Skip to main content
Acta Veterinaria Scandinavica logoLink to Acta Veterinaria Scandinavica
. 1976 Mar 1;17(1):1–14. doi: 10.1186/BF03547938

Pharmacokinetics of Hexobarbital, Sulphadimidine and Chloramphenicol in Neonatal and Young Pigs

Ove Sυendsen 1,
PMCID: PMC8383965  PMID: 1266681

Abstract

Half-life and apparent specific volume of distribution of hexobarbital, sulphadimidine and chloramphenicol were investigated in newborn, 1, 3, 5 and 8 weeks old pigs. Hexobarbital sleeping time and plasma concentration of hexobarbital at recovery were measured in the same age groups. The half-life of hexobarbital and chloramphenicol was long in newborn pigs but decreased fast during the first week after birth. From 1 to 8 weeks after birth the decrease was less pronounced. The half-life of sulphadimidine increased during the first 3 weeks of life, but in 1 and 3 weeks old pigs the amount of N4-acetylated sulphadimidine in plasma at 200 min. after the injection was higher than in the newborn pigs.

The apparent specific volume of distribution of hexobarbital, sulphadimidine and chloramphenicol was changed in different ways from birth to 8 weeks of age.

The hexobarbital sleeping time was very long in the newborn pigs and decreased until 3 weeks of age. The concentration of hexobarbital in plasma at recovery was unchanged from birth to 8 weeks of age.

The concentration of chloramphenicol metabolites in plasma 100 min. after the injection increased very fast during the 8 weeks of observation. The concentration of N4-acetylated sulphadimidine in plasma at 200 min. after the injection increased from birth to 1 week of age, then it decreased.

The data are stressing that the neonatal pig is a convenient model for pharmacokinetic testing of drugs used as pharmacotherapeutics in neonatal life.

Keywords: pharmacokinetics, hexobarbital, sulphadimidine, chloramphenicol, neonatal pigs

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Acknowledgements

The author wishes to thank mrs. Lis Bærendsen and mr. Ernst Eriksen for skilful technical assistance during the work.

