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Abstract

Access to metabolic information in vivo using magnetic resonance (MR) technologies has 

generally been the niche of MR spectroscopy (MRS) and spectroscopic imaging (MRSI). 

Metabolic fluxes can be studied using infusion of substrates labeled with magnetic isotopes, with 

the use of hyperpolarization especially powerful. Unfortunately, these promising methods are not 

yet accepted clinically, where fast, simple, and reliable measurement and diagnosis are key. Recent 

advances in functional MRI and chemical exchange saturation transfer (CEST) MRI allow the use 

of water imaging to study oxygen metabolism and tissue metabolite levels. These, together with 

the use novel data analysis approaches such as machine learning, for all of these metabolic MR 

approaches, are increasing the likelihood of their clinical translation.

Introduction

Magnetic Resonance has a multitude of approaches for assessing molecular information in 
vivo. Until recently, the study of metabolism has been the niche of MRS or MRSI, both 

homonuclear and heteronuclear [1]. However, this has expanded to functional MRI and 

especially CEST MRI methods that indirectly assess molecular information through imaging 

of the water signal. In the following we briefly summarize recent advances in metabolic MR 

using MRS and MRI.
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1. Proton MRS and MRSI

While MRS is viewed by many as a mature technique, in fact over the last two years there 

have been substantial new developments, many of which have important implications for 

clinical application of this methodology. The main focus for clinical MRS is in the area of 

brain tumors, and in particular diagnosis of isocitrate dehydrogenase (IDH) mutation status 

using measurements of 2-hydroxyglutarate (2HG). Recently it has also been demonstrated 

that spectral editing could be used to measure cystathionine as well as 2HG, which gave 

information on 1p19q chromosome deletion as well as IDH status [2], opening up the 

possibility for accurate presurgical molecular tumor diagnosis. Brain tumors are known to 

often be very spatially inhomogeneous, from the viewpoint of both pathophysiology and 

metabolism, and it is therefore important to measure the distribution of metabolites within 

the tumor and surrounding brain. For mapping of multiple brain metabolites at relatively 

high spatial resolution, recent developments using MRSI at 7 T have also been demonstrated 

[3]. This technology could have multiple clinical applications, but a particularly promising 

one is the use of total choline (tCho) maps (or maps of the tCho/N-acetylaspartate ratio) 

to guide radiotherapy [4]. Preliminary results of this approach in high grade glioma with 

localized dose-escalation have given promising results (Dr H. Shim, Emory University, 

personal communication).

In the past, many MRS or MRSI studies have been hampered to some degree by variable 

technical quality or disparate technical approaches. Over the last 2 years there has been a 

substantial effort to reach consensus on optimal techniques that should be used for human 

MRS studies, both in terms of data acquisition and analysis. The result of this effort has 

been a series of technical consensus articles that have been published in the last year 

[5–9]. A second area of substantial and recent development is the application of deep 

learning (DL) to the analysis of MRS data. Given the particular strength of DL in extracting 

information from data with low signal-to-noise ratio (SNR), this is expected to remain a 

growth area. Applications of DL to MRS lag behind MRI somewhat, with the translation of 

DL-MRI approaches to the imaging domain of MRSI one immediately accessible area. For 

example, a densely connected U-Net that uses additional information from high-resolution 

T1-weighted MR images was shown to be able to generate ‘super-resolution’ metabolic 

images [10]. In the spectral dimension, DL approaches have been used for post-processing 

steps including artifact identification and removal [11], accelerated spectral fitting [12], 

shot-to-shot frequency and phase correction [13], and replacement of Fourier transformation 

for truncated FIDs [14]. MRS quantification amounts to extracting the concentration of a 

small number of metabolites from a large number of spectral data points, a task that should 

be amenable to DL; significant recent progress has been made in this area, including the 

use of truncated MRS data (Fig. 1, [15]). An additional potential of DL lies in combining 

disparate information from different imaging modalities, for example, combining voxel­

based morphometry analysis of structural MRI with MRS data to enhance the independent 

diagnostic power of each modality [16].
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2. Heteronuclear MRS and MRSI

2.1: Hyperpolarized MR

While 1H MRS is known to provide metabolite levels, the study of metabolic fluxes has 

relied on the infusion of substrates labeled with non-radioactive magnetic isotopes such as 
13C, but these have even less sensitivity to detection due to their lower gyromagnetic ratio. 

