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Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The 
age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade 
inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflam-
maging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known 
that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. 
Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells 
(MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially 
MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, 
arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as 
well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the devel-
opment and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen 
presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are 
the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it 
seems that the immunosenescence state is epigenetically regulated.
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Introduction

The aging process is associated with a deterioration of the 
immune system, commonly referred to as immunosenes-
cence. The age-related decline in the functions of immune 
cells involves both adaptive immunity, such as T and B 
cells, and innate immunity including macrophages as well 
as dendritic and natural killer (NK) cells [1, 2]. Concur-
rently, there exists a chronic low-grade inflammatory state, 
termed inflammaging (Fig. 1). At present, there is an on-
going debate whether immunosenescence is a cause or a 
consequence of inflammaging. There is clear evidence that 
immunosenescence increases the risk for the growth of 
tumors and a persistent inflammatory state during infections, 

whereas it seems to improve the efficiency of transplanta-
tion [3–5]. Currently, the molecular basis of immunosenes-
cence is unknown, although it is a hallmark of the aging 
process. Another characteristic of aging is the accumula-
tion of senescent non-immune cells within tissues in both 
mice and humans [6]. Interestingly, not only inflammaging 
but also immunosenescence occurs in several pathologi-
cal conditions associated with chronic inflammation (see 
below). It is known that persistent inflammation stimulates 
a counteracting compensatory immunosuppression intended 
to protect tissue homeostasis [7–9]. Immune cells are highly 
plastic cells which can display different phenotypes and 
even be converted into other immune cell types. These 
flexible processes are most probably under some form of 
epigenetic regulation (see below). Inflammatory mediators 
enhance myelopoiesis and trigger the generation of imma-
ture myeloid-derived suppressor cells (MDSC) which are 
able to enhance the immunosuppressive properties of other 
immune cells [10]. The immunosuppressive phenotypes are 
called regulatory ones including, e.g., regulatory T (Treg) 
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and B (Breg) cells. Interestingly, immunosuppressive cells 
secrete different immunoregulatory factors which inhibit the 
acute inflammatory responses of effector cells and in that 
way promote their immunosenescence (Fig. 2). Here, I will 
examine the generation of immunosenescence, particularly 
the form encountered in T and NK cells, through the control 
of immunosuppressive network.

Definition of immunosenescence 
and exhaustion of immune cells

The gradual decline of the immune system with aging, i.e., 
immunosenescence, is an evolutionarily conserved phenom-
enon. Immunosenescence represents the age-related remod-
elling of the immune system with aging [1, 2]. However, the 
definition of immunosenescence and its effects on human 
health with aging are currently under debate [11]. There 
are several reasons that immunosenescence seems to be an 
irreversible, context-dependent process, and it is not known 
whether the changes are beneficial or detrimental. In fact, 
the cells of the immune system can display some plastic-
ity in their phenotypes. For instance, the T cell population 
can express the effector phenotypes (Teff) and immunosup-
pressive phenotypes, i.e., Treg cells. Accordingly, Tregs can 
provoke the changes in human T cells which are reminiscent 
of those found in immunosenescent T cells [12, 13] (Fig. 2). 
Moreover, human natural killer (NK) cells undergo a signifi-
cant differentiation process with aging [14]. Given that the 

inflammatory microenvironment augments immunosenes-
cence, the occurrence of immunosenescent cells increases 
in many age-related diseases [15, 16]. The presence of low-
grade chronic inflammation most probably promotes immu-
nosenescence with aging and thus enhances the inflammag-
ing state through a feed-forward process [17]. Considering 
the plasticity of immune cells, it seems that there does not 
exist any specific immunosenescent phenotypes but instead 
a wide spectrum of immune cells expressing a set of mark-
ers of immune senescence. The characteristics of the immu-
nosenescent phenotypes of different immune cells will be 
examined in detail below.

The age-related involution of the thymus has a profound 
effect on immunosenescence, especially on the senescence of 
mouse and human T cells. Studies on senescent T cells have 
revealed a state called T cell exhaustion which have many 
different properties compared to those of senescent T cells 
[18, 19]. Chronic infections, autoimmune diseases, and can-
cers, i.e., the chronic elevation of the antigenic load, induce 
the phenotype of exhausted T cells, in both CD4 and CD8 
T cells. The exhaustion of Teff cells arrests cell prolifera-
tion and induces a hyporesponsive, anergic state which may 
safeguard against the development of autoimmune diseases. 
Exhausted T cells do not produce cytokines, whereas senes-
cent T cells secrete an increased level of pro-inflammatory 
cytokines. Moreover, the specific hallmark of exhausted T 
cells is a significant increase in the expression of multiple 
inhibitory receptors, such as PD-1, CTLA-4, LAG-3, and 
TIGIT [19]. Wang et al. [20] exploited single-cell transcrip-
tomics to assay the specific properties of exhausted T cells 
in the HIV-infected humans. They reported that exhausted 
CD8 T cells displayed a strong upregulation of killer cell 
lectin–like receptor subfamily G member 1 (KLRG1) in 
HIV patients. Interestingly, an antibody blockade therapy 
targeted at the KLRG1 protein significantly restored the func-
tion of CD8 T cells in HIV individuals. It is known that a 
therapy aimed at blocking the PD-1 protein also reinvigorated 
exhausted T cells in persistent virus infections and cancers 
[21]. There are studies indicating that human NK cells can 
display different dysfunctional states including anergy and 
exhaustion, in addition to the immunosenescent state [22]. 
Exhausted NK cells undergo an upregulation of PD-1 and 
KLRG1 receptors, whereas cytokine production is down-
regulated. In contrast, senescent NK cells show an increased 
secretion of pro-inflammatory cytokines (see below). An 
interesting difference between the exhaustion and senescence 
of NK cells is the observation that the exhausted state of 
NK cells can be reversed by receptor blockade therapy, but 
the senescence state is more stable. Currently, the signal-
ing mechanisms controlling the senescence and exhaustion 
of both T and NK cells are under scrutiny because of their 
important role in chronic inflammatory diseases.