References

  1. Barnett H L, Vesterdal J. The physiologie and clinical significance of immaturity of kidney function in young infants. J. Pediat. 1953;42:99–119. doi: 10.1016/S0022-3476(53)80116-2. [DOI] [PubMed] [Google Scholar]
  2. Basu T K, Dickerson J W T, Parke D V W. Effect of development on the activity of microsomal drug-metabolizing enzymes in rat liver. Biochem. J. 1971;124:19–24. doi: 10.1042/bj1240019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bessman S P, Stevens S. A colorimetric method for the determination of Chloromycetin in serum and plasma. J. Lab. clin. Med. 1950;35:129–134. [PubMed] [Google Scholar]
  4. Bratton A C, Marshall E K. A new coupling component for sulfonamide determination. J. biol. Chem. 1939;128:537–550. [Google Scholar]
  5. Brooks C C, Davis J W. Changes in the perinatal pig. J. Animal Sei. 1969;29:325–329. doi: 10.2527/jas1969.292325x. [DOI] [PubMed] [Google Scholar]
  6. Butler T C. The distribution of drugs. In: LaDu B N, Mandel H G, Way E L, editors. Fundamentals of Drug Metabolism and Drug Disposition. Baltimore: The Williams & Wilkins Company; 1971. pp. 44–62. [Google Scholar]
  7. Catz C, Yaffe S J. Strain and age variations in hexobarbital response. J. Pharmacol, exp. Ther. 1967;155:152–156. [PubMed] [Google Scholar]
  8. Chignell C F, Vesell E S, Starkweather D K, Berlin C M. The binding of sulfaphenazole to fetal, neonatal, and adult human plasma albumin. Clin. Pharmacol. Ther. 1971;12:897–901. doi: 10.1002/cpt1971126897. [DOI] [PubMed] [Google Scholar]
  9. Cooper J R, Brodie B B. The enzymatic metabolism of hexobarbital (evipan) J. Pharmacol, exp. Ther. 1955;114:409–417. [PubMed] [Google Scholar]
  10. Davis, L. E., C. A. Neff & J. D. Baggot: Comparative pharmacokinetics in domesticated animals. Nat. Conf. Res., Animals in Med., Washington, D.C., Jan. 1972.
  11. Davis L E, Westfall B A, Short C R. Biotransformation and pharmacokinetics of salicylate in newborn animals. Amer. J. vet. Res. 1973;34:1105–1108. [PubMed] [Google Scholar]
  12. Donald H P, Raventôs J. Influence of age and weight of pigs on response to sodium evipan. J. Pharmacol, exp. Ther. 1939;65:383–388. [Google Scholar]
  13. Done A K. Perinatal pharmacology. Ann. Rev. Pharmacol. 1966;6:189–208. doi: 10.1146/annurev.pa.06.040166.001201. [DOI] [PubMed] [Google Scholar]
  14. Ehrnebo M, Agurell S, Jailing B, Boréus L O. Age differences in drug binding by plasma proteins: Studies on human foetuses, neonates and adults. Europ. J. clin. Pharmacol. 1971;3:189–193. doi: 10.1007/BF00565004. [DOI] [PubMed] [Google Scholar]
  15. Fichter E G, Curtis J A. Sulfonamide administration in newborn and premature infants. Pediatrics. 1956;18:50–59. [PubMed] [Google Scholar]
  16. Fouts J R. Hepatic microsomal drug metabolism in the perinatal period. In: Adamson K, editor. Diagnosis and Treatment of Fetal Disorders. N.Y.: Springer Verlag; 1968. pp. 291–304. [Google Scholar]
  17. Fouts J R. Microsomal mixed-function oxidases in the fetal and newborn rabbit. In: Boréus L, editor. Fetal Pharmacology. New York: Raven Press; 1973. pp. 305–320. [Google Scholar]
  18. Fouts J R, Adamson R H. Drug metabolism in the newborn rabbit. Science. 1959;129:897–898. doi: 10.1126/science.129.3353.897. [DOI] [PubMed] [Google Scholar]
  19. Ganshorn A, Kurz H. Unterschiede zwischen der Proteinbindung Neugeborener und Erwachsener und ihre Bedeutung für die pharmakologische Wirkung. (Differences between protein binding in newborns and adults and influence on pharmacologic action) Naunyn-Schmiedeberg’s Arch. Pharmacol. 1968;260:117–118. doi: 10.1007/BF00537925. [DOI] [PubMed] [Google Scholar]
  20. Gladtke E, Rind H. 3rd Int. Congr. Chemotherapy. 1965. Sulfonamide bei unreifen und reifen Trimenonkindern; pp. 656–659. [Google Scholar]
  21. Glazko A J. Identification of chloramphenicol metabolites and some factors affecting metabolic disposition. In: Hobby G L, editor. Antimicrobial Agents and Chemotherapy. Crobiology: American Society for Mi; 1967. [DOI] [PubMed] [Google Scholar]
  22. Glazko A J, IV. Wolf L M, Dill A, Bratton A C. Biochemical studies on chloramphenicol (Chloromycetin). II. Tissue distribution and excretion studies. J. Pharmacol, exp. Ther. 1949;96:445–459. [PubMed] [Google Scholar]
  23. Glazko A J, Dill TV A, Wolf L M. Observation on the metabolic disposition of chloramphenicol (Chloromycetin) in the rat. J. Pharmacol, exp. Ther. 1952;104:452–458. [PubMed] [Google Scholar]
  24. Henderson P T. Metabolism of drugs in rat liver during the perinatal period. Biochem. Pharmacol. 1971;20:1225–1232. doi: 10.1016/0006-2952(71)90352-2. [DOI] [PubMed] [Google Scholar]
  25. Hörster M, Lewy J E. Filtration fraction and extraction of PAH during neonatal period in the rat. Amer. J. Physiol. 1970;219:1061–1065. doi: 10.1152/ajplegacy.1970.219.4.1061. [DOI] [PubMed] [Google Scholar]