The advance to human imaging and possible clinical relevance has come from performing 

metabolic imaging with injected hyperpolarized 13C-labelled substrates, where a more than 

10,000 gain in sensitivity has enabled 13C MRSI of these substrates and their downstream 

metabolites. After a decade of preclinical research with a variety of isotopically labelled and 

hyperpolarized cell substrates [17–20], [1-13C]pyruvate has emerged as the most promising 

and widely used substrate. This is because it can be polarized to high levels (>60% at 

7T), the 13C nucleus has a relatively long T1 (~30 s in vivo), and it undergoes rapid 

cell uptake and subsequent metabolism leading to substantial formation of downstream 

metabolites (lactate and CO2/HCO3
−) within the short lifetime of the polarization (2–3 

minutes). Pyruvate, which is at the end of the glycolytic pathway, stands at a metabolic 

crossroads, where it can undergo reduction by NADH to produce lactate, in the reaction 

catalyzed by lactate dehydrogenase (LDH), or it can enter the mitochondria and be oxidized 

in the TCA cycle with the production of CO2. The relative labeling of lactate and CO2/

HCO3
− provides, therefore, an index of glycolytic versus TCA cycle activity. For example, 

in tumors, where there are often high levels of lactate and LDH activity, relatively high 

levels of lactate labelling are observed (Fig. 2), whereas in more aerobic tissues, such as 

heart and brain, there is increased CO2/HCO3
− labelling, which is decreased in ischemia.

The hyperpolarized [1-13C]pyruvate technology was translated to the clinic in 2013 with 

a study of metabolism in prostate cancer [21]. This substrate now stands on the threshold 

of wider clinical application with the publication of initial studies in brain [22,23] and 

heart [24,25] plus further studies of prostate cancer [26–30], brain [31–34], breast [35,36], 

pancreas [37] and kidney [38]. The important question now is how metabolic imaging 

with hyperpolarized [1-13C]pyruvate could change clinical practice? Early preclinical 

studies in cancer suggested that the technique could be used to provide early evidence 

of treatment response [39] and to determine tumor grade and disease progression [40] 

and some of the initial clinical studies support these ideas [26,27,29,31,36]. PET with 

2-Deoxy-2-[18F]fluoroglucose (FDG) is already established in the clinic as a method for 

detecting tumors and monitoring treatment response and therefore it is important to ask 

what advantage imaging with hyperpolarized [1-13C]pyruvate might have. Several studies 

have directly compared the two techniques [33,41–45]. Importantly, FDG PET signal 

can detect a signal decrease after treatment with few false negative results (no response 

detected even though there was a treatment response), and therefore has good sensitivity for 

detecting response. However, FDG PET can give false positive results (decrease in signal 

not due to a treatment response), and thus has poor specificity. On the other hand, while 

hyperpolarized [1-13C]pyruvate imaging currently is less likely to detect low volume disease 

and does not have whole body capability, its capacity to evaluate effectively more of the 

glycolytic pathway may make it more specific for detecting treatment response under some 

circumstances [42,44].
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Even more than PET, hyperpolarized 13C MRI is plagued by a lack of availability of 

specialized equipment (the need for a heteronuclear RF channel, not available on clinical 

scanners) and easy access to hyperpolarization (isotope lifetimes are shorter than PET). 

However, technical issues can always be addressed if the need is demonstrated and substrate 

availability could be addressed by centralized production of hyperpolarized contrast media. 