Fig. 1   The feed-forward cycle between inflammaging, immunosup-
pression, and immunosenescence. Unknown inducers provoke an 
inflammaging state which stimulates a counteracting compensatory 
immunosuppression in an attempt to protect the host tissues. The 
activation of the immunosuppressive network (Fig.  2) induces an 
immunosenescence state in the effector immune cells. Subsequently, 
immunosenescence promotes inflammation and aggravates inflam-
maging in tissues. The chronic presence of both immunosuppression 
and immunosenescence augments tissue degeneration with aging and 
inflammatory conditions
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Hallmarks of immunosenescence

Functional immune hallmarks

The characteristics of immunosenescence have normally 
been assessed through the changes appearing in the sur-
face markers and functional properties of different immune 
cell populations. There is a plethora of articles which have 
described in detail the typical changes in the phenotypes of 
senescent immune cells in mice and humans [17, 23–25]. 
The common functional alterations appearing in the immu-
nosenescent state of different immune cells have been col-
lected to Fig. 2. In T cells, there is a gradual decline in 
the number of naïve CD4+ and CD8+ T cells (CD45RA+), 
whereas those of the memory phenotype (CD45RO+) pro-
gressively increase during the aging process [23, 26]. The 
decrease in the number of CD4+ and CD8+ T cells is attrib-
utable to the reduced clonal expansion of T cells in the bone 
marrow (BM) and the involuting thymus during the aging 
process. In the BM, there exists an age-related myeloid-
biased dominance of human hematopoiesis, whereas the 

production of lymphopoietic progenitors is downregulated 
with aging [27]. Moreover, the responsiveness of T cells 
to certain cytokines declines with aging as does the cyto-
toxic activity of CD8+ T cells (Fig. 2). There is convinc-
ing evidence that immunosenescence is associated with 
disturbances in the function of the T cell receptor (TCR) 
and its co-receptors, especially that of the stimulatory 
CD28 receptor. Particularly, a loss of CD28 receptors is 
a hallmark of senescent T cells [25]. The clear decrease 
in the diversity of the human TCR repertoire with aging 
in both naïve CD4+ and CD8+ T cell populations impairs 
the recognition of antigens and reduces the activation of 
T cells [28]. In addition to T cells, the number of B cells 
also declines with aging (Fig. 2). Kennedy and Knight [29] 
revealed that MDSCs inhibited the generation of B cells in 
mouse BM cultures through the secretion of soluble factors. 
The soluble factors could be anti-inflammatory cytokines 
since TGF-β is a potent inhibitor of B cell proliferation [30]. 
There are also age-related changes in the circulating B cell 
subsets, i.e., the number of human naïve B cells and the 
antigen-experienced memory (CD27+) B cells are reduced 

Fig. 2   The figure depicts the generation of the immunosenescence 
phenotypes of different immune cells through the activation of immu-
nosuppressive network. Immunosuppressive cells, e.g., MDSCs, 
Tregs, and M2 macrophages, secrete many factors which induce the 
immunosenescent phenotype of T and B cells as well as that of NK 
cells, dendritic cells, and macrophages. The molecular mechanisms 
have been described in the text. The functional properties of immu-
nosenescent cells are listed below. Abbreviations: ARG1, arginase-1; 
Breg, regulatory B cells; DCreg, regulatory/tolerant dendritic cells; 

GCN2, general control nonderepressible 2; IL, interleukin; iNOS, 
inducible nitric oxide synthase; M2/Mreg, M2 macrophage (regula-
tory macrophage); MDSC, myeloid-derived suppressor cells; NKreg, 
regulatory natural killer cells; NKT type II, type II natural killer T 
cells; PGE2, prostaglandin E2; RNS, reactive nitrogen species; ROS, 
reactive oxygen species; SASP, senescence-associated secretory phe-
notype; TCR, T cell receptor; TGF-β, transforming growth factor-β; 
TLR, Toll-like receptor; Treg, regulatory T cells
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with aging, whereas the presence of the exhausted memory 
(CD27−) B cells increases [31]. Aging also affects the B cell 
repertoire and antibody production, e.g., the production of 
autoreactive antibodies is augmented with aging (Fig. 2). 
Frasca et al. [31] have reviewed in detail the changes pre-
sent in the phenotypes and functions of senescent B cells 
in mice and humans.

NK cells are important cytotoxic cells which under-
take immune surveillance and clearance of stressed cells 
in cooperation with cytotoxic CD8+ T cells. Considering 
the aging process, it does appear that senescent cells can 
be recognized and removed by NK cells [32]. It seems that 
the accumulation of senescent cells with aging is attrib-
utable to defects in the surveillance potential of NK cells 
[33]. There is substantial evidence that aging affects the 
diversity of NK cell subsets and thus the functional proper-
ties of mouse and human NK cells [14, 34]. The common 
alterations in the profiles of surface receptors appearing in 
NK cells with aging have been compiled in several reviews 
[14, 34, 35]. In brief, the number of CD56bright NK cells 
declines in circulation with aging as well as the production 
of cytokines and chemokine. Moreover, the percentage of 
CD56dimCD57pos NK cells increases with aging, whereas 
that of CD56dimCD57neg cells is clearly downregulated. 
Interestingly, the CD57pos phenotype is a marker for the 
senescence state in human CD8+ T cells, whereas in NK 
cells, it represents terminal differentiation [36]. The frequen-
cies of CD57pos cells are increased in the blood and tissues 
in chronic inflammatory conditions, such as chronic infec-
tions and cancers. Almeida-Oliveira et al. [35] demonstrated 
that the percentages of human natural cytotoxicity triggering 
receptors 1 (NCR1 or NKp46) and 3 (NCR3 or NKp30) in 
both CD56brigh and CD56dim NK subsets were significantly 
reduced in elderly people. Moreover, Hazeldine et al. [37] 
reported that the release of perforin from human NK cells 
and its binding to target cells at the immunological synapse 
were clearly reduced with aging, thus decreasing the cytol-
ytic activity of NK cells. These age-related alterations might 
explain the lower cytotoxicity of NK cells in aged individu-
als. Rajagopalan and Long [38] demonstrated that the sus-
tained activation of KIR2DL4 (CD158d) receptor induced 
the senescence phenotype of human NK cells. They also 
reported that TRAF6/TAK1 signaling was able to activate 
the endosomal KIR2DL4 receptor and thus provoked the 
senescence of human NK cells. The TRAF/TAK1 signaling 
axis has several connections to TGF-β and NF-κB signal-
ing. Hazeldine and Lord [34] have examined in detail many 
alterations in NK cells associated with the aging process.

The age-related changes in the myeloid cells, such as 
monocytes, neutrophils, macrophages, and dendritic cells, 
representing innate immunity are far less consistent than 
those of T, B, and NK cells. Their properties are more 
dependent on changes in the tissue microenvironment, e.g., 

the phase and intensity of inflammation and the presence 
of immunosuppressive cells. Since the major function of 
dendritic cells (DC) is antigen presentation to T and B cells, 
they are able to control the efficiency of adaptive immu-
nity. Furthermore, macrophages possess a wide context-
dependent plasticity, e.g., the M1/M2 polarization is not 
only dependent on the inflammatory state, but changes in 
the extracellular matrix can also affect their activity [39]. 
The number of DCs seems to be stable in tissues with aging, 
although the amount of Langerhans cells decreases with 
aging in human skin [40]. However, certain key functions 
of DCs are impaired with aging, e.g., mobility and antigen 
uptake are decreased, and also antigen processing and pres-
entation to T cells are downregulated [41, 42] (Fig. 2). The 
priming of T cells might also be impaired, since there exists 
a significant decline in the secretion of cytokines induced by 
the activation of Toll-like receptors (TLR) in human myeloid 
and plasmacytoid DCs [43]. There is clear evidence that the 
macrophages from aged humans display many functional 
deficiencies [44, 45]. For instance, phagocytic capacity and 
the activity of antigen presentation are significantly reduced 
in senescent macrophages. Their responses to inflammatory 
insults, e.g., to LPS exposure and infections, are consider-
ably downregulated, impairing the resolution of inflamma-
tory state. However, it is known that the age-related effects 
on macrophages are dependent on the type of insult and the 
tissue location of the macrophages [46].