  26. Hughes D TV O, Diamond L K. Chloramphenicol in blood: Simple chemical estimations in patients receiving multiple antibiotics. Science. 1964;144:296–297. doi: 10.1126/science.144.3616.296. [DOI] [PubMed] [Google Scholar]
  27. Ingall D, Klein J O. Levels of penicillins in serum of newborn infants. 5th Int. Congr. Chemotherapy. 1967;1:407–410. [Google Scholar]
  28. Jondorf TV R, Maickel R T, Brodie B B. Inability of newborn mice and guinea pigs to metabolize drugs. Biochem. Pharmacol. 1958;1:352–354. doi: 10.1016/0006-2952(59)90126-1. [DOI] [Google Scholar]
  29. Kakemi K, Arita T, Ohashi S. Absorption and excretion of drugs. (J. Pharm. Soc. Jap.) 1962;82:342–345. doi: 10.1248/yakushi1947.82.3_342. [DOI] [PubMed] [Google Scholar]
  30. Kemp T. Munks- gaard, Copenhagen. 1955. Statistik for medicinere. (Statistics for physicians) [Google Scholar]
  31. Klaassen C D. Immaturity of the newborn rat’s hepatic excretory function for ouabain. J. Pharmacol, exp. Ther. 1972;183:520–526. [PubMed] [Google Scholar]
  32. Krauer B, Spring P, Dettli L. Zur Pharmakokinetik der Sulfonamide im ersten Lebensjahr. (Pharmacokinetics of sulphonamides in the first year of life) Pharmacol. Clin. 1968;1:47–53. doi: 10.1007/BF00418704. [DOI] [Google Scholar]
  33. Manners M J, McCrea M R. Changes in the chemical composition of sow-reared piglets during the 1st month of life. Brit. J. Nutr. 1963;17:495–513. doi: 10.1079/BJN19630053. [DOI] [PubMed] [Google Scholar]
  34. Mirkin B L. Developmental pharmacology. Ann. Rev. Pharmacol. 1970;10:255–271. doi: 10.1146/annurev.pa.10.040170.001351. [DOI] [PubMed] [Google Scholar]
  35. Nishimura T. Chloramphenicol in the newborn and premature infants — Absorption and excretion of chloramphenicol. 5th Int. Congr. Chemotherapy. 1967;1:401–405. [Google Scholar]
  36. Nyhan W L. Toxicity of drugs in the neonatal period. J. Pediat. 1961;59:1–20. doi: 10.1016/S0022-3476(61)80204-7. [DOI] [PubMed] [Google Scholar]
  37. Pruitt A W, Dayton P G. A comparison of the binding of drugs to adult and cord plasma. Europ. J. clin. Pharmacol. 1971;4:59–62. doi: 10.1007/BF00568901. [DOI] [PubMed] [Google Scholar]
  38. Bane A, Berggren M, Yaffe S, Ericsson J L E. Oxidative drug metabolism in the perinatal rabbit liver and placenta. A biochemical and morphologic study. Xenobiotica. 1973;3:37–48. doi: 10.3109/00498257309151498. [DOI] [PubMed] [Google Scholar]
  39. Pasmussen, Folke: Personal communication, 1973.
  40. Schulz B. Distribution and elimination of trimethoprim in pregnant and newborn rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1972;272:369–377. doi: 10.1007/BF00501243. [DOI] [PubMed] [Google Scholar]
  41. Sereni F, Perletti L, Manfredi N, Marini A. Tissue distribution and urinary excretion of a tetracycline derivative in newborn and old infants. J. Pediat. 1965;67:299–305. doi: 10.1016/S0022-3476(65)80254-2. [DOI] [Google Scholar]
  42. Sereni F, Perletti L, Marubini E, Mars G. Pharmacokinetic studies with a long-acting sulfonamide in subjects of different ages. Pediat. Res. 1968;2:29–37. doi: 10.1203/00006450-196801000-00003. [DOI] [PubMed] [Google Scholar]
  43. Sheng H, Huggins B A. Growth of the beagle: Changes in the body fluid compartment. Proc. Soc. exp. Biol. (N. Y.) 1972;139:330–335. doi: 10.3181/00379727-139-36137. [DOI] [PubMed] [Google Scholar]
  44. Short, C. B.: Drug metabolism in newborn swine. Diss. Abstr. Int. 1969, 30 B, 1826.
  45. Short C B, Davis L E. Perinatal development of drug-metabolizing enzyme activity in swine. J. Pharmacol, exp. Ther. 1970;174:185–196. [PubMed] [Google Scholar]
  46. Short C B, Stith B D. Perinatal development of hepatic microsomal mixed function oxidase activity in swine. Biochem. Pharmacol. 1973;22:1309–1319. doi: 10.1016/0006-2952(73)90305-5. [DOI] [PubMed] [Google Scholar]
  47. Short C B, Tumbleson M E. Binding of drugs to plasma proteins of swine during the perinatal period. Toxicol, appl. Pharmacol. 1973;24:612–624. doi: 10.1016/0041-008X(73)90223-8. [DOI] [PubMed] [Google Scholar]
  48. Simon C, Bekesch M, Malerczyk V. Zur Pharmakokinetik von Penicillin V im Kindersalter (insbesondere bei Neugeborenen). (Pharmacokinetics of penicillin V in childhood (especially in newborns)) Med. Welt (Stuttg.) 1972;23:1717–1721. [PubMed] [Google Scholar]
  49. Svendsen J, Wilson M B, Eivert E. Serum protein levels in pigs from birth to maturity and in young pigs with and without enteric colibacillosis. Acta vet. scand. 1972;13:528–538. doi: 10.1186/BF03547158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yaffe S J. Some aspects of perinatal pharmacology. Ann. Rev. Med. 1966;17:213–234. doi: 10.1146/annurev.me.17.020166.001241. [DOI] [PubMed] [Google Scholar]

Articles from Acta Veterinaria Scandinavica are provided here courtesy of BMC

RESOURCES