Removal of the stable radical, the source of the unpaired electron spins used in the dynamic 

nuclear polarization process, may allow storage and shipping of the hyperpolarized material 

at low temperature. Removal can be achieved by immobilizing the radical and physically 

separating it from the hyperpolarized 13C spins [46] or by generating the radical using u.v. 

irradiation and removing it by transiently raising the temperature [47].

2.2. Deuterated substrates

Recently, the field of magnetic-isotope-labeled substrates for MR studies of metabolism has 

received a boost by the demonstration that deuterated substrates can also be used to study 

metabolic pathways with a spatial resolution comparable to hyperpolarized MR [48,49]. 

Deuterium has the advantage of unlimited lifetime, but similarly requires specialized 

equipment (RF hardware) not available on clinical scanners. This field is very young, 

but the first results are promising, for instance for monitoring tumor metabolism (lactate 

production) after administration of [6,6-2H2]glucose, in a manner similar to hyperpolarized 

[1-13C]pyruvate [48,49]. Importantly, such metabolism can be detected indirectly through 

the proton spectrum [50,51], opening up the possibility to study metabolic pathways using 

deuterium-labelled substrates on standard human scanners [51], e.g. through isotopomer 

analysis. The promises and pitfalls of this approach were analyzed recently [52].

3. Chemical Exchange Saturation Transfer (CEST) MRI

CEST MRI is related to MRS but employs indirect detection of metabolites that contain 

groups with exchangeable protons such as hydroxyl, amide, amine, and guanidinium protons 

[53,54]. This is done by magnetically labeling these protons (using RF saturation or multi­

pulse excitation [55]) and detecting a resulting saturation effect in the water signal. Using 

repetitive label-exchange events per acquisition, CEST MRI allows not only water detection, 

but also comes with a sensitivity enhancement of one or more orders of magnitude, allowing 

imaging of millimolar concentrations of metabolites. Importantly, mobile macromolecules 

such as proteins and glycogen can also be detected through labeling of aliphatic protons 

if these have a dipolar coupling with nearby exchangeable protons, through a process 

called exchange relayed nuclear Overhauser effect (rNOE). In principle any compound with 

exchangeable protons can be detected, but this unfortunately also comes with a detection 

specificity problem for individual metabolites in vivo due to overlap of these many broad 

resonances. There is also interference of background signals from direct water saturation 

(DS) and magnetization transfer contrast (MTC) from semi-solid tissue components, e.g. 

membranes, myelin sheets. In addition, the conventional CEST data analysis approach of 

asymmetry analysis with respect to the water resonance frequency further mixes signals 

and the use of different RF strengths (B1) changes the proportions of these different 

signal contributions [54,56–59]. Signal interpretation in terms of concentration is also not 

straightforward because CEST signals are often pH dependent. In the physiological range, 
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exchange rates decrease with pH, which leads to a decrease in the detectability of amide 

and guanidinium protons, but an increase for OH and amine protons, because the signal 

intensities depend on the exchange regime at a particular field strength (B0). This may 

lead to erroneous interpretation in terms of metabolite changes if the pH is changing, for 

instance during ischemia or exercise, or in tumor environments. A typical example is for 

the amine protons of glutamate (Glu), because Glu concentration increases during early 

ischemia and the reduced pH increases the visibility of amine protons and it is unclear what 

is being measured. Images of the endogenous in vivo CEST signals are therefore often called 

“weighted”, to indicate contaminated signals. Specificity can be increased, for instance using 

difference experiments, e.g. from physical or physiological tasks or metabolite-specific drug 

treatment.

