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Abstract

Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common 

malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, 

genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great 

treatment challenges. The standard treatment for GBMs is surgical resection followed by 

chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells 

and glioma initiating cells (GICs), respectively, promote resistance against all current treatment 

modalities. Thus, durable GBM management will require the invention of innovative treatment 

strategies. In this review, we will describe biological and molecular targets for GBM therapy, the 

current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment 

approaches. To date, medical imaging is primarily used to determine the location, size and 

macroscopic morphology of GBM before, during, and after therapy. In the future, molecular 

and cellular imaging approaches will more dynamically monitor the expression of molecular 

targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of 

tumor-tailored, targeted therapies.
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2. Introduction

2.1 The epidemiology and etiology of GBM

Glioblastoma multiforme (GBM) is a WHO grade IV brain tumor which represents one of 

the most lethal human cancers. The incidence of GBM increases with age and shows the 

highest incidence in the 75 to 84-year old age group in the United States(1). The incidence is 

higher in men than women, as well as in Caucasians than in other ethnicities(2). According 

to gene profile analysis and genetic modeling of GBM in mice, there is evidence that GBM 

is derived from neural stem cells (NSCs), NSC-derived astrocytes, and oligodendrocyte 

precursor cells (OPCs)(3). GBM tumors derived from different cellular origins show 

different behaviors in animal models(3)(Fig.1). Exposure of the central nervous system 

(CNS) to ionizing radiation has been associated with an increased risk to develop malignant 

brain gliomas, excess relative risk (ERR) estimates for brain/CNS tumors ranged per Gy 

from 0.19 (95% confidence interval [CI]: 0.03, 0.85) to 5.6 (95% CI: 3.0, 9.4) (4).

2.2 The ongoing challenges of GBM treatment

Standard therapy for GBM encompasses surgical resection followed by chemoradiotherapy, 

using temozolomide (TMZ)(5). However, 5-year survival is only 7.2% in the United States 

according to CBTRUS Statistical Report 2020(6). Despite maximal surgical resection 

and aggressive adjuvant therapy, almost all GBM tumors locally recur after treatment(7). 

Ongoing challenges to GBM treatment include its incomplete resection, high degree 

of genetic heterogeneity, exclusive blood brain barrier (BBB), and immunosuppressive 

microenvironment.

2.2.1 High infiltration—The highly infiltrative nature of GBM makes complete 

resection at the cellular level nearly impossible(8). Also, abundant hypoxic regions provide 

perivascular niches for glioma initiating cells (GICs). These self-renewing cells can yield 

potentially more aggressive recurrent tumors that are radioresistant and chemoresistant (9, 

10).

2.2.2 Intertumor and intratumor heterogeneity—Large intertumor and intratumor 

heterogeneity have complicated targeted therapy development(11). Based on their genetic 
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and epigenetic markers, GBMs were previously classified by The Cancer Genome 

Atlas (TCGA) into four clusters: mesenchymal, classical, proneural, and neural(12, 13). 

Mesenchymal GBMs are characterized by the neurofibromin 1 (NF1) tumor suppressor gene 

mutation as well as by frequent mutations in the PTEN and TP53 tumor suppressor genes. 

The classical subtype is highly proliferative and characterized by EGFR amplification, but 

no TP53 mutation. Meanwhile proneural GBM is frequently associated with TP53 mutation, 

and uniquely with IDH1 and PDGFRA mutations. The neural subtype is characterized 

by many genes which also exist in the brain’s normal noncancerous neurons(12, 14). 

Another GBM tumor transcriptome analysis described only three subtypes: proneural, 

classical, mesenchymal. The authors proposed that the neural subtype may be due to 

contamination of the original samples with non-tumor cells(13, 15). The mesenchymal and 

classical subtypes are typically more aggressive tumors, while the proneural subtype is less 

aggressive and more often seen in younger patients(13). The proneural-to-mesenchymal 

phenotype transition is associated with GBM resistance (16). Even though TCGA has 

categorized GBM into four subgroups, recent studies show that different GBM subgroups 

vary spatially and temporally within the same tumor(17). Patel et al. showed with single cell 

RNA sequencing that a single tumor can include a diversity of cells that comprise all the 

GBM subgroups(18)(Fig. 1).

