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The most communal post-transcriptional modification, N6-methyladenosine (m6A), is associated with a
number of crucial biological processes. The precise detection of m6A sites around the genome is critical
for revealing its regulatory function and providing new insights into drug design. Although both exper-
imental and computational models for detecting m6A sites have been introduced, but these conventional
methods are laborious and expensive. Furthermore, only a handful of these models are capable of detect-
ing m6A sites in various tissues. Therefore, a more generic and optimized computational method for
detecting m6A sites in different tissues is required. In this paper, we proposed a universal model using
a deep neural network (DNN) and named it TS-m6A-DL, which can classify m6A sites in several tissues
of humans (Homo sapiens), mice (Mus musculus), and rats (Rattus norvegicus). To extract RNA sequence
features and to convert the input into numerical format for the network, we utilized one-hot-encoding
method. The model was tested using fivefold cross-validation and its stability was measured using inde-
pendent datasets. The proposed model, TS-m6A-DL, achieved accuracies in the range of 75–85% using the
fivefold cross-validation method and 72–84% on the independent datasets. Finally, to authenticate the
generalization of the model, we performed cross-species testing and proved the generalization ability
by achieving state-of-the-art results.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The post-transcriptional RNA modification is an evolutionarily
conserved process of RNAs that exists in all biological organisms
[1]. The sophistication of biological knowledge and the evenness
of regulation increases as RNA undergoes a post-transcriptional
transformation. Over and above 150 different types of RNA post-
translational modifications have been discovered, with methyla-
tion accounting for two-third of them [2]. N6-methyladenosine
(m6A) modification is a typical and generous post-transcriptional
RNAmodification that affects nearly all cell cycle processes, includ-
ing translation efficiency, cell growth, and cell viability [3–8]. This
indicates the methylation of the adenosine base at the nitrogen-6
location. Furthermore, m6A modification is a reversible process
that can be triggered by methyltransferases and demethylases
[9–11]. Research has shown that m6A is related to the occurrence
of diseases including thyroid tumors [12], prostate cancer [13],
obesity [14], and acute myelogenous leukemia [15]. m6A is a com-
mon transcriptional modification, which may occur in various spe-
cies such as mammals, plants, and bacteria [16]. Research has
shown that m6A acts as a regulator at each stage of mRNAmetabo-
lism [17]. This warrants extensive research on m6A modification,
however, our current knowledge is still limited regarding m6A
modification. Therefore, it is crucial to extensively study m6A,
and correctly determine m6A modification sites in the
transcriptome.

The m6A sites can be identified using two primary approaches.
The first is experimental techniques including Methylated RNA
Immunoprecipitation (MeRIP) [18], photo-crossl-inking-assisted
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(PA)-m6A-seq [19], m6A sequencing (m6A-seq) [20], m6A-
crosslinking immunoprecipitation (CLIP) [21], individual-nucleo
tide-resolution cross-linking and immunoprecipitation (miCLIP)
[22], DART-seq [23], MAZTER-Seq [24] and m6A-eCLIP (meCLIP)
[25]. These experimental approaches provide a layout for the iden-
tification of potential m6A modification sites. Moreover, a few
bioinformatics techniques, which are capable of discovering m6A
sites directly from the data gathered by experimental techniques
have been suggested [26–28]. However, the sequencing data gath-
ered is already too large to be catered by basic bioinformatics tech-
niques; therefore, there is a requirement for more efficient
techniques to identify m6A sites in the transcriptome. The second
approach to identify m6A sites is the application of computational
techniques to sequencing data. In recent studies using spatial
specificity of gene expression, it was discovered that the site of
m6A modification varies in different tissues and species. Doa
et al., [29] suggested a technique called iRNA-m6A that can detect
m6A modification sites in various tissues of human, mouse, and rat
by using a support sector machine (SVM), which was applied to the
dataset provided by Zhang et al., [30]. This approach significantly
enhances the accuracy of identifying m6A modification sites. How-
ever, there is still much room for improvement in techniques for
detecting m6A sites.

In recent years, deep learning models have insignificantly
impacted the field of bioinformatics. Various computational
methodologies comprising deep-learning techniques, including
Gene2Vec [31], DeepM6ASeq [32], BERMP [33], DNA6mA-MINT
[34], pcPromoter-CNN [35], 4mCPred-CNN [36], im6A-TS-CNN
[37], and iPseU-CNN [38] have been suggested. Liu et al., proposed
a CNN-based solution in im6A-TS-CNN, which utilizes one-hot
encoding technique to encode the data samples and then classify
the data using CNN architecture using the datasets of Homo sapi-
ens, Rattus norvegicus, and Mus musculus. Dao et al., [29] proposed
an SVM-based machine-learning model to classify m6A sites on the
same datasets. They used various encoding schemes including
mono-nucleotide binary encoding, physical-chemical property
matrix, and nucleotide chemical property.

