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Abstract

Nanomedicine research is an active field that produces thousands of studies every year. However, 

translation of nanotherapeutics to the clinic has yet to catch up with such a vast output. In recent 

years, the need to better understand nanomedicines’ in vivo behavior has been identified as one 

of the major challenges for efficient clinical translation. In this context, non-invasive imaging 

offers attractive solutions to provide valuable information about nanomedicine biodistribution, 

pharmacokinetics, stability or therapeutic efficacy. Here, we review the latest imaging approaches 

employed in the development of therapeutic nanomedicines, discuss why these strategies bring 

added value along the translational pipeline, and give a perspective on future advances in the field.

1. Introduction

Nanomedicine, the application of nanotechnology to disease prevention and treatment, 

initially sparked great excitement as a promising avenue to improve drug delivery. Indeed, 

preclinical nanomedicine research is still a blooming field that produces thousands of studies 

every year. To date, however, the number of nanoformulations approved for clinical use 

is comparatively low [1,2]. Clinical nanomedicine applications are so far mostly limited 

to cancer, but promising preclinical studies indicate that its use in other scenarios like 

cardiovascular disease [3,4], organ transplantation [5] or autoimmune disorders [6] could 

be beneficial. These applications, which exploit nanoparticle formulations to modulate 

the immune system in a so-called nanoimmunotherapeutic fashion, are producing exciting 

results and instilling new vigor to the field.
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The paucity in nanomedicine translation can be attributed to a range of challenges, 

which include production scalability and regulatory issues, but mainly relate to deficient 

understanding of nanoformulations’ in vivo behavior and a lack of patient selection methods 

[1,7]. In this setting, the value of imaging is increasingly recognized at different steps 

along the nanomedicine development pathway as it can provide critical information in a 

non-invasive fashion. In this review, we discuss recent advances in the use of imaging 

strategies applied to therapeutic nanomedicine development over the past two years, and 

provide an outlook on the field’s future directions.

2. Imaging techniques

Imaging techniques like X-ray computed tomography (CT), magnetic resonance imaging 

(MRI) or positron emission tomography (PET) have revolutionized medical care. These 

techniques allow non-invasive in vivo visualization of anatomical structures and biological 

processes to diagnose and prognose disease. However, no standalone imaging technique 

is perfect, as all have their own strengths and weaknesses. While a detailed discussion 

about their limitations is out of the scope of this article, a brief summary of their 

features is included in Table 1. In the context of nanomedicine development, nuclear 

(PET and single-photon emission computed tomography [SPECT]), anatomical (MRI and 

CT), as well as optical imaging techniques (such as fluorescence molecular tomography 

[FMT], fluorescence imaging, or intravital microscopy) are the most widely used to study 

nanoformulations in vivo (and ex vivo). Given the limitations of standalone imaging 

techniques, a combination of two or more of them is increasingly preferred in order to 

attain optimal characterization. Typically, multimodal imaging combines two techniques that 

bring together complementary information, such as functional and anatomical data as in 

PET/CT or PET/MRI. Using hybrid scanners both acquisitions can be performed in a single 

session. However, multimodal imaging can also be approached asynchronously, by acquiring 

images at different times in different scanners.

3. Imaging applications in nanomedicine development

Therapeutic nanomedicine development can greatly benefit from the use of different 

imaging modalities. These nanomedicines may intrinsically contain contrast-generating or 

imaging agents, or may be modified to do so, which allows their in vivo tracking by the 

corresponding imaging technique. In this section, we summarize the most recent, innovative 

and relevant examples of imaging-based strategies applied to different aspects and stages of 

a nanoformulation’s development.

3.1 Evaluation of in vivo behavior.

One of the greatest challenges facing nanomedicine translation is the lack of understanding 

of their in vivo performance in terms of stability, pharmacokinetics, as well as tissue and 

cellular distribution. These features can be investigated using anatomical, nuclear and optical 

imaging methods. However, not all techniques are equally suited for the purpose. While 

CT, MRI and optical imaging have been used to track nanoparticles in vivo, only PET and 

SPECT can afford truly quantitative information [8]. Moreover, due to their high sensitivity, 

nuclear imaging techniques allow minimal modification of the nanomaterials to introduce 
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the required radioactive tag. On the other hand, nuclear imaging’s low spatial resolution 

limits its use to whole-body and tissue level distribution, leaving cellular (and subcellular) 

evaluation to optical imaging techniques.