Similar characteristics of senescence in immune 
and non‑immune cells

The common hallmarks of cellular senescence are very 
well characterized in non-immune cells, whereas the cel-
lular properties of senescent immune cells have been infre-
quently reported. Surprisingly, it has been demonstrated 
that there are major similarities in the common phenotypes 
between senescent immune and non-immune cells [6, 47, 
48] (Table 1). The arrest of cell proliferation caused by 
an increase in the expression of cell cycle inhibitors, such 
as p16INK4a, p21WAF1, and p53, is a typical alteration 
encountered both in senescent immune and non-immune 
cells of mice and humans. For instance, these changes are 
present in senescent T cells [49–51], B cells [31], NK cells  
[52], and macrophages [53–55]. Cell cycle arrest is com-
monly associated with the increased expression of senescence- 
associated β-galactosidase (SA-β-gal) and heterochroma-
tin foci (SAHF) [52–54, 56, 57] as well as the shortening  
of telomeres [58–60]. In particular, telomere shortening 
occurs in the replicative senescence of T cells. All these 
age-related changes are also common biomarkers of cellular 
senescence in non-immune cells of mice and humans [6] 
(Table 1).
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Diverse cellular stresses are associated with cellular 
senescence, both in immune and non-immune cells. There 
are significant alterations in the functions of autophagy, 
endoplasmic reticulum (ER), and mitochondria leading 
to cellular senescence displaying oxidative stress and dis-
turbances in energy metabolism and protein homeosta-
sis, although senescent cells remain metabolically active. 
There is robust evidence that the functions of autophagy 
[56, 61–63], ER [64, 65], and mitochondria [60, 63, 66] 
are disturbed in senescent mouse and human immune cells 
(Table 1). Currently, it is not known which of these three 
organelles is driving the senescence process, in either non-
immune or immune cells. Several studies have revealed that 
autophagic degradation is reduced in senescent CD4+ T cells 
and macrophages which impair the clearance of mitochon-
dria and other organelles, thus provoking disturbances in 
their function [61, 63]. Bektas et al. [63] demonstrated that 
an age-related decline in autophagic degradation in human 
CD4+ T cells induced the accumulation of autophagosomes 
and increased the number of non-functional mitochondria. 
Stranks et al. [61] reported that the knockout of the mouse 
Atg7 gene, an essential autophagy gene, induced several typ-
ical properties occurring in immunosenescent macrophages. 
For instance, impaired autophagy in mouse macrophages 
reduced mitochondrial respiration and increased glycolysis, 
whereas it increased the secretion of inflammatory factors. 
Hurst et al. [64] reported that an increased ER stress induced 
mitochondrial exhaustion in mouse and human T cells. Inter-
estingly, they reported that an increase in the generation of 
mitochondrial ROS compounds provoked a mitochondrial 
collapse in T cells. An increased production of mitochondrial 
ROS can also trigger telomere attrition in aged human CD8+ 
T cells [60]. Vida et al. [67] demonstrated that oxidative 
stress increased with aging in conjunction with a decrease 

of antioxidant defence in murine peritoneal leukocytes and 
especially in macrophages. The increases in the levels of 
ROS compounds and oxidized glutathione (GSSG) with 
an accumulation of lipofuscin impaired the functioning of 
senescent mouse macrophages. Interestingly, they observed 
that the macrophages from the long-lived mice preserved 
better their redox state and immune functions indicating that 
immunosenescence might enhance the oxi-inflamm-aging 
process. Accordingly, Garrido et al. [68] revealed that peri-
toneal macrophages and leukocytes sampled from the mice 
of two models of premature aging displayed decreased anti-
oxidant levels accompanied by an increased quantity of oxi-
dants and pro-inflammatory cytokines. Recently, Martinez 
de Toda et al. [69] screened a wide array of mouse immune 
cell parameters to determine which of them could be used 
as markers for the rate of the aging process. They reported 
that specific parameters were determinants of longevity in 
the adult age, e.g., lymphocyte chemotaxis and proliferation 
capacities as well as macrophage chemotaxis and phagocy-
tosis activity. Furthermore, some other parameters predicted 
extreme longevity in very old age, such as the activity of 
NK cells and the levels of IL-6 and IL-1β cytokines. These 
results indicate that certain functional activities and inflam-
matory parameters of immune cells can be utilized as the 
prognostic tools for the prediction of human lifespan.

There are several studies indicating that the phenotype of 
senescent immune cells displays the characteristics of the 
senescence-associated secretory phenotype (SASP), a typical 
pro-inflammatory phenotype of senescent non-immune cells. 
The SASP response has been detected in T cells [25, 68, 70], 
B cells [71], and macrophages [55]. The pro-inflammatory 
SASP components include colony-stimulating factors (CSF), 
interleukins such as IL-6, IL-1β, IL-8, and IL-10, and sev-
eral chemokines. It seems that the pro-inflammatory SASP 

Table 1   Comparison of common characteristics shared by cellular senescence and immunosenescence

Immune cells: T T cells, B B cells, NK natural killer cells, M macrophages

Parameter Cellular senescence Immunosenescence Immune cell type Reference

SA-β-Gal Up Up T, NK, M [52–54, 56]
SAHF Up Up T, NK [52, 57]
Telomere shortening Up Up T, B, NK, M [58–60]
p16/INK4a Up Up T, B, M [49, 53, 54]
p21/WAF1[ Up Up T, NK, M [50, 52, 55]
p53 Up Up T, M [51, 55]
Autophagy Impaired Impaired T, M [56, 61–63]
Mitochondrial disturbances Increased Increased T, B [60, 63, 66]
Oxidative stress Increased Increased T, B, M [59, 66–68]
ER stress Increased Increased T, M [64, 65]
SASP Enhanced Enhanced T, B, M [55, 68, 70, 71]
Apoptosis Resistant Resistant? T, B [75–77]
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properties of immune cells, especially those of macrophages, 
have a key role in the maintenance of low-grade chronic 
inflammaging condition in tissues. NF-κB signaling is the 
major inducer of the SASP state both in senescent immune 
and non-immune cells [55, 72]. The NF-κB system also is a 
potent regulator of apoptotic cell death, either inhibiting or 
enhancing apoptosis [73]. Cellular senescence of non-immune 
cells has been associated with extensive resistance to apoptotic 
cell death [74] (Table 1). Considering immunosenescence, the 
situation seems to be more complex, and apoptosis is probably 
a context-dependent process, i.e., immunosenescence either 
increases resistance to apoptosis or enhances apoptotic cell 
death. For instance, Spaulding et al. [75] demonstrated that the 
antigen-induced replicative senescence of human CD8+ T cells 
displayed a robust resistance to apoptosis. In contrast, Dennett 
et al. [76] reported that the age-related decline in the expres-
sion of CD25 and CD28 receptors in human T cells increased 
their susceptibility to the Fas (CD95)-mediated apoptosis. 
Chong et al. [77] reported that the number of apoptosis resist-
ant CD27− B cells was increased in aged humans. Currently, 
virtually nothing is known about the role of other regulated cell 
death processes, e.g., pyroptosis and immunogenic cell death, 
in the decline of immune system with aging.

