4.32 (0.21) 0.673

Serum hemoglobin (g/L) 147.91 (10.25) 145.79 (9.27) 146.37 (10.16) 149.68 (10.71) 0.474

Serum free T4 (nmol/L) 15.75 (2.06) 16.36 (2.10) 15.58 (1.89) 15.26 (1.91) 0.283

Serum bilirubin (micromol/L) 11.85 (6.84) 14.39 (7.59) 11.39 (6.57) 11.42 (6.87) 0.397

Liver transaminases ratio 1.00 (0.33) 1.04 (0.31) 0.94 (0.24) 1.01 (0.42) 0.648

Serum ASAT (microkat/L) 0.43 (0.12) 0.40 (0.10) 0.42 (0.13) 0.47 (0.13) 0.258

Serum ALAT (microkat/L) 0.47 (0.19) 0.39 (0.10) 0.49 (0.22) 0.52 (0.20) 0.157

Serum alkaline phosphatase (microkat/L) 1.00 (0.29) 1.02 (0.28) 1.04 (0.38) 0.95 (0.17) 0.564

Fasting plasma glucose (mmol/L) 4.93 (0.41) 4.79 (0.48) 4.99 (0.40) 5.01 (0.32) 0.244

Fasting serum insulin (pmol/L) 45.38 (22.26) 35.27 (14.00) 47.92 (26.85) 50.63 (21.16) 0.127

OGTT plasma glucose after 30 min (mmol/L) 8.25 (1.61) 7.95 (1.85) 8.75 (1.81) 8.01 (1.20) 0.271

OGTT plasma glucose after 60 min (mmol/L) 7.71 (2.10) 7.33 (2.17) 7.74 (2.37) 7.96 (1.93) 0.706

OGTT plasma glucose after 120 min (mmol/L) 5.41 (1.73) 5.24 (1.76) 4.91 (1.58) 5.89 (1.99) 0.233

OGTT serum insulin after 30 min (pmol/L) 396.76 (210.49) 308.56 (135.92) 455.45 (246.05) 434.54 (204.49) 0.112

OGTT serum insulin after 60 min (pmol/L) 484.19 (369.15) 338.32 (204.27) 514.30 (412.33) 573.15 (405.19) 0.187

OGTT serum insulin after 120 min (pmol/L) 251.24 (205.36) 187.67 (170.92) 219.14 (159.64) 326.78 (258.87) 0.120

Area under the curve OGTT glucose 13.84 (2.87) 13.29 (3.26) 13.88 (3.04) 14.18 (2.71) 0.701

Area under the curve OGTT insulin 698.49 (426.07) 510.67 (239.34) 735.00 (459.08) 823.18 (466.23) 0.106

Glycated hemoglobin (mmol/mol) 32.92 (2.31) 33.24 (1.31) 32.79 (2.68) 33.11 (2.26) 0.830

MRS visceral fat 86.52 (47.11) 70.04 (44.15) 81.17 (37.71) 99.41 (57.04) 0.203

Subcutaneous fat 221.80 (88.76) 157.79 (64.42) 253.75 (92.21) 242.48 (77.49) 0.003

MRS Whole abdomen 590.45 (128.23) 509.80 (95.62) 613.79 (121.81) 626.78 (123.48) 0.014

HOMA-IR 10.82 (5.65) 8.75 (4.04) 12.08 (7.16) 11.26 (4.78) 0.236

Liver fat 61.18 (10.31) 58.65 (13.61) 60.90 (10.82) 63.57 (6.34) 0.400

Peripheral arterial insufficience (%) 0.343

0 = none 51 (96.2) 13 (92.9) 19 (100.0) 18 (94.7)

1 = 1 first-degree relative 1 (1.9) 0 (0.0) 0 (0.0) 1 (5.3)

5 = 1 SDR or 1 TDR 1 (1.9) 1 (7.1) 0 (0.0) 0 (0.0)

Heredity for diabetes (%) 0.453

0 = none 21 (39.6) 5 (35.7) 10 (52.6) 7 (36.8)

1 = 1 first-degree relative 12 (22.6) 5 (35.7) 2 (10.5) 5 (26.3)

2 = 2 first-degree relative 4 (7.5) 1 (7.1) 1 (5.3) 2 (10.5)