3.1.1. Biodistribution and pharmacokinetics.—Nanotherapeutics with inorganic 

cores, such as iron oxide or gold, can be tracked in vivo by MRI [9-11] and CT 

[10,12,13], respectively. The generated contrast can be quantified to derive information 

about tissue distribution and clearance kinetics. On the other hand, nanomedicines labeled 

with fluorophores or carrying a fluorescent nanocrystal core can be visualized using 

fluorescence imaging methods [14,15]. While these optical methods have issues related 

to tissue absorption or penetration in vivo, this is an affordable semi-quantitative approach 

that can be further complemented by ex vivo microscopy. For example, a recent work used 

X-ray- and fluorescence-based imaging methods to study nanoparticle dynamics associated 

with different pulmonary delivery methods [16].

In recent years, however, the multimodal combination of highly sensitive and quantitative 

PET or SPECT with anatomical CT imaging is being increasingly favored for the assessment 

of nanomedicines’ biodistribution and pharmacokinetics [8]. With the advent of hybrid 

PET/MRI scanners, anatomical reference with high soft-tissue contrast is available for a 

more accurate localization of PET hot spots. Nuclear imaging approaches allow dynamic 

and longitudinal evaluation of a radiolabeled nanomedicine and in vivo comparison of its 

biodistribution in different species (Figure 1A) [3,4,17]. Importantly, the imaging results can 

be validated ex vivo by radioactivity counting in tissues of interest, and by autoradiography, 

which provides information about regional distribution in tissues with sub-millimeter 

resolution.

3.1.2. Targeting.—Non-invasive imaging can be used to assess the ability of 

nanotherapeutics to reach their targets, e.g. a tumor or inflammatory lesions, such as 

atherosclerotic plaques. Again, while MRI and CT can do this if a nanoformulation contains 

appropriate contrast-generating agents, PET and SPECT yield more accurate information 

due to their high sensitivity and truly quantitative nature. However, these techniques 

require auxiliary anatomical reference, typically in combination with CT. A more precise 

localization of accumulation spots can be achieved by combination with MRI due to this 

technique’s excellent soft tissue contrast. This is particularly critical for nanomedicines 

targeting small regions of interest such as the atherosclerotic vessel wall [18].

Imaging-based strategies additionally enable evaluation of the efficiency of delivery­

enhancing interventions. This is of great value in the development of nanodrugs that 

need to cross impassable biological barriers such as the blood-brain barrier (BBB). Two 

recent studies made use of FMT/CT [19] or MRI [20] in combination with other optical 

imaging methods to evaluate the effect of ultrasound-mediated permeation of the BBB on 

the accumulation of polymeric and liposomal nanoparticles. In both studies, the use of 

fluorophores allowed the authors to validate the in vivo imaging results using fluorescence 

microscopy ex vivo (Figure 1B). A similar approach was implemented to assess magnetic 

targeting of an iron oxide-gold core-shell photothermal nanotherapy formulation by MRI 

[9].
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Targeting evaluation at the cellular level, however, requires the use of optical imaging 

methods. Sofias et al. employed a combination of PET and intravital microscopy to 

investigate the fate of αvβ3-integrin targeted nanoformulations [21]. The information thus 

gathered revealed significant differences between targeted and untargeted nanoformulations 

at tissue level, and a new mechanism of nanoparticle accumulation via phagocyte 

“hitchhiking”. Importantly, the use of fluorescent labels allows further investigation of 

a nanomedicine’s fate at the cellular level by ex vivo fluorescence microscopy or 

fluorescence-activated cell sorting. This is particularly important in the development of 

nanoimmunotherapies that work by selectively targeting a given immune cell population 

[17].