Immunosenescence is associated 
not only with aging but also with chronic 
inflammatory conditions

There is a debate whether immunosenescence is a cause 
or a consequence of a low-grade inflammation with aging 
[17]. It seems very plausible that immunosenescence is a 
consequence of inflammaging, since diverse inflammatory 
conditions, unrelated to the aging process, display extensive 
immunosenescent state of immune cells, e.g., many infec-
tions and autoimmune diseases [4, 26, 78]. For instance, 
rheumatoid arthritis induces premature T cell senescence 
displaying a deficiency of CD28 receptor and enhanced pro-
inflammatory SASP properties [78, 79]. Immunosenescence 
is clearly increased in several age-related diseases, e.g., 
cardiovascular and neurodegenerative diseases [15, 16]. In 
fact, it seems probable that it is chronic inflammation rather 
than the aging process which augments immunosenescence. 
Cytomegalovirus infection can also enhance immunosenes-
cence with aging. Recently, it has been reported that the 
infection by SARS-CoV2 virus induced an extensive immu-
nosenescence response in older patients [80] which might 
be explained by the enhanced SASP activity of immune 
cells in aged individuals (see above). There is also convinc-
ing evidence that obesity accelerates immunosenescence 
in murine adipose tissues [81]. Evidently, it is related to 
chronic inflammation in adipose tissues rather than simply 

to the aging process. Moreover, neuropsychiatric disorders, 
e.g., major depression and bipolar disorder, are associated 
with chronic inflammation and immunosenescence [82, 83].

Immunosenescence has also been associated with tum-
origenesis [5] and transplantation [84]. There is a debate 
whether immunosenescence in tumor sites might be attrib-
uted either to an age-related immune deficiency or to the 
chronic inflammatory microenvironment. Interestingly, in 
tumors, there is also an accumulation of senescent non-
immune cells which are able to suppress tumor growth, 
but on the other hand, they can also enhance tumorigen-
esis through the proinflammatory SASP response [85]. 
When considering immunosenescence, T cells display the 
characteristics of senescence and exhaustion in the tumor 
microenvironment [19]. Moreover, Sanchez-Correa et al. 
[86] reported that human NK cells possessed features of 
immunosenescence in acute myeloid leukemia impairing 
immunosurveillance. It is known that the number of immu-
nosuppressive regulatory cells, e.g., MDSCs, Tregs, and 
tumor-associated macrophages (TAM) robustly increases 
in tumor sites [87]. Given that regulatory immune cells are 
potent suppressors of the effector subsets of immune cells, 
this indicates that the activation of immunosuppressive net-
work most probably induces immunosenescence in the tumor 
microenvironment. In addition, several studies have revealed 
that immunosuppressive cells, such as MDSCs, Bregs, regu-
latory macrophages (M2 subsets), and tolerogenic dendritic 
cells control transplantation tolerance in mice and humans 
[88]. This tolerance is most probably associated with the 
immunosenescence induced by the accumulation of immu-
nosuppressive cells around the transplants. Recently, Sacchi 
et al. [89] reported that inflammation induced the expansion 
of a polymorphonuclear MDSC population in the blood of 
COVID-19 patients. They also demonstrated that MDSCs 
suppressed the specific responses of T cells to the SARS-
CoV-2 virus-induced infection, e.g., inhibiting the release 
of IFN-γ cytokines. We have recently described that the 
age-related senescence of immune cells shows very similar 
phenotypes as those induced by immunosuppressive MDSCs 
[24]. As a whole, it seems that immunosenescence is caused 
by immunosuppressive cells as a reaction to the chronic 
inflammatory state (see below).

Activation of immunosuppressive network 
promotes immunosenescence

Immunosuppressive network

The immune system possesses extensive plasticity to respond 
and adapt to both systemic and local microenvironmental 
insults. There is convincing evidence that acute inflam-
matory responses evoke compensatory anti-inflammatory/
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immunosuppressive responses to induce a resolution phase 
both at the systemic level and in tissue microenvironments. 
Autoimmune diseases, pathogen-induced sepsis, and trau-
matic injuries are known to induce a systemic inflammatory 
response syndrome (SIRS) which is opposed by a compensa-
tory anti-inflammatory syndrome (CARS) [7, 90]. In addi-
tion, chronic inflammatory states within tissues also provoke 
many immunosuppressive responses intended to counteract 
the harmful effects of persistent inflammation [8, 9]. The 
persistent presence of an immunosuppressive state can be 
detrimental, for instance, the chronic inflammation existing 
in tumor microenvironments provokes immunosuppression 
which allows tumor cells to escape immune surveillance 
[87]. The immunosuppressive network involves the regu-
latory Tregs, Bregs, NKregs, and DCregs, as well as M2 
subsets of macrophages (Mregs) and type II NKT cells. The 
immature MDSCs, both monocytic and polymorphonuclear 
subpopulations (M-MDSC/PMN-MDSC), are also included 
in the immunosuppressive network [9, 91, 92] (Fig. 2). The 
close cooperation between the members of this immunosup-
pressive network is a characteristic property in the function 
of the network. For instance, the network’s members can 
potentiate each other’s immune suppressive activities and 
even enhance the differentiation of immunosuppressive cells 
[9, 91, 93]. The cells of host tissues are also able to educate 
immune cells to adopt immunosuppressive phenotypes [94]. 
Changes in the components of the extracellular matrix can 
also control the properties of immune cells in inflammatory 
sites [95]. These observations indicate that the plasticity of 
mouse and human immune cells allows the immune system 
to counteract inflammatory insults and thus maintain tissue 
homeostasis.