2.2.3 Blood brain barrier (BBB)—Another challenge to GBM treatment is delivering 

chemotherapeutic drugs across the blood brain barrier (BBB). The BBB is a protective 

boundary between the circulatory system and the extracellular space of the central nervous 

system. The BBB is mainly composed of endothelial cells that form a tight barrier along 

the wall of blood vessels and selectively limit the compounds that can cross into the 

parenchyma(19). Tight junctions are less than 1 nm in size and prohibit penetration of >98% 

of small molecules. Unlike in healthy brain tissue, the BBB in GBM exhibits enhanced 

permeability due to poorly formed, leaky blood vessels, upregulated transporter proteins, 

and downregulated tight junction proteins(20, 21). However, the disruption of the BBB is 

not uniform throughout a given tumor, with some areas exhibiting blood vessels with higher 

permeability and other tumor areas with more intact vessels and/or vascular shunts. Even if 

a chemotherapeutic drug managed to extravasate into the tumor tissue, it can often not gain 

therapeutic levels in tumor cells due to upregulation of efflux pumps by glioblastoma cells 

(22). Ultimately there remains a substantial proportion of GBM with locoregional intact 

BBB and upregulated efflux pumps (23, 24).

2.2.4 Immunosuppressive microenvironment—The microenvironment of GBM 

creates treatment challenges. Some authors refer to GBM with an immunosuppressive 

microenvironment as “cold tumors”. These tumors lack pre-existing tumor T cell infiltration 

which results in tumor resistance to immune checkpoint inhibitors (25). These tumors are 

further characterized by their lack of tumor antigens, defects in antigen presentation, and 

high accumulation of immunosuppressive cells (26, 27). Treatment with immune checkpoint 

inhibitors shows limited efficacy (28). In contrast, “hot tumors” are infiltrated with swarms 

of T cells, and thus more immunogenic. Turning “cold” to “hot” may be achieved by 

combinatorial approaches that boost anti-tumor immunity (27).
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Given the genomic complexity and global alterations of multiple signaling pathways in 

GBM, consistent effort has been put forth to improve systemic therapies for glioblastoma. 

In the following sections, we will address how pharmacologic therapies have evolved, how 

mechanisms of resistance develop, and how new strategies have emerged.

3. GBM traditional therapy and resistance

3.1 Traditional therapy

3.1.1 Surgical resection—Surgical resection of brain tumors was revolutionized in the 

late ‘80s and early ‘90s with the development of frameless stereotaxy. It enabled the very 

precise placement of surgical instruments using image guidance and has been modernized 

with new imaging technologies(29). Additionally, cerebral cortical stimulation has enabled 

intraoperative localization of eloquent cortex regions of the brain that need be avoided 

during surgery. This technique, or “brain mapping” accounts for individual variations in 

anatomy or tissue reorganization to remove tumor in areas of great functional importance 

and that are responsible for quality of life(30, 31).

The extent of tumor resection has been positively correlated with survival time, with 

gross total resection (GTR) being desirable when possible(1, 32–36). There are, however, 

major challenges to achieving GTR, including successful identification of tumor margins 

as well as avoiding adjacent eloquent cortex. Even though the tumor margins can be 

roughly determined through imaging, GBM grows with microscopic, finger-like projections, 

imperceptible to presurgical or even intraoperative imaging techniques(37).

Imaging is an increasingly important tool for GBM resection(29). Images can guide 

biopsies(38–40), identify tumor margins(41–43), and localize critical brain structures that 

need to be spared(44). Computed tomography (CT) is valuable for emergent imaging, while 

MRI is the gold standard for brain tumor imaging due to its the higher anatomical resolution 

and higher soft tissue contrast. Depending on the MRI contrast and pulse sequence 

used, important features of the tumor and brain tissue can be elucidated including blood 

vessels, tumor necrosis, and hemorrhage (T1-weighted with contrast), cerebrospinal fluid 

(T2-weighted), blood perfusion (dynamic susceptibility contrast (DSC), dynamic contrast 

enhanced (DCE) and arterial spin labeling (ASL)(45, 46). Some studies have advocated 

supramaximal resection, thereby resecting beyond the T1 contrast enhancing portion(47).