3.1.3. Nanoformulation integrity.—Most nanomedicines are composite materials, 

typically made of a nanocarrier and a drug. Generally, their evaluation focuses on the 

nanocarrier, and it is assumed that the nanoconstruct remains stable over time after 

administration. However, early release of the cargo is an issue with most formulations, and 

this can be investigated by non-invasive imaging. SPECT, for instance, allows multiplexing 

by using two isotopes with different gamma photon emission energies, which can be 

used to label different components of a nanomedicine. This approach was adopted by 

Llop et al. to investigate the biodistribution and pharmacokinetics of a composite iron 

oxide-polymeric nanoformulation in vivo by SPECT [22]. A slightly different approach 

was followed by Lamichhane et al., who used 111In-labeled liposomes encapsulating a 
18F-labeled carboplatin derivative [23]. Analysis of the 111In signal by SPECT and 18F 

by PET using a multimodal preclinical PET/SPECT/CT system showed similar tissue 

distribution, suggesting a stable integration of both components. Analogous approaches 

can be implemented using optical methods, which also allow multiplexing , and more 

specifically exploiting Förster resonance energy transfer [24,25]. We anticipate these 

multiplexing strategies to gain traction in early nanomedicine evaluation as they can provide 

critical information about a nanoconstruct’s in vivo stability.

3.2. Imaging-guided therapy.

The use of imaging to improve therapeutic outcome in a personalized manner has become 

a feasible goal. These imaging-guided approaches rely on labeled nanomaterials to generate 

a trackable in vivo signal to detect –and quantify– their accumulation in tissues in a 

so-called theranostic fashion. Down the line, these strategies could evolve to enable 

patient selection and dose adjustment protocols. In recent years, numerous studies have 

reported on inorganic core nanoparticles with intrinsic contrast-generating or imaging 

properties engineered for therapeutic purposes. Wang et al., for instance, developed a 

polymeric nanocapsule containing iron-based magnetic nanocrystals, indocyanine green and 

doxorubicin for imaging-guided dual photodynamic and chemodynamic therapy [26]. The 

magnetic and fluorescent properties were exploited for thorough characterization of the 

nanocapsules’ in vivo tumor accumulation by MRI and fluorescence imaging, respectively, 

whereas thermal infrared imaging was used to monitor photodynamic therapy [26]. Jing 

et al. pursued an analogous strategy using a composite nanomaterial containing Fe3O4 

superparamagnetic nanoclusters, MnO2 nanosheets, the anticancer drug curcumin and the 
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photosensitizer chlorin e6 for dual chemotherapy and photodynamic therapy guided by MRI 

and fluorescence imaging [11].

Indeed, nanoparticles for photothermal or photodynamic therapy have intrinsic imaging 

capabilities, and this feature is exploited for guiding treatment [12,27-30]. Moreover, these 

nanoformulations are frequently engineered to incorporate MRI [9,31-33] and/or CT [32-35] 

contrast agents in order to visualize their distribution at the whole-body level. For instance, 

Sharma et al. developed gold nanorods for imaging-guided photothermal therapy, reliant 

upon the MRI, X-ray, and optical imaging properties of the nanomaterial [36] Another such 

example is the combination of bismuth nanoparticles with up-converting nanophosphors 

in core-shell multimodal nanoparticles for CT and up-conversion luminescence imaging­

guided photothermal therapy [37]. In a similar fashion, a photothermal nanotherapeutic 

that activates its imaging and therapeutic features in the presence of tumor-overexpressed 

β-gallactosidase was recently reported [38]. The combination of anatomical imaging 

contrast agents and fluorophores has another interesting oncological application. Firstly, 

the nanomaterials can be located at whole-body level using the anatomical technique 

and subsequently used for precise tumor resection using fluorescence guidance. Yang et 
al. report on an α-lactalbumin-stabilized ultra-small gold quantum cluster with intrinsic 

detectability by near-infrared fluorescence imaging, CT and MRI, and therapeutic activity 

through inhibition of the MAPK and PI3K–AKT pathways. The authors prove that the 

nanomaterial is renally cleared due to its small size and can be used for intraoperative 

surgical imaging (Figure 1C) [39].