3 = 1 FDR and 1 SDR 1 (1.9) 0 (0.0) 1 (5.3) 0 (0.0)

3 = 1 FDR and 1 SDR 6 (11.3) 0 (0.0) 2 (10.5) 4 (21.1)

4 = 1 FDR or 1 SDR with type 1 diabetes 1 (1.9) 0 (0.0) 1 (5.3) 0 (0.0)

5 = 1 SDR or 1 TDR 8 (15.1) 3 (21.4) 2 (10.5) 1 (5.3)

Physical activity (%) 0.703

1 = Never 9 (17.0) 2 (14.3) 4 (21.1) 1 (5.3)

2 = 1/week 4 (7.5) 0 (0.0) 2 (10.5) 2 (10.5)

3 = 2–3 times/week 19 (35.8) 4 (28.6) 6 (31.6) 9 (47.4)

4 = 4–6 times/week 14 (26.4) 5 (35.7) 4 (21.1) 5 (26.3)

5 = Every day 7 (13.2) 3 (21.4) 3 (15.8) 2 (10.5)

Insulin clamp ratio 0.02 (0.01) 0.02 (0.01) 0.02 (0.00) 0.02 (0.00) 0.026

Continued
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Cluster analyses.  In order to distinguish unique metabolic phenotypes with distinct differences in base-
line characteristics or prediction modelling, we used k-means and hierarchical clustering. Model validation for 
k-means clustering was measured with the Elbow-, Silhouette- and Gap statistic model. Optimal number of k 
for cluster generation ranged between 2 and 3 clusters. ANOVA was performed for the metabolic markers of 
interest and baseline characteristics for individuals in the cluster groups are presented in Table 1. Results from 
k-means clustering were compared to hierarchical clustering. Supplementary Appendix displays the tanglegram 
results for hierarchical clustering, which was computed with the complete and Ward method, using Euclidean 
distance matrix.

Linear regression models.  Predictors with greatest relative importance identified through machine learn-
ing models were included in linear regression for assessment of effect size and significance level. Machine-learn-
ing models were used as a feature elimination method prior to feature selection for linear regression. The regres-
sion estimates and 95% confidence intervals are presented next to each machine learning model. The regression 
models were generated using log-transformed variables and standardized regression coefficients. Through linear 
regression, predictors with statistical significance were passed to identify variables of importance with linear 
regression.

AUC for glucose and insulin metabolism.  We applied the following trapezoid for-
mula to assess area under the curve for glucose- and insulin levels after oral glucose tolerance  
t e s t : AUC (Insulin\Glucose) = (Insulin\Glucose)(t0)+((Insulin\Glucose ) (t30)x × 2)+((Insulin\Glucose)
(t60)× 3)+ ((Insulin\Glucose)(t120)× 2)/4.

Imputation.  We used missForest package in R to impute missing data for study participants, this package is 
based on the random forest algorithm. We analyzed distributions and means before and after imputation with-
out observing virtually any differences. In general, the dataset had minor missing data. A p-value of less than 
0.05 were considered to indicate statistical significance.

Calculations were performed in R (v 4.0.2) using the following machine learning libraries: XGBoost, Rtsne, 
Cluster, missForest, Caret, Psych, GPArotation, ggRandomForests, Party, GridExtra, mlr3, factoextra, Boruta, 
and Matrix.

Results
Study population.  The study includes 53 men with a mean age of 42 ± 8 years. Initially, the study cohort was 
constructed to investigate adipose tissue morphology and metabolism in middle-aged, healthy, lean or mildly 
overweight non-diabetic individuals with heredity for type 2 diabetes, henceforth referred to as first-degree rela-
tives (FDR), compared to individuals without heredity, henceforth referred to as control subjects (CTR). Almost 
half of the study participants (n = 22) had a known family history of type 2 diabetes. For all study participants, 
mean body mass index was 25 ± 3 kg/m2, mean fasting plasma glucose was 4.9 ± 0.4 mmol/L and mean fasting 
serum insulin was 45 ± 22 pmol/L. All study participants had normal liver function, systolic- and diastolic blood 
pressure and no ongoing pharmacological therapy. Baseline characteristics for k-means identified cluster groups 
are presented in Table 1. Mean values for age, body mass index, waist-circumference, MRS—subcutaneous fat, 
MRS—whole abdomen and insulin clamp ratio, differed among the three cluster groups.