The cells of the immunosuppressive network possess 
powerful tools to suppress the functions of immune cells. 
The armament inhibits the functions of effector cells through 
(i) the secretion of anti-inflammatory cytokines, such as 
TGF-β, IL-4, IL-10, and IL-18, (ii) the release of reactive 
oxygen and nitrogen species (ROS/RNS), (iii) the genera-
tion of adenosine and prostaglandin E2 (PGE2) which are 
immunosuppressive factors, and (iv) increases in the expres-
sion and secretion of amino acid-catabolizing enzymes, i.e., 
arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO) 
[30, 96–98] (Fig. 2). Anti-inflammatory cytokines not only 
are immune mediators between immunosuppressive cells, 
but they also suppress the functions of pro-inflammatory 
immune cells and induce their immunosenescence. For 
instance, TGF-β exposure upregulates the expression of the 
cyclin-dependent kinase inhibitors thus arresting the pro-
liferation of T cells as well as it inhibits the activation of 
T cells, disturbs the differentiation of Th cells, and inhibits 
the cytotoxicity of CD8 T cells [30]. TGF-β signaling also 
reduces the proliferation of B cells, inhibits antibody pro-
duction, and induces apoptosis of immature and resting B 

cells. In human NK cells, TGF-β suppresses their cytolytic 
activity and the production of cytokines [30, 99]. Moreover, 
TGF-β exposure reduces the phagocytic activity and antigen 
presentation of macrophages [30]. All these phenotypes are 
reminiscent of those present in immunosenescent pheno-
types of immune cells (Fig. 2). It is known that TGF-β can 
also arrest the cell cycle and induce cellular senescence of 
non-immune cells [100]. ROS/RNS compounds secreted 
by immunosuppressive cells inhibit the TCR signaling of 
mouse T cells as well as suppressing the cytotoxic activ-
ity, cytokine production, and signal transduction of rat NK 
cells [101, 102]. ROS/RNS compounds are also known 
to induce cellular senescence of non-immune cells [103]. 
Moreover, immunosuppressive cells, e.g., inducible Tregs, 
generate adenosine and prostaglandin E2 (PGE2) which are 
potent suppressors of effector T cells and NK cells [97, 104] 
(Fig. 2). Adenosine and PGE2 inhibit the functions of T 
cells and NK cells by stimulating cyclic AMP signaling. 
The robust increase in the production of PGE2 is associated 
with many human age-related inflammatory diseases, such 
as atherosclerosis [105].

The age-related decline in the function of immune sys-
tem was discovered over 40 years ago [106–108]. Interest-
ingly, these early studies indicated that immunosenescence 
was induced by the increased activity of immune suppres-
sor cells [107, 108]. In their seminal study, Roder et al. 
[107] demonstrated that mouse spleen and bone marrow 
contained immune cells which were able to suppress the 
immune responses induced by anti-sheep erythrocytes (anti-
SRBC). Interestingly, they revealed that the immunosup-
pressive response was robustly increased with aging and 
preceded or paralleled the age-related immunosenescence. 
The immunosenescence was mediated through the soluble 
factors from suppressor cells. In addition, Singhal et al. 
[108] reported that mouse spleen and bone marrow con-
tained suppressive B-type cells which were able to inhibit 
the activation and differentiation of T and B lymphocytes 
through their secreted mediators. The activity of suppres-
sor B cells was significantly increased with aging, and the 
cells were able to induce the age-related immunosenescence. 
After these ground-breaking observations, it took 30 years 
before many studies revealed that there was a significant 
age-related increase in the number of Tregs in the circula-
tion of both humans [109, 110] and mice [111]. Accordingly, 
the number of MDSCs increased with aging in the blood of 
humans [112] and mice [113]. Currently, there are only a 
few studies which have focused on the alterations occurring 
in immunosuppressive cells within tissues during the aging 
process. For instance, with aging, there was an increased 
presence of immunosuppressive M2 macrophages in the 
mouse bone marrow, spleen, lungs, and skeletal muscles 
[114, 115]. Accordingly, it is known that the level of Tregs 
was upregulated with aging in mouse skin [116] and adipose 
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tissues [117]. Ruhland et al. [118] demonstrated that the skin 
of elderly humans contained not only an increased number 
of senescent, INK4a-positive cells but that there was also a 
robust upregulation of immunosuppressive MDSCs. They 
also revealed that the experimentally induced senescence of 
stromal cells in the mouse skin provoked local inflammation 
and subsequently enhanced the expansion of MDSCs and 
Tregs. These studies clearly indicate that chronic inflamma-
tion can induce a counteracting activation of immunosup-
pressive network within tissues.

Immature MDSCs are enhancers 
of immunosenescence

MDSCs are a heterogeneous population of immature mye-
loid cells which originate from the common myeloid pro-
genitor cells in the bone marrow [10]. Many pathological 
processes disturb myelopoiesis, increasing the generation 
of immature myeloid cells (IMC) which can become dif-
ferentiated into MDSCs. Inflammatory mediators, such as 
colony stimulating factors (CSF) and many chemokines, 
impair the maturation of MDSCs into macrophages, granu-
locytes, or dendritic cells. There is significant plasticity in 
the production of MDSCs and subsequently in their differ-
entiation into the other myeloid cells [10, 119]. Basically, 
there are two types of MDSCs, i.e., M-MDSC and PMN-
MDSC populations, which possess impressive immunosup-
pressive properties against different sets of immune cells. 
For instance, MDSCs are the potent inhibitors of the prolif-
eration of T cells; this effect is mediated through the secre-
tion of IL-6, IL10, and TGF-β cytokines as well as ROS 
and RNS compounds [120]. Nagaraj et al. [102] revealed 
that mouse MDSCs robustly released ROS compounds and 
nitric oxide (NO) forming peroxynitrite which nitrated the 
tyrosine residues of the TCR receptor. This process impaired 
the recognition of antigens, inhibited the signaling by TCRs 
inducing T cell tolerance which is a typical characteristic of 
immunosenescent T cells (Fig. 2). Kennedy and Knight [29] 
reported that mouse MDSCs inhibited the lymphopoiesis of 
B cells in bone marrow cultures. MDSCs also reduced the 
proliferation, homing, and antibody production of mature 
human B cells [121]. The suppression of B cells was medi-
ated through the secretion of TGF-β, IL-10, and PGE2 by 
MDSCs. In contrast, MDSCs stimulated the expansion and 
activity of immunosuppressive Tregs [122] and Bregs [123]. 
This indicates that MDSCs have opposite effects on T and B 
cell populations in inflammatory conditions; they can either 
augment the immunosuppressive properties of Tregs and 
Bregs or suppress the immune activities of effector T and B 
cells evoking immunosenescent phenotypes.

It is known that MDSCs can also induce clear changes in 
the phenotypes of DCs, NK cells, and macrophages which 
resemble those present in the immunosenescent state [24] 

(Fig. 2). For instance, Poschke et al. [124] demonstrated 
that human M-MDSCs impaired the maturation of DCs, 
disturbed their ability to take up antigens, and inhibited 
the IFNγ production by human T cells. Hu et  al. [125] 
also observed that mouse MDSCs actively secreted IL-10 
cytokines which downregulated IL-12 production from 
DCs, thus suppressing their capacity to stimulate the func-
tions of T cells. MDSCs are also potent suppressors of the 
cytotoxic functions of NK cells. For instance, Hoecht et al. 
[126] reported that the M-MDSCs, isolated from human 
hepatocellular carcinoma, suppressed the cytotoxicity of 
autologous NK cells and inhibited the secretion of cytokines. 
The suppression of NK cells disturbed the defense not only 
against tumors but also against viral infections [127]. Moreo-
ver, MDSCs are potent inhibitors of the immune surveillance 
performed by NK and CD8 T cells (see below). In inflam-
matory conditions, there exists a close interaction between 
MDSCs and tissue macrophages [128]. For instance, Nguyen 
et al. [129] demonstrated that during an infection in the 
mouse peritoneum, IL-10 induced the differentiation of 
blood monocytes into the MHCIIlow macrophages possessing 
an elevated capacity to phagocytose apoptotic cells, whereas 
they were unable to present antigens to T cells. Given the 
abundant plasticity of tissue macrophages, Stout and Suttles 
[39] suggested that the immunosenescence of macrophages 
would be controlled by the changes in the extracellular 
matrix and immune cells present in aged tissues.