In light of the above studies, the current research is focused on
building a computational method that can detect m6A modifica-
tion sites in human, mouse, and rat tissues. To create a benchmark
dataset based on the experimental analysis performed by Zhang
et al., [30], we first compiled experimentally validated m6A and
non-m6A sequences. To formulate the samples, only a single
encoding scheme, one-hot-encoding, was used. Motivated by the
increasing implementation of deep-learning algorithms, we pro-
posed a universal CNN-based approach called, TS-m6A-DL. Per-
forming 5-fold cross-validation and independent testing revealed
that, TS-m6A-DL, outperforms the current state-of-the-art
approaches. Additionally, cross-species validation testing proved
the stability of our model achieving state-of-the-art results.
2. Materials and methods

2.1. Benchmark datasets

A major step in training an efficient computational model is the
construction of high-quality datasets. Zhang et al., [30] produced
an efficient antibody-independent m6A detection tool, m6A-REF-
seq, to classify the sites of alteration in various tissues including
brain, liver, kidney, heart, and testis of Homo sapiens,Mus musculus,
and Rattus norvegicus species. Considering the excellent caliber of
these data, benchmark dataset was developed using them. To fur-
ther enhance the data integrity, we only used sequences with a
length of 41 nucleotides (nt) having the m6A site in the middle
for positive sequences. Sample sequences exceeding 80% resem-
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blance were eliminated using the CD-HIT software [39] to prevent
duplication and eliminate homology bias. The negative sequences,
which were experimentally proved as non-methylated, for the
abovementioned tissues were extracted by fulfilling the 41nt
length requirement containing Adenine in the center. They show
m6A consensus motif but were not enriched in the analysis of
m6A. Since an unbalanced dataset replicates biasness towards
one class [40], random negative sequences equal to the number
of positive sequences were retrieved. The datasets are divided into
training and independent datasets to critically analyze the devel-
oped model’s performance and generalization. There is minimal
overfitting when the proposed technique is appropriate for the
independent dataset [29]. Table 1 lists the specifics of the positive
and negative sequences in each dataset.

2.2. Sequence encoding

In neural networks, making the sequence readable for the net-
work using an efficient encoding scheme is the foremost prerequi-
site that directly affects the model’s performance. One-hot-
encoding is a widely used encoding scheme that can accurately
represent the nucleotides as a four-dimensional binary vector.
We can represent the nucleotides as follows:

A# ½1;0;0;0�

U # ½0;1;0;0�

C # ½0;0;1;0�

G# ½0;0;0;1�
2.3. Network architecture

An input layer, several intermediary hidden layers, and an out-
put layer comprise a neural network. After converting the
sequence into a numerical format to make it readable for the net-
work, the input layer receives the 41 x 4 matrix as an input. The
proposed network architecture is illustrated in Fig. 1. The input
matrix is fed to the first convolution layer with 64 filters with a
kernel size of 3 and a stride of 1. The number of feature maps in
DNNs multiplies with the network’s depth, resulting in a drastic
increase in the number of parameters and computational require-
ments when larger kernel sizes are used. Therefore, this convolu-
tion layer is followed by another convolution layer with 16 filters
having unit kernel size and the same stride. The concept was first
introduced by Lin et al., in their Network in Network study [41].
This particular strategy has been used in this study, to reduce
dimensionality by reducing the number of feature maps while
keeping the most important features and neglecting the features
which are not contributing. The convolution layer can be repre-
sented mathematically as follows:

convðXÞik ¼ ReLU
XM�1

m¼0

XN�1

n¼0

Wk
mnXi þm;n

 !
ð1Þ

where ‘X’ represents the input, ‘i’ represents the output position

index, and ‘k’ determine the kernel index. Wk is a M � N weight
matrix, where ‘M’ is the window size and ‘N’ is the number of input
channels.