Insulin‑ and glucometabolic markers.  Figure 1 (panel A–F) displays machine learning models for insu-
lin- and glucometabolic markers along with linear regression models for the most important predictors identi-
fied through variable importance from predictive models. Each machine learning models treated metabolomics 
data differently.

Hyperinsulinemic‑euglycemic clamp.  As shown in Fig.  1 Panel A, the strongest predictor of insulin 
clamp, in prediction models based on scaled values, was tartrate, 3-phosphoglycerate and fatty-chain acid 
metabolite, as compared to models with unscaled predictors, which shows that tartarate, 3-phoshpglycerate and 
MRS—liver fat, were the most important predictors (Supp Fig. S3 Panel A). As seen in Fig. 1 Panel A, the model 
with complete dataset did not generate predictors with strong predictability. The direction for standardized beta-
coefficients are presented in Fig. 1 Panel A, linear regression for unstandardized beta-coefficients associated with 

Table 1.   Baseline characteristics for all study participants including 3 unique clusters that were identified 
through k-means clustering method.

Characteristics Entire cohort Cluster 1 Cluster 2 Cluster 3 p-value

MRS—Liver fat 3.40 (4.49) 1.20 (1.30) 3.32 (5.58) 4.96 (4.40) 0.060

Intensity of physical activity 35 (66.0) 11 (78.6) 13 (68.4) 10 (52.6) 0.284

Smoking habits 5 (9.4) 0 (0.0) 2 (10.5) 3 (15.8) 0.310

Adipocyte cell size (microm) 95.62 (11.64) 91.66 (13.53) 96.66 (10.08) 97.37 (12.22) 0.355

MRS—Heart fat 5.86 (2.86) 6.13 (3.69) 5.41 (2.14) 6.41 (3.00) 0.560
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Figure 1.   Feature importance for insulin- and glucometabolic markers based on extreme gradient boosting 
models and linear regression for the most important predictors. Panel (A) to Panel (F) displays relative 
importance for predictors generated by extreme gradient boosting models, using several pre-processing 
techniques for metabolomics data to further reduce number of predictors in the final machine-learning 
model. Model diagnostics (RMSE) and validation (R2) are presented next to each prediction model. For each 
outcome, the most important predictors identified through machine learning were included in linear regression 
models. All regression models were adjusted for age. Significance level are described as follows: *p-value < 0.05, 
**p-value < 0.005, ***p-value < 0.0005. p-values < 0.095. < denotes that lower levels for the predictor was 
associated with the target variable. > denotes that higher levels for the predictor was associated with the target 
variable.
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insulin clamp was tartarate (βeta 1.25; 95% CI, 1.07 to 1.46), 3-phosphoglycerate (βeta 0.79; 95% CI, 0.68 to 0.92) 
and MRS—liver fat (βeta 0.94; 95% CI, 0.87 to 1.007) (Supp Fig. S3 Panel A).

OGTT S‑insulin after 30 min.  In Fig. 1 Panel B, the prediction model based on exploratory factors (EFA) 
had the highest R2 (0.51) and lowest RMSE (12.9). Recursive feature elimination, T-SNE and PCA models dis-
played poor model diagnostics. Linear regression for the most important scaled predictors, revealed that myris-
toleoylcarnitine, enyl-stearoyl-2-oleoyl and 5-alpha-androstan-diol-sulfate, were associated with serum-insulin 
after 30 min, compared to the unscaled models, which identified body mass index, flavin-adenine dinucleotide-
fad and 1.1 enyl palmitoyl-2-oleoyl-gpe, as statistically significant predictors (Fig. 1 Panel B and Supplementary 
Fig. S3 Panel B).

OGTT fasting plasma‑glucose.  In Fig. 1 Panel C, following predictors displayed strong predictability for 
fasting-plasma glucose, n-acetylgarginine and cysteine-s-sulfate. All prediction models demonstrated relatively 
poor model diagnostics for the target variable. Linear regression, from both the scaled and unscaled predictions 
models, showed that Cysteine-s-sulfate and n-acetylgarginine, were important and significant predictors for this 
outcome (Fig. 1 Panel C and Supplementary Fig. S3 Panel C).