Both intraoperative fluorescence imaging and MR imaging can help to address the 

challenging phenomenon of “brain shift” or movement of the brain during surgery, which 

can lead to discrepancies between the location of the tumor and critical brain structures 

on preoperative imaging studies and in the operating room. Some shifts can be up to 2 

cm in distance and result from causes that are physical (e.g., patient position, gravity), 

surgical (types of equipment used, tissue/fluid loss during procedure), or biological (e.g., 

tumor type/location, drugs used to manage intracranial pressure). Unfortunately, this 

phenomenon worsens with increasing duration of the surgery and cannot be corrected for 

using neuronavigational devices that derive stereotaxic capabilities from pre-operative MRI 

images(48).
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Fluorescent imaging has been performed with fluorescein, indocyanine green (ICG), and 

5-aminolevulinic acid (5-ALA)(49–52). Fluorescein is of historical relevance, as it is one 

of the first intraoperative imaging adjuncts. While fluorescein does not typically cross 

an intact the BBB, it does penetrate high grade gliomas (HGGs) in areas of enhanced 

permeability(53). Likewise, ICG has been of historical value, primarily for angiography 

and vessel delineation rather than parenchymal margins. Currently, 5-aminolevulinic acid 

(5-ALA) has become the standard of care among intraoperative fluorescent agents and has 

received regulatory approval in the US and Europe(49). 5-ALA is a precursor to heme that 

can cross the BBB and converts to the fluorescent compound protoporphyrin IX in the 

mitochondria. The mechanisms underlying its accumulation in brain tumors are still not well 

understood. It exhibits higher specificity over fluorescein (67% vs 33%)(54). Studies have 

also shown that GTR or near-GTR rate is higher in patients that underwent fluorescence­

guided surgery with 5-ALA compared to patients that were operated under white light only 

(65% vs 36%)(50). Additional clinical trials are now being performed using IRDye800CW 

and ZW800–1 for targeted imaging(55, 56),

Intraoperative MRI and ultrasound (iMRI and iUS, respectively) help surgeons identify 

residual cancer in surgeries (57, 58). The surgeon resects a brain tumor, then performs a 

contrast-enhanced MRI in the operating room on an intraoperative MRI scanner. If residual 

enhancing tissue is found, then this residual tissue is removed in the same surgery.

3.1.2 Chemotherapy

3.1.2.1 Cytotoxic chemotherapy: The standard post-surgical treatment regimen includes 

6 weeks of concomitant TMZ (75 mg/m2) and radiation followed by adjuvant TMZ (150–

200 mg/m2) for 5 days every 28 days for six cycles(59). TMZ, the most widely used 

chemotherapeutic drug for GBM, is a small molecular alkylating agent that directly damages 

tumors by methylating the purine bases of DNA(60). The key cytotoxic action is through 

formation of O6-methylguanine lesions which results in apoptosis, autophagy, and cellular 

senescence(61–64). In addition, it was discovered that TMZ has radiation-sensitizing 

properties. It increases the likelihood of radiation-induced DNA double strand breaks and 

cell death when the drug is administered at the same time as radiation therapy(65).

The most common side effect from TMZ is hematologic toxicity(66). Thrombocytopenia 

has been identified in 10–20% of patients. In a Phase II clinical trial, the addition of a 

thrombopoietin receptor agonist, Romiplostin to adjuvant CCRT (concurrent chemoradiation 

therapy) has increased the rate of completed regimens(67). Nonhematologic toxicities from 

TMZ are less common and include nausea, anorexia, fatigue, and hepatotoxicity(68).