Tregs induce T cell senescence

As discussed above, there is an opposite effect in the sub-
types of T cells with aging, i.e., the number of naïve T cells 
declines extensively, whereas that of Tregs increases. There 
are several studies indicating that the members of the immu-
nosuppressive network can convert T cells into immunosup-
pressive Tregs [91, 122]. The conversion of naïve and effer-
ent T cells into the regulatory phenotype of T cells (Tregs) 
can be evoked by IL-10 and TGF-β cytokines which increase 
the expression of FoxP3, a master gene of Tregs. Conversely, 
Tregs are able to induce the senescent phenotype of T cells 
[12, 13]. For instance, Ye et  al. [12] demonstrated that 
human Treg cells induced the senescent phenotype of both 
naïve and effector T cells. The senescent state was induced 
through the p38 and ERK1/2 signaling pathways which 
increased the expression of p16, p21, and p53, i.e., the cell-
cycle inhibitors which are common markers of senescent 
cells. Senescent T cells displayed a strong downregulation 
in the expression of costimulatory CD27 and CD28 proteins, 
whereas the secretion of pro-inflammatory factors, such as 
IL-6 and TNF-α, was enhanced indicating the presence of 
the SASP state. Surprisingly, senescent T cells showed an 
upregulation in the secretion of anti-inflammatory IL-10 
and TGF-β cytokines which implies that senescent T cells 

1560 Journal of Molecular Medicine (2021) 99:1553–1569



1 3

are able to expand immunosenescence within tissues. Sub-
sequently, Liu et al. [13] reported that human senescent T 
cells did not display the phenotype of exhausted T cells, and 
moreover, senescent T cells were different from the anergic 
T cells. They also revealed that the STAT1 and STAT3 sign-
aling pathways were involved in the senescence process of 
T cells. In addition to the CD4+CD25+ Tregs, also human 
γδ Tregs were able to suppress the functions of naïve and 
effector T cells [130]. It seems that Tregs enhance not only 
the immunosenescence of T cells but also that of NK cells 
[131, 132].

Immunosuppression prevents the immune 
surveillance by NK and CD8+ T cells

NK and CD8+ T cells are the major immune cells which 
perform immune surveillance within tissues and eliminate 
dysfunctional and injured cells. It is known that cytotoxic 
NK and CD8+ T cells recognize senescent cells and induce 
their death and clearance from tissues [32, 133]. However, 
the immunosenescence of NK and CD8+ T cells impairs 
the surveillance process and thus allowing the accumula-
tion of senescent cells, both immune and non-immune 
cells, within tissues during the aging process [33]. There 
is substantial evidence that immunosuppressive cells, espe-
cially M-MDSCs and Tregs, inhibit the immunosurveil-
lance capacity and cytotoxic activity of NK and CD8+ T 
cells [126, 131, 132]. To suppress the cytotoxicity of NK 
and CD8+ T cells, MDSCs and Tregs release soluble fac-
tors, such as NO, adenosine, and IDO. They can also form 
the contact-dependent interaction with NK cells through 
the membrane-bound TGF-β and the activating NKp30 
receptors [126, 132, 134]. For instance, Li et al. [134] dem-
onstrated that mouse MDSCs inhibited the expression of 
NKG2D receptors and the cytotoxic activity of NK cells 
through their membrane-bound TGF-β1 proteins. It seems 
that MDSCs inhibit the function of NK cells through the 
blocking of NKp30 (NCR3) and NKG2D receptors, two 
killer receptors present in NK cells. Tregs also inhibit the 
function of NK cells via the TGF-β/NKG2D complex [132]. 
Thus, it seems that the MDSC/Treg-induced immunosenes-
cence of NK cells impairs the clearance of senescent cells, 
tumor cells, and many pathogens with aging as well as in 
inflammatory conditions.

Signaling mechanisms involved 
in immunosuppression‑induced 
immunosenescence

When examining the characteristics of the senescent state of 
non-immune (called here cellular senescence) and immune 
(immunosenescence) cells (Table 1), it seems that similar 

mechanisms exist in the regulation of senescence, although 
there might be some immune-specific mechanisms. There is 
more research data from the mechanisms leading to cellular 
senescence than that available about immunosenescence. It 
is known that cellular senescence is commonly associated 
with extrinsic and intrinsic damages, whereas the plasticity 
of immune cells might affect the senescence of immune cells. 
The arrest of the cell-cycle is the major phenotype of both 
cellular senescence and immunosenescence which is attrib-
uted to the activation of cyclin-dependent kinase inhibitors 
(CDKI), e.g., p16, p21, and p53 (Table 1). There are multiple 
insults which can arrest the cell-cycle, such as DNA dam-
age, amino acid deficiency, and many soluble factors. For 
instance, TGF-β is a potent inhibitor of cellular proliferation 
and an inducer of cellular senescence [30, 100]. Delisle et al. 
[135] demonstrated that TGF-β activated Smad3 signaling 
in mouse CD4+ T cells and inhibited the responses mediated 
through the CD28-dependent signaling, e.g., the growth and 
proliferation of T cells. Accordingly, Tiemessen et al. [136] 
revealed that TGF-β administration inhibited the cell cycle 
progression of human antigen-specific CD4+ T cells. Inter-
estingly, TGF-β did not affect the production of cytokines 
indicating that the regulation of cell cycle arrest and the pro-
inflammatory SASP are separated. Viel et al. [137] reported 
that TGF-β repressed the activity of mTOR in human NK 
cells, inhibiting their proliferation and reducing their cytotox-
icity. It is known that Smad3 signaling stimulates the expres-
sion of CDKIs and subsequently prevents cell proliferation 
and induces cellular senescence [100].