OGTT fasting serum‑insulin.  Figure 1 Panel D shows the results for OGTT fasting insulin levels. The pre-
dictors propionylcarnitine, body weight and serum-bilirubin displayed strong predictability in several machine 
learning models, and both the scaled- and unscaled dataset. Linear regression demonstrated that body weight, 
propionylcarnitine and s-bilirubin were allmost statistically significant, (Supp Fig. S3 Panel D).

OGTT plasma‑glucose after 30 min.  For the prediction model of plasma-glucose after 30 min, data pre-
processing techniques demonstrated poor model diagnostics in both the scaled and unscaled dataset. Prediction 
models based on scaled predictors (Fig. 1 Panel E) suggest that 7-Hoca, a microbiota -derived metabolite, was 
the most important predictor. Model diagnostics (R2 and RMSE-value), were greater in the unscaled models. The 
unscaled models identified, body weight, eugenol sulfate, S-ALAT and MRS—Liver fat were important predic-
tors, however no predictor demonstrated statistical significance in the regression model, except eugenol sulfate, 
which was nearly significant (βeta 1.04; 95% CI, 0.98 to 1.09) (Supp Fig. S3 Panel E).

HOMA2‑IR.  Feature importance for HOMA-IR (Fig. 1 Panel F), in the scaled dataset, showed that acelsul-
fame, an artificial sweetener, was the only significant predictor. Tartronate-hydroxymalonate and methyl-4-hy-
droxybenzoate-sulfate, were nearly significant in these models. In prediction models with unscaled predictors, 
MRS—liver fat (βeta 1.13; 95% CI, 1.011 to 1.26) , pyruvate (βeta 2.28; 95% CI, 1.42 to 3.67) and Xanthine (βeta 
1.67; 95% CI, 1.047 to 2.67), were the strongest predictors (Supplementary Fig. S3 Panel F).

Predictors for glucose tolerance test.  Predictors for insulin and glucose metabolism derived by means 
of oral glucose tolerance test, were amalgamated with a trapezoid formula to describe the area under the curve 
for OGTT related insulin- and glucose variables. In Fig. 2 Panel A–B displays the distribution of OGTT for 
insulin and glucose, whilst Fig. 2 Panel C shows the scatter plot for AUC glucose and AUC insulin, along with 
the correlation for these newly constructed variables.

Mean insulin (AUC insulin).  In Fig. 2 Panel D, the prediction model based recursive feature elimination dem-
onstrated superior model diagnostics (R2 0.63). Prediction models with scaled predictors reveled that the most 
important and statistically significant predictors for mean insulin (AUC insulin) was adipocyte cell size, serum-
bilirubin and propionylcarnitine was almost significant (Fig.  2 Panel D). The unscaled models revealed that 
adipocyte cell size and 1-palmitoyl-2-alpha-linolenoyl-gpc was the most important predictors, however only the 
last mentioned was significant in the regression model (βeta 1.52; 95% CI, 1.009 to 2.12) were also predictive of 
mean insulin (AUC insulin) (Supp Fig. S4 Panel B).

Mean glycemia (AUC glucose).  In Fig. 2 Panel E, strongest predictors for mean glycemia (AUC glucose) were 
glutamate and 1.non-adecanoyl-gpc, as compared to the unscaled models, which revealed that trans-urocanate, 
isovalerylcarnitine, MRS—liver fat and hyocholate, were the most important and significant predictors (Supp 
Fig. S4 Panel A).

Adipose tissue morphology.  MRS—liver fat.  In Fig. 3 Panel A, prediction models for liver fat dem-
onstrated relatively low R2 score but comparable RMSE values between models. Linear regression based on 
machine learning models for the scaled dataset, suggests that liver transaminases, methylmalonate and 1-nona-
decanoyl-gpc, were statistically significant (Fig. 3 Panel E). Linear regression based on the unscaled dataset, re-
vealed that adipocyte size (βeta 5.89; 95% CI, 0.74 to 46.7), transaminases ratio (βeta 0.46; 95% CI, 0.23 to 0.91), 
1-nonadecanoyl-gpc-19.0 (βeta 0.24; 95% CI, 1.10 to 0.57) and gamma-glutamylphenalylalanine (βeta 10.5; 95% 
CI, 2.60 to 43.01), were statistically significant (Supp Fig. S5 Panel A).