Several nitrosourea reagents have also been explored for GBM treatment. Carmustine (also 

known as BCNU) is a small nitrogen mustard compound and alkylating agent. It induces 

interstrand crosslinks between the guanine and cytosine bases in DNA(69). Carmustine rose 

to prominence with the advent of Gliadel® wafers, which are FDA (U.S. Food and Drug 

Administration Agency)-approved biodegradable discs that are intraoperatively placed in 

the resection cavity to provide a slow release of drug over two weeks(70). The alkylating 

therapeutic effects of carmustine can be reversed by the enzyme alkyl guanine transferase 

(AGT). Therefore, carmustine is sometimes used in concert with AGT inhibitors to ensure 
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therapeutic efficacy(71). Side effects include abnormal wound healing and intracranial 

infections since the wafers present as foreign bodies(72). Another alkylating anti-tumor 

reagent is lomustine. Due to its high lipophilicity and small size, lomustine can cross the 

BBB. Thus, lomustine can be given orally(73). Fotemustine, another molecule in this family 

of drugs, has been used for melanoma and is now tested for its efficacy with recurrent 

glioblastoma(74).

3.1.2.2 Anti-angiogenic chemotherapy: Bevacizumab is a humanized monoclonal 

antibody with anti-angiogenic properties and is administered intravenously. It binds to 

and inhibits vascular endothelial growth factor A (VEGF-A) which initiates growth of 

new blood vessels when bound to its receptor. The levels of VEGF-A in GBM are 

estimated to be approximately 30 times higher than in low grade astrocytomas making it 

an attractive therapeutic target. While bevacizumab appears to improve progression-free 

survival, it does not significantly improve overall survival for patients with newly diagnosed 

glioblastoma(75). Therefore, it is predominantly used to treat recurrent glioblastomas. 

The use of bevacizumab with irinotecan a small molecular prodrug that is converted 

a topoisomerase I inhibitor, is being explored(76, 77). Bevacizumab’s side effects most 

commonly include hypertension and leukopenia(74, 78).

3.1.3 Radiation therapy (RT)—Radiation therapy can be utilized in several forms (e.g., 

x-ray photons, gamma photons, protons), but not all have become validated for standard 

of care (Table 1). Conceptually, it can be administered to help provide local control for 

the microscopic disease unaddressed by surgical resection. In CCRT, patients receive 3D 

conformal RT which uses x-ray photons that are directed at the tumor target from several 

different angles. CT and MRI images are used to plan the delivery of the therapeutic dose to 

the tumor site. Radiation therapy is usually distributed over 6 weeks in 2 gray (Gy) fractions 

for a total dose of 40–60 Gy(79). A typical device for RT possesses elaborate multi-leaf 

collimators which allow very specific shaped beams to target the tumor and provide a small 

(1–2 cm) margin around the periphery. Treatment with x-rays confers low linear energy 

transfer which results in both direct and indirect biological damage. Direct damage to DNA 

makes up approximately one-third of the treatment effect, and indirect effects (namely, 

ionization of water to produce free radicals which damage DNA), make up approximately 

two-thirds(80).

Conformal RT has been preferred in the clinic over whole brain radiation since recurrent 

gliomas tends to appear within 2 cm from the original tumor site in 80–90% of cases(81). 

Thus, conformal RT is designed to target the majority of residual GBM cells while sparing 

healthy brain tissue and thereby, minimize cognitive side effects. Intensity-modulated RT 

also uses multi-leafed collimators, but can redistribute ionizing radiation across the target 

depending on its location and sensitivity(82). This strategy has the added complexity of 

employing several collimated beams in order to avoid injury to critical structures including 

the cornea, optic nerves, and brainstem(83).

Another form of focal radiation includes stereotaxic radiosurgery (SRS) where even larger 

radiation doses can be applied by delivering multiple non-parallel, converging radiation 

beams. The dose is given in fewer fractions (1–5) and at higher doses per fraction (15+ Gy). 
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The gamma radiation is derived from a cobalt-60 source and directed at the tumor through 

collimators(84). The heat transfer properties of gamma rays enable high doses of radiation to 

be delivered very specifically at the tumor target while sparing adjacent healthy tissues(85). 

SRS has been commonly used for brain metastases, particularly to avoid the cognitive side 

effects of whole brain RT, and may be appropriate in some cases of GBM(86).

