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Abstract

High-throughput sequencing is widely used for strain detection and characterization of antibiotic 

resistance in microbial metagenomic samples. Current analytical tools use curated antibiotic 

resistance gene (ARG) databases to classify individual sequencing reads or assembled contigs. 

However, identifying ARGs from raw read data can be time consuming (especially if assembly 

or alignment is required) and challenging, due to genome rearrangements and mutations. Here, 

we present the k-mer-based antibiotic gene resistance analyzer (KARGA), a multi-platform Java 

toolkit for identifying ARGs from metagenomic short read data. KARGA does not perform 

alignment; it uses an efficient double-lookup strategy, statistical filtering on false positives, and 

provides individual read classification as well as covering of the database resistome. On simulated 

data, KARGA’s antibiotic resistance class recall is 99.89% for error/mutation rates within 10%, 

and of 83.37% for error/mutation rates between 10% and 25%, while it is 99.92% on ARGs 

with rearrangements. On empirical data, KARGA provides higher hit score (≥1.5-fold) than 

AMRPlusPlus, DeepARG, and MetaMARC. KARGA has also faster runtimes than all other tools 

(2x faster than AMRPlusPlus, 7x than DeepARG, and over 100x than MetaMARC). KARGA is 

available under the MIT license at https://github.com/DataIntellSystLab/KARGA.
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I. Introduction

Antibiotic resistance is a worldwide public health and environmental health concern, 

because it reduces therapeutic options in present-day infections and in future outbreaks 

caused by resistant strains [1]. High-throughput sequencing is widely used for strain 

detection and characterization of antimicrobial resistance in microbial metagenomic samples 
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[2], [3]. Current analytical tools use curated antibiotic resistance gene (ARG) databases to 

classify individual sequencing reads or assembled contigs [4]. However, identifying ARGs 

from raw read data can be time consuming (especially if assembly or alignment is required) 

and challenging, due to genome rearrangements and mutations [5]. The translational utility 

–in terms of clinical point-of-care or veterinary employment– of ARG classification tools for 

high-throughput sequencing relies on comprehensive databases, regularly updated to include 

new resistance genes, and on accurate, fast turnaround reporting.

A. Curated, Reference ARG Databases

MEGARes (v.2.0) [6] is one of the largest (~8,000 gene entries), manually-curated ARG 

databases currently maintained. MEGARes utilizes a tree-like ontology to annotate ARGs, 

with a four-level hierarchy of antibiotic resistance (type, class, mechanism, and group). 

Other ARG databases include the Comprehensive Antibiotic Resistance Database (CARD) 

[7], which employs a different, non-tree-like ontology (~4,500 entries), and the Antibiotic 

Resistance Genes Database (ARDB) [8], which is no longer maintained and has been later 

incorporated into CARD.

B. ARG Classification Tools

The tools that are able to analyze directly short read data, without requiring first an assembly 

step, include AMRPlusPlus (v.2.0) [9], DeepARG [10], KmerResistance [11], and Meta­

MARC [12]. AMRPlusPlus aligns reads to MEGARes using BWA and then aggregates 

results for each ARG, providing detailed coverage, depth, and rarefaction support statistics. 

DeepARG also is alignment-based, but uses the CARD ontology (plus other ancillary data 

sources), translates reads into proteins via PRODIGAL, aligns them with DIAMOND, and 

then predicts ARGs using a deep learning classifier. KmerResistance is instead alignment­

free, uses ARDB, and maps the ARDB resistome through k-mer (short sequences of fixed 

k length) matching. Meta-MARC uses a hidden Markov model (HMM) approach on ARG 

clusters derived from MEGARes.

C. Our Contribution

We present the k-mer-based antibiotic gene resistance analyzer (KARGA), a multi-platform 

Java toolkit for identifying ARGs from metagenomics short read data. KARGA is 

alignment-free, utilizes hash-based k-mer mapping, providing faster runtimes and more 

ARG classification robustness with respect to genome rearrangements compared to 

alignment-based or HMM methods. Differently from KmerResistance, which is k-mer­

based, KARGA employs an efficient double-lookup strategy, a statistical test for handling 

false positives upon the choice of k, a weighting of ambiguous k-mers, and a much larger, 

up-to-date, maintained reference ARG database.

II. METHODS

A. Strategy for K-mer Matching and ARG Annotation

KARGA extracts all distinct k-mers (both in forward- and reverse-strand) from the 

MEGARes database and places them into lookup tables as keys, storing their ARG 

annotations (gene identifier and type/class/group/mechanism information) in a one-to-many 
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relation. Complementarily, each ARG entry is placed in another one-to-many lookup 

relation where now all k-mers and their frequencies are stored with respect to ARG keys. 

KARGA processes reads individually and extracts k-mers, mapping them first on to the 

k-mer-ARG lookup relation. If a k-mer maps on to multiple ARGs, that hit is weighted as 

a fraction of the number of ARGs found. After mapping all k-mers, KARGA assigns the 

type/class/group/mechanism of a read on the basis of the most frequent, weighted ARG hits. 