MRS—visceral fat.  In Fig. 3 Panel B, virtually all data pre-processing techniques demonstrated robust model 
diagnostics with high R2 value and relatively comparable RMSE value. Adipocyte cell size, age and alpha-tocoph-
erol, were prevalent in most gradient boosting models and statistically significant in linear regression model 
(Fig. 3 Panel E). As compared to the unscaled models, were adipocyte cell size, age and systolic blood pressure 
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Figure 2.   Distribution and area under curve for oral-glucose tolerance test of insulin and glucose, as well as 
feature importance for constructed variables based on extreme gradient boosting models and linear regression. 
Panel (A)–(B) shows distributions for insulin and glucose related OGTT variables that were used to generate 
AUC variables for insulin and glucose. Panel C shows association between AUC insulin and AUC glucose, along 
with correlation coefficient. In Panel (D)–(E), relative importance for predictors generated by extreme gradient 
boosting models, using pre-processing techniques for metabolomics data to reduce number of predictors in the 
final model. Model diagnostics (RMSE) and validation (R2) are presented next to each prediction model. The 
most important predictors identified through prediction modeling were included in a linear regression model. 
Significance level are described as follows: *p-value < 0.05, p-values < 0.06. < denotes that lower levels for the 
predictor was associated with the target variable. > denotes that higher levels for the predictor was associated 
with the target variable.
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Figure 3.   Feature importance for visceral fat and ectopic liver- and heart fat based on extreme gradient 
boosting models and linear regression for the most important predictors. In Panel (A)–(B), relative importance 
for predictors generated by machine learning are presented. Model diagnostics (RMSE) and validation (R2) 
are presented next to each prediction model. In Panel (E), the most important predictors identified through 
prediction modeling were included in linear regression model.
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were important in the prediction models and statistically significant in linear regression (Supp Fig. S5 Panel B 
and Panel E).

MRS—cardiac lipids.  For cardiac lipids, prediction models had low R2 value, in both the unscaled and scaled 
models. In Fig. 3 Panel C, visceral fat and age demonstrated high feature importance in three prediction models, 
respectively. However, linear regression, based on scaled prediction models, showed that age and 2-acetamido-
phenol-sulfate, gamma-glutamyltyrosine and diastolic blood pressure, were statistically significant. Results from 
the unscaled dataset revealed relatively similar feature importance as the scaled dataset (Supp Fig. S5 Panel C), 
however linear regression showed that MRS—visceral fat was nearly statistically significant (βeta 2.27; 95% CI, 
0.96 to 5.40) (Supp Fig. S5 Panel E).

Subcutaneous adipocyte cell size.  In Fig. 3 Panel D, liver fat according to magnetic resonance spectroscopy, 
dopamine sulfate-1 and methyl-4-hydroxybenzoate sulfate, were the most important predictors for adipocyte 
cell size and statistically significant in the linear regression model. In supplementary Fig. S5 Panel D (unscaled 
models), prediction models identified methyl-4-hydroxybenzoate sulfate and MRS—liver fat as important pre-
dictors, whereas linear regression showed that MRS—liver fat, dopamine-sulfate 1 and sphingomyelin d18.1, 
were statistically significant.

Clustering analyses.  K-means clustering was used to distinguish study participants with unique metabolic 
phenotypes. We experimented with two to four clusters as the optimal number of cluster groups. Results from 
K-means clustering (k = 3) are presented in Fig. 4, along with the three different methods that were used to iden-
tify optimal number of clusters. Predictors were scaled prior to clustering, similar to our approach for dimen-
sionality reduction. Predictors for study participants belonging to unique clusters were thereafter transformed 
backwards to unscaled original values and characteristics between the groups, were analyzed with ANOVA. In 
Fig. 4 Panel B, mean insulin (AUC insulin) and liver fat, were the only predictors that were nearly statistically 
significantly between the cluster groups. Baseline characteristics for cluster groups are presented in Table 1.

In Fig. 5, a summarizing figure is presented to describe specific predictors or biological processes that were 
identified through the machine learning models and linear regression analyses.

Ancillary analyses.  In supplementary Fig. S1 Panel A, cumulative variance for the first 20 principal compo-
nents is presented. In Supp Fig. S1 Panel B–C, parallel analysis to assess optimal number of exploratory factors 
and hierarchical clustering are presented, respectively. Supplementary Fig. S2 Panel A–B, presents density plots 
for outcome variables and an ancillary analysis to identify metabolites with strongest correlation to age.