Brachytherapy is being explored and involves local implantation of one or more radioactive 

vectors into the tumor bed at the time of surgery. The most common isotopes used for 

brachytherapy in brain tumors are iodine125 (t1/2 = 59.5 days) and iridium-192 (t1/2 = 

73.8 days)(87). Unfortunately, two major trials by Laperriere et al. and Selker et al. 

did not show a statistically significant differences in survival between patients receiving 

brachytherapy and those that did not(88, 89). Another Phase I trial was halted early due to 

high toxicity(90). Adverse effects have included symptomatic radiation necrosis, vascular 

injury, and radiation exposure to close contacts(91).

Charged heavy proton radiotherapies such as carbon ion irradiation spares normal tissue 

and concentrates energy deposition on the tumor(92). This disrupts GIC viability(93) 

through the induction of pro-apoptotic pathways and thereby provides an antiangiogenic and 

immunopermissive tumor environment(94). Tumor regression and long-term local control 

were identified in xenograft mouse models and a clinical study of 50 patients with grade 

III and IV glioma measured an 18-month overall survival of 73% with dose equivalents 

of ≥ 60 gray appearing to be safe (93, 95). Indeed, combination therapies of carbon 

proton irradiation with TMZ treatment led to enhanced overall survival and progression­

free survival compared to patients subjected to combination of TMZ with photon-induced 

irradiation(95).

An important impediment of effective RT is the hypoxic tumor environment. Oxygen 

generally enhances the response of cells to low linear energy transfer radiation. When tissue 

is irradiated and DNA radicals form, oxygen can react with the radicals to create permanent 

cell damage. In hypoxic tumor environments, the damaged DNA has added time to repair 

and reduce radiation injury(80). Hypoxic tissue is thought to require approximately three 

times the radiation dose to achieve the same therapeutic benefit(96).

3.2 GBM therapy resistance

3.2.1 DNA repair mechanism

3.2.1.1 Methyl guanine methyl transferase (MGMT): TMZ causes tumor cytotoxicity 

by transferring methyl groups to DNA (70% at N7-guanine sites, 10% at N3-adenine sites 

and 5% at O6-guanine sites)(97). The O6 site alkylation on guanine leads to attachment 

of a thymine rather than a cytosine during the DNA replication process. The altered 

configuration is the primary cause of cell death(98). This alkylation damage can be 

reversed by the DNA repair enzyme MGMT (O6-methylguanine-DNA methyltransferase) 

by removing O6-methylguanine adducts. Thus, the methylation status of the MGMT gene 

promoter has great clinical significance(99, 100). MGMT promoter methylation is more 

prevalent in recurrent GBMs compared to primary GBMs (75% vs. 36%)(101). The level 

of MGMT protein expression has been associated with the efficacy of alkylating drugs to 
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cancer cells in glioma tumor models (98, 102). GBM with MGMT promoter methylation 

(evaluated by methylation-specific PCR (MS-PCR)) and its subsequent loss of MGMT 

protein expression (measured by immunohistochemical staining) showed better response 

to TMZ therapy(103). MGMT inactivation or silencing is associated with significantly 

improved overall survival and progression-free survival (PFS)(104–106). The role of TMZ 

in CCRT has made MGMT one of the most pertinent prognostic markers.

Understanding the regulation of MGMT may improve the development of targeted therapies. 

An important gene related to MGMT expression is p53, a negative regulator of MGMT 

in GBM tumors (107–109). Clinically, GBM patients with lower MGMT expression have 

better prognoses with proneural phenotypes expressing p53(110). The proline-rich domain 

of p53 has been confirmed to be non-essential for MGMT-dependent DNA repair(111). 

However, p53 may down-regulate MGMT via interaction with the Sp1 transcription 

factor(112). This was supported when BACH overexpression competitively interfered with 

p53 and Sp1 binding, and antagonized MGMT expression(108). Sp1 is an imperative 

nuclear transcription factor, which suggests the role of transcriptional factors in regulating 

MGMT expression. In silico analysis by Transcription Elements Search System (TESS, 

http://www.cbil.upenn.edu/tess) identified putative consensus sequences for the binding of 

nuclear transcription factors in the promoter region of MGMT. These include Sp1, NF-κB, 

CEBP, AP-1, AP-2 and NF-IL6 at CpG dinucleotides. The literature has also supported 

Sp1(112–114), AP-1(102, 115), NF-κB(116, 117) in the activated transcription of MGMT. 