Note that this voting is independent at each level of the ontology hierarchy. After classifying 

all reads, KARGA summarizes the nucleotide coverage and the median k-mer depth for 

each ARG entry using the complementary lookup ARG-k-mer relation. Of note, KARGA 

does not provide classification for housekeeping genes where single-point mutations are 

responsible for resistance; these genes are removed from the MEGARes database before 

creation of lookup tables.

B. Statistical Assessment of K-mer Hits

Since the probability that a random k-mer matches a given gene is not null, there can 

be cases when reads that do not belong to ARGs are mistakenly mapped because of 

random matches. In order to avoid this, KARGA calculates the empirical count distribution 

D of randomly generated k-mers within the reference ARG database, approximating the 

theoretical Markovian distribution [13]. We then set a threshold (99th percentile) to filter out 

reads whose k-mer hit number is below the expected count in D.

C. Experimental Setup and Performance Assessment

We validate and test KARGA on synthetic, semi-synthetic and real-world experimental 

datasets. The synthetic metagenomic data designed for validation include: (i) reads drawn 

from MEGARes genes with mutations/errors up to a 25% rate; (ii) reads from MEGARes 

with a two-point transposition/transversion of half-read length size; (iii) non-AMR reads, 

randomly generated. We evaluate KARGA for different values of k, since k can influence 

the false positive rate with respect to non-ARG sequences and the false negative rate with 

respect to ARG sequences that bear mutations, gene rearrangements, or sequencing errors.

The semi-synthetic includes bacterial genomes from the Pathosystems Resource Integration 

Center (PATRIC) [14], for which an available antibiogram test is available, and thus 

information on antibiotic resistance at the molecular level (which can be mapped to the 

MEGARes ontology). We select both antibiotic-resistant (at least one molecule in the class) 

and antibiotic-susceptible genomes and simulate high-throughput sequencing data. The in 

silico datasets are generated using InSilicoSeq [15] parameterized for NovaSeq (Illumina, 

Inc.). The real-world datasets are functional metagenomics experiments of cultured bacteria 

that survived on an antibiotic-laden medium, named ‘Pediatric’ and ‘Soil’ from the sample 

sources (Genbank accessions PRJNA244044 and PRJNA215106) [16], [17]. Note that for 

both datasets it is not assured that an ARG is present in each read, so the resistance is known 

only at the whole sample level. Also, not all antibiotic classes, mechanisms or groups are 

represented.
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On both the semi-synthetic and real-world datasets, we compare KARGA with state-of-the­

art tools –AMRPlusPlus (v.2.0), DeepARG, and Meta-MARC– in terms of recall, hit rate, 

difference between resistance and susceptible hits, and runtime.

D. Implementation and Availability

KARGA is implemented in Java™ (www.java.com) and compiled using Oracle 

Corporation’s Java Development Kit v.15, 64-bit. MEGARes (v.2.0) is used by default, 

but any other database consistent with the MegaRES ontology and in FASTA format can be 

used. A HashMap indexes all distinct k-mers found across all ARGs, and each value points 

to an ArrayList of ARG identifiers where that k-mer is found. Complementarily, another 

HashMap links ARG identifiers with a complex object that stores one HashMap of distinct 

k-mers found in that ARG with their frequency, and another HashMap that is to be filled 

with potential hits from the read set.

The read file is parsed sequentially as a plain or a gzipped FASTQ, and each read is 

checked for consistency, flagging all non-ACGT characters as ‘N’. A preliminary scan of 

the first 50,000 reads assesses average read length and calculates the frequency threshold 

of k-mer hits for random reads. Then, each read is divided into k-mers and each k-mer is 

queried against the ARG HashMaps. If the total number of k-mer hits is above the false 

positive threshold, the program outputs the ARG classification for each hierarchy level. The 

level-specific k-mer hits and weights are stored in other read-specific HashMaps. If the 

resistome mapper module is invoked, then the program outputs the percentage of gene length 

spanned by mapping reads and the median k-mer coverage for each ARG.

The software and the source code are available under the MIT license at https://github.com/

DataIntellSystLab/KARGA.

III. Results

The empirical count distribution analysis of k-mer hits for NovaSeq-like data (average read 

length of 151) on MEGARes (v.2.0) indicates that k values of 11 and above provide very 

low probability of finding a random k-mer once or more in the database. Fig. 1 plots the 

count distribution percentiles calculated over 250,000 random strings; the curve that divides 

the top from the bottom distribution corresponds to k=11.

The synthetic validation dataset includes 200,000 reads (each 151 nucleotides long), 

of which 10% are non-ARG (random), 90% are ARGs with mutations/errors, and the 

remaining 10% are ARGs with gene rearrangement. The statistical test to discard non­

ARG reads works as expected. Out of 10,000 randomly simulated reads, less than 1% 

are mistakenly assigned. The false positive rate decreases when k increases, and no false 

positives are found for any k larger than 19. Classification results for the ARG reads with 

mutations/errors are shown in Fig. 2, stratified by k value and antibiotic resistance hierarchy. 