Discussion
The data obtained and analyzed in this study as well as previously published articles on the 53 subjects is to our 
knowledge unique in its extensive nature, combining clinical, biochemical, radiological and untargeted serum 
metabolomics data for comprehensive phenotypic metabolic characterization, as well as enhancing our knowl-
edge of adipocyte biology and insulin- and glucose metabolism. In this study, our primary objective was to exam-
ine markers of insulin and glucose metabolism, whilst considering complete untargeted serum metabolomics. 
Moreover, we presented k-means and hierarchical cluster analyses in an attempt to identify unique metabolic 
phenotypes, considering our high-dimensional dataset. Predictive machine learning models were constructed in 
a stepwise fashion with additional pre-processing techniques to reduce number of predictors for each outcome. 
Our approach demonstrated that relative importance of serum metabolites outperformed traditional clinical 
and biochemical variables for most endpoints.

Predictive machine learning models based on oral glucose- and insulin tolerance tests, highlighted several 
metabolites as the most important predictors for glucose and insulin metabolism. Fasting glucose was associ-
ated with a known biomarker of obesity, namely cysteine-s-sulphate, which is involved in intracellular insulin 
action13 and n-acetylgarginine, which has been suggested to modulate glucose homeostasis, insulin sensitivity 
and promote lipolysis, through arginine-nitric oxide modulation of intracellular AMPK and PI3K14. In addition, 
cysteine is involved in gluthathione synthesis, which is known for its relation to beta-cell dysfunction.

Fasting insulin was predicted by body weight, serum-bilirubin and propionylcarnitine. Increased relative 
importance of propionylcarnitine, a fatty ester lipid molecule, indicates that dysregulated fatty acid metabolism 
and lipid metabolism in the beta-oxidation of long-chain fatty acids might cause lipid accumulation in tissues, 
supporting the role as an important metabolite for fasting insulin levels. Carnitine is essential for cellular energy 
since it transports long-chain fatty acids into the mitochondria for beta-oxidation, as well as transporting toxic 
compounds out of this cellular organelle to prevent their accumulation. Body weight also demonstrated high 
relative importance in both scaled and unscaled models, while serum bilirubin was nearly statistically significant.

Glucose levels at 30 min were predicted by 7-Hoca, microbiota derived metabolites, as well as, fatty-chain 
acids and the metabolite eugenol sulfate, which has been shown to lower blood glucose and blood lipids, as 
well as lower markers of inflammation15. According to animal models, eugenol facilitates insulin sensitivity and 
stimulates glucose uptake via skeletal muscle tissue and activation of the GLUT4-AMPK signaling pathway.

Both insulin clamp and HOMA-IR, were predicted by metabolites involved in beta-oxidation of fatty acids 
and biodegradation of triacylglycerol. Tartrate is considered a xenobiotic metabolite that is related to BMI, insulin 
resistance and adiponectin, while 3-phosphoglycerate is a significant intermediate in glycolysis as well as a non-
ATP product of PGK1, which is critical for constructing serine and secreting insulin16. According to unscaled 
predictions models, important predictors included medium chain fatty acid, liver fat according to magnetic 
resonance spectroscopy, pyruvate and xanthine. Increasing serum levels of xanthine and xanthine oxidoreductase 
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Figure 4.   Cluster analysis including validation methods, distribution measures with ANOVA for adipocyte size, 
magnetic spectroscopy for visceral and ectopic liver fat, and insulin- and glucometabolic predictors. K-means 
clustering with validation methods revealed that 2 to 3 unique clusters were optimal for this dataset. Thereafter, 
mean values for predictors of interest in this study was examined and ANOVA was performed to identify 
significant differences in mean values.
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(XOR) has previously shown to be associated with greater production of reactive oxygen species, endothelial 
dysfunction, body mass index, fasting plasma insulin and insulin resistance. According to the scaled models, the 
artificial sweetener acelsulfame and methyl-4-hydroxybenzoate-sulfate, as well as, tartronate-hydroxymalonate, 
which is involved in fatty acid biosynthesis and mitochondrial energy production, proved to be important predic-
tors for HOMA2-IR. Acelsulfame has previously been associated with increasing BMI and glucose intolerance.