There is convincing evidence that p38 mitogen-activated 
protein kinase (p38MAPK) has a crucial role in the generation 
of cellular senescence and immunosenescence [69, 138, 139]. 
A diverse set of insults associated with immunosuppression, 
e.g., TGF-β and IL-10 as well as oxidative (ROS/RNS) and 
endoplasmic reticulum (ER) stresses, can activate p38MAPK 
signaling which in downstream activates several protein 
kinases, transcription factors, and other regulatory proteins. For 
instance, p38MAPK is an important Smad-independent target 
of TGF-β signaling [140]. The activation of p38MAPK has 
been linked to cell-cycle arrest, DNA damage, telomere short-
ening, SASP induction, and autophagy inhibition in senescent 
immune cells [69, 139, 141, 142], all of which are hallmarks 
of immunosenescence (Table 1). Interestingly, Ding et al. 
[143] reported that the post-traumatic (trauma/hemorrhage) 
immunosuppression impaired mouse lung immunity against 
pneumococcal pneumonia. They revealed that an increase in 
the activity of p38MAPK reduced the phagocytosis of lung 
macrophages and impaired the killing of Streptococcus pneu-
moniae in post-traumatic mice. The exposure with p38MAPK 
inhibitor prevented these immune disturbances and improved 
mouse survival. Accordingly, Lanna et al. [142] demonstrated 
that sestrins, p53-inducible stress-sensing proteins, were able 
to bind to ERK, JNK, and p38MAPK enzymes and to establish 
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the formation of a sestrin-MAPK activation complex (sMAC) 
in mouse and human T cells. The expression of sestrins dis-
played a tenfold increase in CD4+ T cells of elderly subjects as 
compared to younger individuals. The formation of the sMAC 
complexes was also significantly increased in human T cells 
with aging. They reported that the activation of sMAC kinases 
promoted T cell senescence, but each of the MAPKs controlled 
unique properties of senescence, e.g., p38MAPK inhibited tel-
omerase activity and evoked telomere shortening. In addition 
to telomerase inhibition, Lanna et al. [139] reported that the 
activation of p38MAPK also inhibited human T cell prolifera-
tion, induced DNA damages, and disturbed the function of the 
TCR signalosome.

The TGF-β signaling pathways as well as the activation 
of p38MAPK are also important inducers of the SASP state 
which is associated with cellular senescence and immu-
nosenescence [69, 72, 144]. Signaling through both TGF-β 
and p38MAPK can activate the nuclear factor-κB (NF-κB) 
system which is the major inducer of the genes involved 
in the SASP secretome [72]. Freund et al. [144] reported 
that p38MAPK regulated the pro-inflammatory SASP 
secretome via the activation of NF-κB signaling in human 
fibroblasts. Accordingly, Callender et al. [69] demonstrated 
that the activation of p38MAPK induced the SASP state in 
human senescent CD8+ T cells. Wang et al. [55] reported 
that LPS treatment for 24 h of mouse macrophages and 
human peripheral blood mononuclear cells (PBMC) evoked 
a senescent state through the NF-κB-induced activation of 
bromodomain-containing protein 4 (BRD4), an epigenetic 
regulator of gene transactivation. Senescent macrophages 
displayed a clear SASP state, and moreover, they showed an 
increased lipid uptake, a process associated with atheroscle-
rosis. The inhibition of BRD4 prevented the senescence of 
mouse macrophages and lipid accumulation into senescent 
macrophages. It does seem that immunosenescence is under 
epigenetic regulation (see below).

Amino acid catabolism is a potent immunosuppressive 
mechanism since many effector immune cells are auxotropic 
and thus are unable to synthesize several amino acids, e.g., 
L-arginine and tryptophan [145]. Immunosuppressive cells 
express and secrete ARG1 and IDO enzymes which diminish 
the amounts of L-arginine and tryptophan, respectively, from 
the inflammatory microenvironment. The shortage of amino 
acids stimulates the expression of general control nonderepress-
ible 2 (GCN2), a stress-kinase which activates eIF2α kinase 
and ATF4 transcription factor [146]. Subsequently, eIF2α and 
ATF4 inhibit protein synthesis and the proliferation of immune 
cells in inflammatory sites. It is known that a deficiency of 
amino acids not only inhibits the proliferation of T cells, but 
it also interferes with their TCR and co-stimulatory mecha-
nisms and consequently can induce the anergy of T cells [147]. 
IDO catabolizes tryptophan into kynurenine and a number of 
other active metabolites. The kynurenine pathway is a powerful 

immunoregulation mechanism, i.e., it inhibits the functions of 
T and NK cells, whereas it activates Tregs and MDSCs [148, 
149]. For instance, the kynurenine pathway induced the exhaus-
tion of human CD4+ T cells [150] and provoked the selective 
apoptosis of mouse Th1 cells [151]. Della Chiesa et al. [152] 
demonstrated that kynurenine exposure impaired the expression 
of the activating NKp30 and NKG2D receptors of human NK 
cells. NKp30 and NKG2D receptors are important immune sur-
veillance receptors, and thus kynurenine inhibited the immune 
recognition and clearance process performed by NK cells.

Interestingly, Mezrich et  al. [153] demonstrated that 
kynurenine activated the aryl hydrocarbon receptor (AhR) 
which induced the differentiation of mouse naïve T cells into 
the FoxP3-positive Tregs. They also reported that TGF-β 
upregulated the expression of AhR in mouse T cells and 
thus enhanced their immunosuppressive activity. Subse-
quently, there has been intensive research activity to reveal 
the role of the IDO/kynurenine/AhR axis in pathological 
processes. For instance, it was claimed that kynurenine 
inhibited autophagy and promoted cellular senescence in 
mouse mesenchymal stem cells through the AhR pathway 
[154]. The aging process is associated with an increase in the 
expression of IDO and the enhanced production of kynure-
nine [155]. In particular, the kynurenine pathway is activated 
in chronic inflammatory conditions, such as atherosclerosis 
[156]. It is known that the kynurenine-mediated activation 
of AhR is a strong stimulating signal for the generation of 
Tregs in mice, whereas the blockade of the activity of AhR 
restricted the immunosuppression induced by kynurenine 
[157]. Moreover, Neamah et al. [158] demonstrated that the  
activation of AhR with the environmental toxin 2,3,7,8- 
tetrachlorodibenzo-p-dioxin (TCDD) in mice induced a massive  
chemokine induction which promoted the mobilization of 
both M-MDSCs and PMN-MDSCs from the bone marrow to 
the peritoneal cavity. The TCDD-induced MDSCs robustly 
suppressed the activation of T cells and also reduced the 
inflammation after Con A-induced hepatitis. Although the 
expression of AhR is low in many subsets of lymphocytes, 
the activation of AhR was able to suppress the differentia-
tion of B cells and reduce their antibody production [159]. 
It seems that amino acid deprivation stimulates extensive 
immunosuppression through the activation of Tregs and 
MDSCs which subsequently suppress effector immune cells 
and provoke immunosenescence through the secretion of 
anti-inflammatory cytokines.

