Table 3. Performances of clustering (purity).
| Dataset | GNG | NG | SOM | k-means | GNG using no topology | SC |
|---|---|---|---|---|---|---|
| Blobs | 0.9744 | 0.9632 | 0.4110 | 0.9690 | 0.9813 | 0.9671 |
| Circles | 1.0000 | 1.0000 | 0.5403 | 0.9997 | 1.0000 | 1.0000 |
| Moons | 0.9992 | 0.9884 | 0.5810 | 0.9328 | 0.9985 | 0.9933 |
| Iris | 0.5840 | 0.5648 | 0.5020 | 0.8473 | 0.8427 | 0.8533 |
| Wine | 0.4650 | 0.4649 | 0.4379 | 0.6656 | 0.6827 | 0.6742 |
| Spam | 0.7676 | 0.6063 | 0.6082 | 0.6095 | 0.7464 | 0.6070 |
| CNAE-9 | 0.6711 | 0.5920 | 0.2913 | 0.4887 | 0.5706 | 0.1871 |
| Digits | 0.8572 | 0.8129 | 0.3356 | 0.7641 | 0.8025 | 0.6023 |
| MNIST | 0.6100 | 0.5801 | 0.2784 | 0.6754 | 0.5888 | nan |
Note:
GNG, NG, SOM, k-means, GNG using no topology, and SC mean ACSs with GNG, NG, SOM, k-means, and GNG using no topology, and spectral clustering, respectively. The purities are the mean of 100 runs with random initial values. The best purities are bold.