Information derived from OGTT was used to calculate an area under curve value (AUC) for both glucose and 
insulin measures. These newly constructed endpoint variables were associated with several examined metabolites. 
In scaled prediction models, nonadecanoyl-gpc and glutamate, were almost statistically significant. According 
to unscaled prediction models, AUC for glucose was associated with bile acid metabolites, fatty acid esters 
(valerylcarnitine) and liver fat according to magnetic spectroscopy.

AUC insulin was predicted by subcutaneous adipocyte size as well as a metabolite of sphingolipid metabolism, 
a compound involved both in intracellular signaling and cell membrane turnover, as well as serum-bilirubin. 
Sphingolipids have previously been shown to be associated with insulin resistance, possibly via downstream 
insulin signaling alterations6. In addition to this, the scaled prediction models identified serum-bilirubin and 
propionylcarnitine, as important predictors for AUC insulin. Adipocyte hypertrophy has been extensively stud-
ied as a mediator in the development of insulin resistance and hyperinsulinemia and our results are in line with 
previous results3.

Finally, subcutaneous adipocyte size was found to be associated with markers of sphingolipid metabolism, 
dopamine-sulfate 1, liver fat and methyl-4-hydroxybenzoate sulfate, were important predictors for adipocyte 
cell size. Previous research has suggested a regulatory role for peripheral dopamine-sulfate in adipose tissue.

Clustering analyses identified three unique phenotypic groups, where levels of insulin resistance, defined by 
insulin clamps, differed significantly between the groups. At a tendency level, amount of visceral liver fat also dif-
fered but failed to reach statistical significance. We found several markers of amino acid metabolism that predict 
visceral adipose tissue, a finding that is in line with previous research as amino acid metabolites have been shown 
to predict insulin resistance17. We also found a bile acid metabolite, as well as a glycolysis metabolite to predict 
visceral liver fat, two cellular processes we have mentioned previously to be associated with insulin resistance.

In our previous research, we observed that in these subjects both visceral and subcutaneous fat area by MRS 
evaluation were predicted by metabolites of fatty acid oxidation. Lipid oxidation metabolites also predicted 
liver lipid accumulation, and cardiac lipid storage was predicted by a metabolite of branched chain amino acid 
(BCAA) turnover9. BCAA have previously been linked to IGT and overt type 2 diabetes and our findings are 
in line with these results6,18. Our findings in this study are thus an addition to previous findings. Ectopic lipid 
accumulation in liver was predicted by amount of subcutaneous adipocyte cell size, liver transaminases, meth-
ylmalonate, lipid metabolites and gamma-glutamylphenylalanice. According to scaled models, predictors for 
visceral fat were subcutaneous adipocyte cell size, ectopic liver fat and insulin clamp. However, linear regression 
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Figure 5.   Overview of important predictors for glucose- and insulin metabolism, as well as, radiological 
examinations and adipocyte cell size. Relative importance for predictors was ranked according to highest relative 
contribution in machine learning models and thereafter with linear regression models. The most important and 
significant predictors for each model is presented in this summary figure.
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shows that only adipocyte cell size, age and alpha-tocopherol, were associated with visceral fat. Our data are 
not able to distinguish whether visceral fat accumulation precedes ectopic fat storage in the liver. In general, 
repeated cross-validation for the machine learning model for ectopic adipose tissue surrounding the heart tissue 
was poor, nevertheless age, diastolic blood pressure, 2-acetamidophenol-sulfate, gamma-glutamyltyrosine and 
visceral fat, were the best predictors.

A major strength of this study is the extensive examination of subjects using clinical and biochemical vari-
ables, imaging data and untargeted metabolomics. Some limitations of our study should be considered. The 
relatively small number of subjects included in our study complicates our ability to cross-validate and generalize 
our machine learning models. Validation models on test dataset were impracticable in some cases due to size of 
the cohort. We believe that a trade-off between a lesser regression-mean squared error (RMSE) value and R2 is 
satisfactory in this dataset to signify the superior model for each endpoint.

Conclusion
We identified several biomarkers associated with markers of dysfunction of adipose tissue and its morphology 
and insulin and glucose metabolism using a multi-modal machine learning approach.
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