We focus here on recent literature for endogenous metabolites. The field has grown 

tremendously with many interesting applications in animal models, some having translated 

to humans. Multiple approaches are being developed to detect at least some species 

selectively, especially compounds with higher concentrations, such as glutamate (Glu) 

in the brain, creatine (Cr) and phosphocreatine (PCr) in muscle, and glycogen (Gly) 

in liver and muscle. For instance, there are many papers on glutamate CEST weighted 

(GluCESTw) MRI, confirming a major Glu signal contribution and also its reproducibility 

[60]. Recent data in humans [61], when not using asymmetry analysis and correcting 

for large background signals of DS and MTC, show a correct gray matter/white matter 

ratio for Glu, that corresponds with MRS measurements. GluCEST is showing potential 

for assessing neurodegenerative diseases such as Huntington’s [62], Alzheimer’s [63], 

Parkinson’s Disease/dopamine-deficiency [64], Multiple Sclerosis [65], and the presence 

of epileptic foci [66]. Unfortunately, due to the high exchange rate of amines, it appears 

that GluCEST may be limited to high field scanners (7T and above). The second-most 

studied metabolic pathway using CEST MRI is the creatine kinase reaction, especially in 

muscle [67–69]. During exercise, the PCr concentration decreases and Cr increases, but 

the sensitivity for measuring increased Cr concentrations is compromised by a concomitant 

pH decrease. At the same time, PCr-CEST signal decreases will be amplified by such pH 

decreases. It is increasingly recognized that the use of asymmetry analysis is not that useful 

for Cr/PCr CEST MRI and that the full spectrum should be studied. At some B0 and B1 

field strengths, the CEST signals of Cr and PCr can be measured simultaneously [70,71] 

and the data interpreted correctly. Importantly, at high B0 the CrCEST signal dominates, 

while at low field (3T and below) the guanidinium protons of Cr are in the intermediate 

to fast exchange regime and disappear into the background. Interestingly, it was shown 

recently that for skeletal muscle in humans at 3T, B1 can be tuned so that PCr is the only 

distinguishable CEST signal in the high frequency range relative to water [72]. Using a 

deep learning algorithm to assess the effects of B0, exchange rate (pH dependent) and signal 

intensity, this allowed the effects of exercise to be monitored in vivo at high spatial and 

temporal resolution (Fig. 3). Another area of noteworthy progress has been the ability to 

study glycogen levels in vivo in liver using rNOE signals [73]. Overall, the relatively young 

CEST field is showing many interesting metabolic applications in animal models at higher 

field strengths and is increasingly being translated to humans at 7T and also 3T. We expect 

a continuous growth of the CEST field, especially judged from recent work using spectral 
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analysis with machine learning approaches [72,74–77] and fast acquisition approaches with 

reduced sampling and increased sensitivity, such as compressed sensing and fingerprinting 

[78–82].

4. Functional MRI

Functional MRI (fMRI) based on the Blood-Oxygenation-Level-Dependent (BOLD) signal 

can be used to assess metabolic activity. The BOLD signal reflects a hemoglobin­

oxygenation-based magnetic susceptibility effect that affects the transverse relaxation 

times (T2 or T2*) of intravascular and extravascular water protons [83–85]. The venous 

oxygenation fraction (Yv) of hemoglobin is determined by the tissue cerebral metabolic rate 

of oxygen (CMRO2), cerebral blood flow (CBF), and the total hemoglobin concentration 

in blood ([Hbtot], which is proportional to hematocrit (Hct). Importantly, focusing on the 

intravascular BOLD effect, CMRO2 can be quantified without stimulation or contrast agent 

using the Fick Principle:

Ya − Yv =
CMRO2

CBF ⋅ Hbtot
= OEF ⋅ Ya

where Ya is the arterial oxygenation saturation fraction and OEF the oxygen extraction 

fraction. Using MRI, whole-brain Yv can be measured either based on a calibrated 

relationship between blood T2 and oxygenation fraction ([86–88] and references therein) 

or magnetic susceptibility quantification of blood ([89–92] and references therein). As one 

of several rapid MRI pulse sequences, T2-Relaxation-Under-Spin-Tagging (TRUST) MRI 

[87] can measure global Yv within approximately 1 minute and has been validated with 
15O-PET [93]. Recent advances in understanding the relationship between T2 and Y allow 

calibration of Y at most field strengths [94], while T1 can be used to noninvasively estimate 

Hct [95]. Knowing Ya (typically from pulse oximetry) and whole-brain CBF (e.g. from 

phase-contrast MRI, which can be used to determine CBF in less than 1 minute, [96,97]), 

CMRO2 can be calculated. Without CBF information, OEF can be calculated and used in 

clinical applications, as recently demonstrated for aging and neurodegenerative disease (Fig. 