This layer is then followed by a max-pooling layer with a pool
size of 2, to downsample the content of feature maps, shrinking
their height and width whilst preserving their salient features. It
can be calculated mathematically by the following equation:

poolingðXÞik ¼ maxðfXiM;k;XðiMþ1Þ;k; . . . ;XðiMþM�1Þ;kgÞ ð2Þ



Table 1
Benchmark datasets of different tissues of Human, Mouse, and Rat. Here, the methylated sequences are referred as positive, and non-methylated sequences are referred as
negative. The negative sequences show an m6A consensus motif but were not enriched in the analysis for m6A.

Species Tissues Positive Negative

Training Testing Training Testing

Human Brain 4605 4604 4605 4604
Liver 2634 2634 2634 2634
Kidney 4574 4573 4574 4573

Mouse Brain 8025 8025 8025 8025
Liver 4133 4133 4133 4133
Kidney 3953 3952 3953 3952
Heart 2201 2201 2200 2200
Testis 4707 4706 4707 4706

Rat Brain 2352 2351 2352 2351
Liver 1762 1762 1762 1762
Kidney 3433 3432 3433 3432

Fig. 1. Architecture of the proposed network, TS-m6A-DL. First step is to encode the sequence data to make it readable for the network. Then the encoded data is fed to the
convolution layer; Conv1D(f,k,s), where f is the number of filters, k is the kernel size, and s is the stride. The convolution layer is followed by the pooling layer MaxPool(2),
where 2 is the pooling size; which is then followed by the dropout layer Dropout(0.6), where 0.6 is the dropout rate.
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where ‘X’ represents for the input feature map, ‘i’ represents the
output position index, ‘k’ denotes the kernel index, and ‘M’ denotes
the pool window size.

To avoid the overfitting bias, we used a dropout function with a
rate of 0.6. The output after the dropout was flattened and simul-
taneously fed as input to another convolution layer, repeating the
same procedure as above, two more times. The three flattened out-
puts after every block were concatenated and fed as input to the
dense layer containing 16 nodes, followed by the output layer,
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which determines whether the sequence is methylated or non-
methylated. Each convolution layer including the dense layer uses
a rectified linear function (ReLU) as the activation function, except
for the output layer which uses the sigmoid function for classifica-
tion. ReLU and sigmoid can be expressed mathematically as
follows:

ReLUðxÞ ¼ x if x P 0
0 if x < 0

�
ð3Þ
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SigmoidðxÞ ¼ 1
1þ e�x

ð4Þ

We further used the L2 regularization approach for the kernel
and bias within the convolution layer to prevent overfitting, setting
the rate to 0.001. The Nadam (Nesterov accelerated Adaptive
Moment Estimation) optimizer with a learning rate of 0.0021
was used to construct the model accompanying binary cross-
entropy as the loss function. The maximum training epoch was
set to 50, and the training batch size was set to 32. Furthermore,
during the training phase, we also used the early stop strategy
through which the training process would halt if the prediction
accuracy on the validation set stopped improving for 10 epochs.

3. Evaluation metrics

K-fold cross-validation and independent testing are widely used
to assess the performance of a model. To analyze the effectiveness
and robustness of the model, we performed both of the above-
mentioned tests on our model, defining K equals to 5 in our model.
To objectively assess the results from the analysis and for an unbi-
ased comparison with the previous state-of-the-art methods, we
used the same widely used metrics including sensitivity (Sn),
specificity (Sp), accuracy (ACC), and Matthews correlation coeffi-
cient (MCC).

Sensitiv ityðSnÞ ¼ TP
TP þ FN

ð5Þ

SpecificityðSpÞ ¼ TN
TN þ FP

ð6Þ

AccuracyðACCÞ ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð8Þ

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively. Fur-
thermore, we also used the area under the curve (AUC) which is a
useful metric for assessing predictive performance of a model.

4. Results and discussion

We developed a generalized model for the classification of m6A
sites based on the data defined in the Materials and methods. To
prove the model’s stability in order to classify tissue-specific
m6A modifications in humans, mice, and rats; we performed both
5-fold cross-validation and independent testing, and formulated
Table 2
Performance of TS-m6A-DL; Before the underscore, characters h, m, and r stand for huma
heart, kidney, liver, and testis, respectively.