Overall, there is a nonlinear, sigmoid-like decrease in performance when the error rate 

increases. The best k is 13 (relative to a read length of 151), with an average class recall 

of 99.89% for error/mutation rates within 10%, and of 83.37% for error/mutation rates 

between 10% and 25%. However, any value between 13 and 21 yields results above the 

Prosperi and Marini Page 4

IEEE EMBS Int Conf Biomed Health Inform. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.java.com/
https://github.com/DataIntellSystLab/KARGA
https://github.com/DataIntellSystLab/KARGA


average across all k values being tested, i.e. 11 to 41. On the gene-rearranged ARG reads, 

KARGA shows high robustness: on average, 99.92%, 99.66%, and 98.52% of the reads are 

assigned to the correct class, group, and mechanism, respectively. These performance values 

are stable across all k values, with no evidence of slope due to k.

On the semi-synthetic PATRIC dataset (Fig.3), the method with the highest hit score 

(resistance hits minus susceptible hits) is KARGA, with a median (IQR) of 415 (193–

672), followed by MetaMARC with 284 (71–454), DeepARG with 219 (39–454), and 

AMRPlusPlus with 46 (−262–209). On the experimental Pediatric and Soil datasets, 

KARGA’s average hit rate is 5.1% whereas AMRPlusPlus yields 4.2%, DeepARG 3.7%, 

and MetaMARC 6.4%. Of note, MetaMARC has been calibrated on the Pediatric/Soil data 

in its original paper, so its performance cannot be considered external validation as with the 

other tools.

In terms of runtimes, we tested the software on a 4-cores AMD Opteron 6378, 2.4GHz, 

32GB of RAM, and KARGA is faster than all other software across all file sizes, as shown 

in Table 1, being on average 2x faster than AMRPlusPlus, 7x faster than DeepARG, and 

over 100x faster than MetaMARC.

IV. Discussion

KARGA demonstrates high recall and hit rate in identifying ARGs from high-throughput, 

short read metagenomics data. It is highly robust with gene rearrangement and with genetic 

divergence at lower k values, yet maintaining a low false positive rate thanks to the statistical 

filtering. Its hit rate on semi-synthetic and empirical data is higher than all other methods. 

Only in one real-world dataset KARGA is second to MetaMARC; however that dataset was 

used for calibration, and on large experimental data MetaMARC is practically unusable due 

to extremely long execution times. In addition to be the most accurate, KARGA is the fastest 

of all off-the-shelf ARG classification software tested here.

This work has some limitations. First, we do not classify antibiotic resistance in 

housekeeping genes, since resistance in these genes is determined by single nucleotide 

polymorphisms (SNPs). However, such feature could be added by requiring always the 

presence of k-mers containing the SNPs in addition to non-SNP-containing k-mer hits. 

Second, the data structures we implement are standard and can have high memory overhead. 

We use String types for k-mers, but they can be transformed, processed and stored in much 

more efficient data structures (e.g. using bit maps, Bloom filters and minimizers) [18]. 

Finally, KARGA could be parallelized: each read can be processed independently from 

the others and the k-mer-ARG HashMap is read-only; however, the ARG-k-mer HashMap 

would need to be updated concurrently.

In conclusion, KARGA is a fast, reliable and flexible ARG classifier that can be employed 

in multiple contexts; its multi-platform implementation makes it also ideal for mobile 

bioinformatics applications, e.g. Oxford’s Nanopore sequencing data generated by MinION 

(with the Mk1C), and the smartphone-pluggable SmidgION [19].
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Fig. 1. 
Empirical distribution of counts for random k-mers (k=3…41) found in the MEGARes 

database, estimated on 200,000 randomizations.
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Fig. 2. 
Recall performance of KARGA on synthetic short read metagenomics data (200,000 reads, 

151 nucleotides) containing ARGs with mutations/sequencing errors up to 25%. Results are 

stratified by MEGARes annotation hierarchy (class/mechanism/group) and by value of k.
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Fig. 3. 
Resistance and susceptibility hit rate of KARGA, AMRPlusPlus, DeepARG and 

MetaMARC on semi-synthetic short read metagenomics data (~250,000 reads, 151 

nucleotides) drawn from the PATRIC repository, stratified by antibiotic class.
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TABLE I.

Runtime benchmarks (hh:mm:ss) comparing KARGA with AMRPlusPlus, DeepARG, and MetaMARC.

File size Reads KARGA AMR PlusPlus DeepARG MetaMARC

1GB 1.6M 0:08:27 00:21:19 00:53:01 16:26:27

2GB 3.1M 0:15:32 00:49:40 01:38:55 >24h

5GB 7.9M 0:38:11 01:35:47 03:41:06 >24h

10GB 15.8M 1:38:20 2:48:43 11:43:16 >24h
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