4, [98–100]).

Regional measurements of OEF and CMRO2 are also receiving interest, for instance the 

ability to differentiate left versus right hemisphere, cortical versus subcortical regions, and 

major brain lobes. Given that CBF mapping techniques are available for MRI, the main 

efforts have been directed toward developing methods to measure regional Yv. For instance, 

vessel-specific T2-based methods are being developed that account for tissue partial volume 

effects [101,102]. With these newer techniques, Yv in major intracerebral draining veins, the 

vein of Galen, and straight sinus have been determined in adults and neonates [101,102]. 

Smaller draining veins have lower signal and greater anatomic variability across individuals 

and their Yv measurement is less established. An alternative approach to determine blood 

oxygenation with very high spatial resolution (1×1×1 mm3 or better) is quantitative 

susceptibility mapping (QSM) [89–92]. Here the actual oxygen-sensitive physical quantity 

underlying intravascular T2 changes, the tissue magnetic susceptibility χ, is calculated on a 

voxel-by-voxel basis from the local field in each voxel. The latter is generally determined 
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from the MR signal phase measured by gradient echo imaging. This local field in an MRI 

voxel is a parameter that depends on the brain orientation as well as on the susceptibility 

of surrounding voxels, and therefore is difficult to measure reproducibly between subjects. 

However, the magnetic susceptibility that is reconstructed through an inverse calculation is 

brain-orientation independent and voxel specific. Using referencing to a standard tissue 

(e.g. cerebral spinal fluid, CSF, assuming to have zero susceptibility) and a separate 

calibration of magnetic susceptibility differences as a function of blood oxygenation, the 

blood oxygenation can be calculated non-invasively in vivo [89–92].

Voxel-by-voxel mapping of CMRO2 or OEF without the need for a physiological stimulation 

would be the holy grail of functional brain imaging, but when using the BOLD T2* effect 

these would require knowledge of the local venous cerebral blood volume (CBVv) and 

advanced BOLD models [83,85]. However, the reliability and practicality of these methods 

remain to be further investigated, and represent an active area of research which is beyond 

the scope of this review.

5. A look to the Future of Metabolic MR

The field of metabolic MR is undergoing rapid progress. While often criticized for its lack 

of clinical applicability, MRS may finally cross this hurdle through the recent availability 

of deep learning approaches for SNR improvement and, importantly, fast and reliable data 

interpretation on the scanner. Similarly, CEST MRI may, either in combination with MRS or 

independently, provide high resolution metabolic information using water imaging. The use 

of hyperpolarized magnetic isotopes for the study of active metabolism has seen a decade 

of strong progress and is on the threshold of clinical application but its applicability is 

still hampered by a lack of common availability. Newer deuterium-based approaches have 

potential, especially when using proton detection. Combination of these methods with PET 

on PET-MR scanners, which are becoming more widely available, and the use of fast and 

higher SNR data acquisition and analysis approaches that exploit machine learning makes 

clinical translation of combinations of these advanced methods for voxel-based metabolic 

analysis increasingly likely. The capability for regional CMRO2 determination may further 

enhance the clinical information content.
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Fig. 1: 
A schematic of the training of the convolutional neural network (CNN) to analyze brain 

proton MRS data. ‘Metabolite‐only’ spectra, simulated by linearly combining phantom 

spectra of individual compounds according to randomly selected relative concentration 

ratios, are used as the ground truth in the training of the CNN. To mimic in vivo brain 