Species 5-fold Cross Validation

ACC Sn Sp MCC AUC

h_b 0.7507 0.8191 0.6823 0.5068 0.826
h_k 0.8099 0.8393 0.7804 0.6211 0.890
h_l 0.8335 0.8595 0.8075 0.6684 0.913
m_b 0.7985 0.8134 0.7836 0.5974 0.883
m_h 0.7823 0.8150 0.7496 0.5664 0.850
m_k 0.8222 0.8259 0.8186 0.6451 0.907
m_l 0.7506 0.7953 0.7060 0.5044 0.828
m_t 0.7756 0.8179 0.7333 0.5544 0.863
r_b 0.7955 0.8227 0.7682 0.5922 0.875
r_k 0.8341 0.8400 0.8281 0.6683 0.906
r_l 0.8348 0.8347 0.8348 0.6706 0.902
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the results in Table 2. The proposed approach was found to be
robust when the findings of the 5-fold cross-validation and inde-
pendent tests were compared with existing state-of-the-art
models.
4.1. Comparison with existing methods

To validate our model, we used the same validation approach as
that used for the validation of iRNA-m6A [29] and m6A-TS-CNN
[37], retaining the same number of folds, to obtain a better com-
parative study. Figs. 2a and 2b show the comparison results in
terms of accuracy, as determined by 5-fold cross-validation and
independent testing. High accuracy on independent dataset
implies that the model has the ability to identify m6A sites for
an unknown sequence. A complete comparison using all five eval-
uation matrices; ACC, Sn, Sp, MCC, and AUC is shown in Table S1
and S2 for the 5-fold cross-validation and independent testing,
respectively.
4.2. Cross-species testing

Since the datasets come from various organisms and tissues, it
is useful to see how a model trained on samples from a particular
tissue of one species can recognize m6A in the same tissues of
another species. Therefore, for the same tissues in different species,
we applied cross-species testing and provided the accuracies in
Figs. 3a, 3b, and 3v for the brain, kidney, and liver, respectively.
The x-axis shows the datasets on which we trained our model
and the y-axis shows the datasets on which we tested our model.

The results indicate that the proposed tool, TS-m6A-DL, is effi-
cient for cross-species testing for the classification of m6A sites,
proving its universality. The complete results using the same five
evaluation matrices are illustrated in Table S3.
4.3. Motif analysis

Motifs were calculated from the first activation layer [42]. Each
input sequence produced a corresponding activation map in the
first layer from which we selected the maximum activation. This
maximum activation was mapped back to the input sequence to
select a subsequence with the filter-size length. The selected sub-
sequences from each filter were aligned and used to find the motif
using position weight matrix (PWM) technique [43]. Multiple
motifs were generated using 64 filters in the first layer. Then, we
compared these motifs with biologically reported motifs [30]. We
found a strong match of ACAmotif detected by our model with that
reported by Zhang et al., [30]. Fig. 4 shows the motif detected by
our model in which the first A is the putative m6A.
n, mouse, and rat, respectively; and the b,h,k,l, and t after underscore denotes brain,

Independent Testing

ACC Sn Sp MCC AUC

2 0.7384 0.8123 0.6646 0.4822 0.8097
4 0.8020 0.8045 0.7996 0.6042 0.8802
5 0.8056 0.8204 0.7908 0.6115 0.8784
1 0.7877 0.8291 0.7462 0.5774 0.8725
4 0.7502 0.7931 0.7072 0.5023 0.8234
9 0.8076 0.8421 0.7732 0.6168 0.8892
8 0.7203 0.7805 0.6600 0.4438 0.7913
0 0.7644 0.8425 0.6863 0.5354 0.8432
8 0.7728 0.8132 0.7324 0.5475 0.8543
6 0.8327 0.8522 0.8132 0.6660 0.9083
5 0.8101 0.8547 0.7656 0.6227 0.8853



Fig. 2. Comparison of the models; iRNA-m6A, m6A-TS-CNN, and TS-m6A-DNN in term of accuracy.

Fig. 3. Cross-species testing. Here, h,m, and r on x and y-axis represents the species human, mouse, and rat.
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Fig. 4. The ACA-motif detected by our model, TS-m6A-DL.
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5. Conclusion

Since m6A is involved in a variety of biological processes, pre-
cise detection of m6A sites is critical for scientific investigations
to understand its regulatory function and to obtain various insights
into drug design. In this study, we present TS-m6A-DL, a deep-
learning-based universal model for detecting m6A sites in various
tissues of humans, mice, and rats. To validate our model, we per-
formed 5-fold cross-validation and independent testing, and the
achieved results exemplified that the TS-m6A-DL tool performs
better than the previous state-of-the-art tools. A web-based server
was developed and made available at http://nsclbio.jbnu.ac.
kr/tools/TS-m6A-DL/ for the benefit of the research community.
We expect that the new framework will be useful for detecting
m6A-sites and facilitate drug development.
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