Immunosuppressive factors are epigenetic 
masters of immunosenescent state

There is substantial evidence that epigenetic mechanisms 
control the cell lineage commitments and subsequently 
cell-type specific differentiation and maturation processes 
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[160]. However, the chromatin landscape of mature cells 
can be reprogrammed into different cellular phenotypes; 
especially, immune cells display a significant plasticity 
which is dependent on epigenetic remodelling [161]. There 
are several studies indicating that aging processes as well 
as the cellular senescence state are associated with robust 
changes in the chromatin landscape and transcription sig-
nature [162, 163]. It is known that epigenetic mechanisms 
are involved in the generation of both chronic inflammatory 
and the SASP states [164, 165]. The senescence-associated 
epigenetic changes in the chromatin landscape include (i) 
increased formation of heterochromatin domains (SAHF), 
(ii) global DNA hypomethylation concurrently with focal 
hypermethylation, (iii) repressive histone modifications, 
(iv) altered nucleosomal compositions, and (v) perturba-
tions of the contacts between nuclear lamina and chromatin 
structures [162]. For instance, Lyu et al. [166] reported that 
TGF-β signaling via Smad factors enhanced the accumula-
tion of miR-29a/c which suppressed the expression of Suv4-
20 h histone methyltransferase thus reducing the methylation 
of genomic H4K20 sites in human fibroblasts. This loss of 
H4K20 methylation disturbed the DNA repair processes and 
promoted cellular senescence and accelerated cardiac aging 
in mice.

The mechanisms of epigenetic regulation of immunose-
nescence are still not as broadly understood as those of cel-
lular senescence. However, the major signaling pathways 
inducing immunosenescence involve the TGF-β/SMAD 
and the IL-10/STAT3 pathways which are known to control 
the activity of several important epigenetic regulators, e.g., 
DNA methyltransferases and histone demethylases [164, 
167]. In addition, the expression of TGF-β1, IL-10, AhR, 
and IDO1 genes are the subject of complex epigenetic regu-
lation [168–171]. Epigenetic mechanisms also regulate the 
activity of the immunosuppressive network, e.g., by control-
ling the expression of FoxP3 gene, the master gene of Tregs 
[172]. In addition, TGF-β exposure was reported to reduce 
the immune surveillance activity of mouse and human NK 
cells via epigenetic regulation [98]. By exploiting omics 
techniques, Zhao et al. [173] demonstrated that there are 
significant changes in the transcriptomes, miRNAomes, and 
DNA methylomes of human CD4+ T cells during the aging 
process. Their results indicated that the expression levels of 
many age- and immune-related genes were under the regu-
lation of DNA methylation. Moreover, Sidler et al. [174] 
reported that the aging process evoked significant changes 
in epigenetic regulation and gene expression in rat thy-
mus and spleen which could induce thymic involution and 
peripheral immunosenescence. The epigenetic hallmarks of 
T cell aging include a global decrease in DNA methylation, 
whereas there is an increase in the number of heterogeneous 
loci of methylated CpG [175]. These scattered DNA meth-
ylation sites have been assessed as an epigenetic clock which 

can be used to evaluate the difference between the epigenetic 
age and the chronological age [176]. Many inflammatory 
diseases associated with increased immunosenescence, such 
as HIV infections, accelerate the epigenetic clock [177].

Future perspectives: to rejuvenate 
or to prevent immunosuppression?

Currently, there is intense research activity attempting to 
understand whether it is possible to rejuvenate senescent 
cells or even cleanse them via senolysis from aged tissues. 
A plethora of mechanisms have been proposed as ways to 
inhibit age-related senescence and thus delay the aging pro-
cess [163, 178, 179]. It seems that the prevention of those 
signaling pathways leading to the senescent state or the 
reprogramming of the epigenetic landscape might main-
tain the efficiency of the immune system with aging and 
pathological conditions. There are several experimental 
studies indicating that the blockage of the distinct signal-
ing pathways associated with immunosenescence would be 
able to alleviate the immune deficiency, e.g., the inhibition 
of p38MAPK signaling [180], the inhibition of phospho-
inositide 3-kinase activity [181], and the downregulation 
of inhibitory SHP-1 phosphatase [182]. Moreover, many 
experimental approaches have been exploited to attempt 
to rejuvenate immunosenescent T cells in elderly individu-
als, e.g., through the administration of certain interleukins, 
growth factors, checkpoint inhibitors, and diets as well as 
exposure to extracellular vesicles obtained from the serum 
of young donors [183, 184]. Moreover, Keren et al. [185] 
demonstrated that the depletion of B cells from old mice 
stimulated B cell lymphopoiesis in their bone marrow and 
rejuvenated the peripheral B cell lineage. More recently, 
some attempts have been made to turn epigenetic clocks 
backwards in immunosenescent cells [186]. For instance, the 
inhibition of the bromodomain protein BRD4 with JQ-1 and 
I-BET762 prevented the LPS-induced senescence of human 
THP-1 macrophages [55]. This treatment downregulated the 
expression of p16, p21, and p53, reduced the number of 
SA-β-gal-positive cells, and inhibited the secretion of SASP 
cytokines and chemokines. However, there are a number of 
challenges to be overcome, e.g., in the targeting and safety 
of these drugs before epidrugs can be used in epigenetic 
therapy.

Given that increased immunosuppression evokes immu-
nosenescence, it seems pointless to rejuvenate immunose-
nescent cells with aging and in many inflammatory patho-
logical conditions, since the enhanced immunosuppressive 
armament will prevent a permanent rejuvenation. The most 
reasonable therapeutic target would seem to be immuno-
suppressive cells, especially MDSCs and Tregs, which are 
able to support immunosuppression. It is known that immu-
nosuppression is a major problem in cancer biology, thus 
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different strategies have been exploited in attempts to inhibit 
the activities of MDSCs and Tregs as ways to improve the 
efficacy of immunotherapy [187, 188]. For instance, the 
immunosuppressive functions of MDSCs have been inhib-
ited by (i) normalizing their production in myelopoiesis, 
(ii) promoting their maturation to effector immune cells, 
(iii) reducing their trafficking and expansion, (iv) inhibiting 
their immunosuppressive activities, and (v) depleting their 
presence in tumors. There are several pharmacological com-
pounds which have been demonstrated to inhibit the immu-
nosuppressive activity of MDSCs, e.g., many phytochemi-
cals suppress the activity of MDSCs [189]. Interestingly, 
the agonists binding to TLR7 and TLR8, e.g., resiquimod, 
promote the differentiation of MDSCs into macrophages and 
dendritic cells [190]. Considering that Tregs maintain the 
immune tolerance of the body, their inhibition will demand 
more specific mechanisms in order to avoid the generation 
of autoimmune diseases. There are many approaches which 
could be employed to inhibit the functions of Tregs, e.g., (i) 
targeting their immune checkpoint receptors, (ii) skewing 
them towards anti-tumor T cell phenotypes, (iii) targeting 
specific Treg proteins, such as FoxP3, and (iv) inhibiting 
their metabolism [188]. Moreover, given that immunosup-
pressive cells generate adenosine, there are studies indicat-
ing that the inhibition of the adenosinergic pathway was able 
to rejuvenate innate and adaptive immunity in tumors [191]. 
Many anti-aging compounds, e.g., metformin, have been 
shown to inhibit the functions of MDSCs and Tregs [192, 
193]. Currently, it is not known whether these compounds 
will be able to prevent immunosenescence by inhibiting the 
immunosuppressive network.
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