3.3 Treatment monitoring.

Finally, non-invasive imaging can be used to evaluate the therapeutic efficacy of a 

nanomedicine. This approach allows direct investigation of the formulation’s therapeutic 

effect as well as its mechanism of action. For instance, we implemented one such strategy 

to translate a statin-loaded nanobiologic for the treatment of atherosclerosis from mice to 

large animals. Using a multimodal imaging approach to longitudinally monitor treatment 

in rabbits and pigs, combining PET- and MRI-based readouts, we were able to assess 

the anti-inflammatory effect of the nanobiologic formulation using restricted group sizes 

[3]. Similarly, the effect of a trained-immunity promoting nanobiologic was imaged by 

both 18F-fluorodeoxyglucose (18F-FDG) PET, to measure metabolic activation in the bone 

marrow, and by immunoPET using a CD11b-targeted nanobody to quantify the expected 

increased myelopoiesis (Figure 1D) [17]. In clinical trials, imaging-based readouts could be 

included to directly assess treatment response [40], potentially eliminating the need for large 

patient cohorts and long follow-up periods, as well as the associated high costs.

4. Perspective and conclusion

Non-invasive imaging strategies like the ones summarized here can be integrated 

into nanoformulation screening procedures to speed up early-stage development. 

Formulation libraries can be generated and thoroughly characterized for biodistribution, 

pharmacokinetics, targeting or cell specificity using complementary imaging techniques 

as discussed above [17,41,42]. The wealth of imaging data generated in these screenings 
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demands high-throughput analyses, which will greatly benefit from integration of artificial 

intelligence (AI) into the development pipeline [43,44]. Furthermore, mathematical 

modelling of these data can greatly help to understand the nanomaterial’s in vivo 
performance as well as biological aspects influencing its behavior [45,46]. Thus, those 

formulations with poor in vivo behavior can be easily identified and discarded before further 

evaluation and waste of resources.

On the other hand, the excessive reliance on mouse studies has been traditionally blamed 

for the limited translational success of nanomedicine. This is partly due to a comparatively 

low number of available large animal models of disease, although in recent years there 

has been increasing interest in the development of this type of valuable research tools 

[47,48]. In this context, we envision that large animal studies will be increasingly relevant. 

Choosing multiple robust non-invasive imaging readouts to longitudinally evaluate a 

nanoformulation’s efficacy in these translational studies allows the use of a limited number 

of animals [3]. This approach generates large amounts of data on independent markers of 

therapeutic efficacy and exploits the statistical power of longitudinal assessments, thereby 

increasing the likelihood of finding a statistically significant and biologically relevant effect.

One key challenge in nanomedicine translation remains the identification of patients that 

would benefit most from a nanotherapeutic intervention. In most cases, inter- and intra­

patient disease heterogeneity is difficult to assess by common testing and therefore non­

invasive imaging can greatly aid in this process [49]. Development of imaging-based patient 

selection protocols to homogenize cohorts in clinical trials would de-risk nanomedicine 

translation to the clinic by increasing the likelihood of detecting a response in amenable 

subjects. While most theranostic approaches have seemingly very little translational 

potential, simpler surrogate “nanoreporter” PET imaging [50,51], or analogous strategies 

using MRI [52], have yielded promising results. Ultimately, these patient selection protocols 

would be performed not just in trials but also in the clinic before the start of treatment, 

where they could additionally help to tailor the therapeutic regimen in an intrinsically 

personalized manner.