spectra, the metabolite‐only spectra are combined with noise, line broadened, frequency 

and phase shifted, and a slowly varying baseline added. These simulated brain spectra are 

used as the input to the CNN in the training, whose goal is to determine the original 

metabolite-only spectra and the individual metabolite concentrations. Abbreviations: Conv, 

convolution; Batch Norm, batch normalization; Max Pool, max pooling; ReLU, rectified 

linear unit. Reproduced, with permission, from Lee H.H. and Kim H. [15].
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Fig. 2: 
[1-13C]pyruvate and [1-13C]lactate images acquired following intravenous injection of 

hyperpolarized [1-13C]pyruvate in a breast cancer patient. (A) Coronal image, where the 

tumor can be visualized as a region of hypointensity. (B) Dynamic contrast enhanced 

(DCE) image, where the tumor can be visualized as a region of hyperintensity. 13C 

magnetic resonance spectroscopic images of (C) hyperpolarized [1-13C]pyruvate and 

(D) hyperpolarized [1-13C]lactate; arrows indicate a region with low signal intensity 

corresponding to a region of low enhancement on the contrast agent-enhanced image. 

(E) Map of the ratio of lactate and pyruvate signal intensities, showing intratumoral 

heterogeneity; open arrow indicates an area of low [1-13C]pyruvate signal but high 

lactate labeling; closed arrow indicates a tumor area with high [1-13C]pyruvate signal 

and intermediate lactate labelling. (F-G) Dynamic hyperpolarized [1-13C]pyruvate and 

[1-13C]lactate images acquired after intravenous injection of hyperpolarized [1-13C]pyruvate 

(temporal resolution = 4 s). Reproduced from Gallagher, F.A. et al. [35], with permission 

(https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode).

van Zijl et al. Page 15

Curr Opin Chem Biol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode


Fig. 3: 
Maps of human skeletal muscle at 3 Tesla pre and post in-magnet plantar flexion exercise 

using PCr CEST analyzed with an artificial neural network (ANNCEST) compared with the 

same exercise observed using 31P spectroscopic imaging. (a) T2-weighted anatomical image. 

(b,c) PCr concentration maps (scale bar in mM) obtained by (b) ANNCEST and (c) 31P 

MRSI during the exercise process. The water saturation spectrum (Z-spectrum, in which Z is 

the signal during radiofrequency saturation normalized by the signal without such saturation, 

Z = Ssat/S0) at baseline (d) and post exercise (e) extracted from the blue rectangle region 

shown in (b). (f,g) Correlation and Bland-Altman analyses between concentrations obtained 

from ANNCEST and 31P MRSI for all four subjects (n = 202 voxels) from the red ellipse 

region shown in (a). Reproduced, with permission, from Chen L. et al. [72]
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Fig. 4. 
Example of OEF determination in neurodegenerative disease. (a) Illustration of arterial (Ya) 

and venous (Yv) oxygenation fraction in the brain. OEF = (Ya-Yv)/Ya. (b) Measurement of 

Yv with TRUST MRI. Left panel: Typical positions of imaging slice (yellow) and labeling 

slab (blue). The red arrow and label indicate that the imaging plane is placed to be parallel 

to the anterior commissure – posterior commissure (AC-PC) line and 20 mm above the sinus 

confluence point. Middle panel: Representative raw images of TRUST MRI. Right panel: 

Conversion from blood T2 to oxygenation fraction. (c) Diminished OEF in patients with 

mild cognitive impairment (MCI). Reproduced, with permission, from Thomas, B.P. et al. 

[100]. (d) OEF was decreased in cognitively normal older individuals who have a higher 

genetic risk (i.e. APOE4) to develop Alzheimer’s disease. Reproduced, with permission, 

from Lin, Z. et al. [99]. (e) Vascular risk factors (VRS) have an additional effect on OEF. 

Reproduced, with permission, from Jiang, D. et al. [98].
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