In conclusion, non-invasive imaging is being increasingly integrated at different stages of 

the nanomedicine development pipeline. We believe that the discussed strategies provide 

extremely valuable in vivo data and could at last help to bridge the translational gap between 

bench and bedside.
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Figure 1. Non-invasive imaging applications in nanomedicine development.
A) Biodistribution and pharmacokinetics. The tissue distribution and clearance kinetics 

of a TRAF6 inhibitor-loaded nanobiologic was evaluated in non-human primates by PET/

MRI. The formulation was radiolabeled with 89Zr and monitored dynamically for the 

first hour after administration (top left). Quantitative data could be derived from selected 

tissues (top right). Subsequently, static scans were performed at 24, 48 and 72 hours 

post injection (bottom). Adapted from Lameijer et al. [4]. B) Targeting efficiency. A 

sonoporation treatment to enhance delivery across the BBB was evaluated by in vivo 
FMT/CT imaging using fluorophore-labeled nanoparticles. A significant increase in the 

florescent signal was measured 24 hours post-administration in treated animals compared 

to controls (top right). The results were corroborated ex vivo by fluorescence reflectance 

imaging of explanted brains (bottom right). Adapted from May et al. [19]. C) Imaging­

guided therapy. An ultra-small gold quantum cluster nanoparticle (AuQC705), detectable 

by near-infrared fluorescence, CT and MRI, was successfully employed to guide tumor 

resection by fluorescence imaging using a portable smartphone imaging system prototype. 

Adapted from Yang et al. [39]. D) Treatment monitoring. Non-invasive imaging can be 

used to monitor nanomedicine treatment efficacy and its underlying mechanisms of action. 

A trained-immunity promoting nanobiologic (MTP10-HDL) was developed as a novel 

anticancer therapy. Its effects on immune response activation were monitored by PET 

imaging of metabolic activation in the bone marrow using 18F-FDG (FDG-PET, left) and 

myelopoiesis in bone marrow and spleen using a radiolabeled nanobody (CD11b immuno­

PET, right). Adapted from Priem at al. [17].
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Figure 2. Integration of imaging along the translational pipeline.
Non-invasive imaging can be integrated at different stages of a nanoformulation’s 

development. At the early stages, imaging-based screening of promising candidates can 

be performed to elucidate their in vivo behavior in terms of biodistribution (BioD), 

pharmacokinetics (PK), targeting or stability. In addition to assessing in vivo behavior, 

translational studies in large animal models can benefit from the integration of non-invasive 

imaging to longitudinally investigate treatment response using limited group sizes. Finally, 

in the clinic, imaging-based protocols can aid in selecting amenable patients, guiding 

therapy and monitoring response. At all stages, AI-based image analyses will be of 

paramount importance to generate quality data and facilitate mathematical modelling in 

order to understand and possibly predict nanomedicines’ performance.
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Table 1.

Features, advantages and disadvantages, and examples of imaging agents of techniques commonly used in the 

context of nanomedicine development [8,53,54].

Technique Imaging
agent

Spatial
resolution Sensitivity Penetration

in tissue Advantages Disadvantages

Anatomical

CT Au, Iodine <0.2 mm [P]
0.5–1 mm [C] mM No limit Fast; high spatial 

resolution
Ionizing radiation; low 
contrast sensitivity

MRI Iron oxide, Gd, Mn <0.1 mm [P]
1–2 mm [C] μM-mM No limit

High spatial 
resolution; soft 
tissue contrast

Low contrast 
sensitivity; time­
consuming

Nuclear

PET
18F, 64Cu, 68Ga, 
89Zr

1–2 mm [P]
6–10 mm [C] fM No limit

High sensitivity; 
quantitative

Ionizing radiation; 
expensive; limited 
spatial resolution

SPECT
99mTc, 111In, 123I, 
125I

0.5–2 mm [P]
7–15 mm [C] <pM No limit

Optical

FI Fluorophores, 
quantum dots 1–5 mm [P] nM mm-cm

High sensitivity; 
multiplexing; 
inexpensive

Low penetration depth

FMT Fluorophores, 
quantum dots <1 mm [P] pM cm High sensitivity Signal attenuation; 

limited penetration

IVM Fluorophores, 
quantum dots

<1 μm [P]
1 μm [C] <nM <mm

Cell-level 
resolution; real time 
imaging

Complex setup; limited 
field of view

[P]: preclinical; [C]: clinical; FI: fluorescence imaging; FMT: fluorescence molecular tomography; IVM: intravital microscopy.
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