Thus, methylation of CpG dinucleotides may hinder the binding of these transcription 

and compress the transcriptional activation of the MGMT gene(102, 118, 119). Other 

transcription factors, such as hypoxia-inducible factor-1 (HIF-1), when activated in the 

hypoxic GICs niche, will enhance MGMT expression(120–122).

Besides transcriptional factors, epigenetic modifications of MGMT have also shown a 

relevant role in MGMT regulation(123, 124). Acetylation of lysine residues on histones 

H3 and H4 (H3Ac and H4Ac) is correlated with high MGMT expression(125) while 

di-methylation of lysine 9 of histone 3 (H3me2K9) leads to silencing of MGMT 

expression(102).

Thus, targeting transcriptional factors or epigenetic modifications related to MGMT 

activation may be options in GBM therapy.

3.2.1.2 Mismatch repair (MMR): O6-methylguanine (O6-MeG) generated by therapeutic 

alkylating agents is the dominant cytotoxic lesion. It can either be removed by MGMT 

or tolerated by MMR deficiency, to induce prominent therapy resistance(126). MMR 

addresses inappropriate nucleotide base pairing to maintain DNA replication fidelity. MMR 

is collectively achieved by several proteins including MLH1, MLH3, MSH2, MSH3, 

MSH6, PMS1, and PMS2(127). Outside the context of TMZ treatment, MMR deficiency or 

epigenetic silencing of MMR gene expression leads to cancer development(128, 129). MMR 

deficiency results in strong resistance to the alkylating agents, such as the alkylating agents 

N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), TMZ, or procarbazine. When MGMT is 

not present to remove the methyl group, thymine is erroneously inserted opposite O6-MeG 

by DNA polymerase. The O6-MeG:T mismatch is recognized by the MMR complex, and 
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bound by MutSα (an MSH2•MSH6 heterodimer), subsequently, a gap is generated in a new 

stretch of single-stranded DNA, DNA polymerase once again inserts thymine to complete 

mismatch repair. It is highly likely that the futile repair generates double strand breaks 

leading to cell cycle arrest and cell death(130).

Perazzoli et al. noticed an interesting inverse correlation between MGMT and MMR 

(131). In vitro studies investigating an MGMT-methylated GBM cell line (U251), which 

survived TMZ treatment, ultimately developed MMR deficiency(132). Studies from TCGA 

suggest that at least one of the MMR genes - MLH1, MSH2, MSH6 or PMS2 - 

possess a methylated MGMT promoter(133). MSH6 inactivation exhibited a crucial role 

in conferring tolerant tumor cell growth. It has been shown that a modest decrease of 

MMR components MSH2 and MSH6 is associated with TMZ sensitivity(134). Sun et al 

reported that a large cohort of GBM clinical samples have enhanced expression of MMR 

genes especially MSH6 after long-term TMZ treatment(135). Whether the incidence of 

MSH6 mutation is induced by therapy is still unknown and remains controversial. The 

German Glioma network noticed significantly lower MSH2, MSH6, and PMS2 protein 

expression in recurrent GBM compared to primary GBM tumors(136), which is in line with 

some additional investigations(137). Meanwhile, recurrent GBM tumors frequently possess 

MMR6 mutations coinciding with microsatellite instability(138).

3.2.2 Glioma initiating cells (GICs)—A subpopulation of cells in GBM described as 

“cancer stem cell (CSC)” or “glioma initiating cells (GICs)” is speculated to possess specific 

characteristics that support tumor development, recurrence, and therapeutic resistance(10, 

139, 140). GICs are believed to be a distinct subgroup of cells, that can undergo self-renewal 

and initiate tumorigenesis. Singh et al. first described a population of CD133+ cells, but 

not CD133- cells, that initiated tumor growth in NOD-SCID (non-obese diabetic, severe 

combined immunodeficient) mouse brains(141). Although CD133 is a recognized marker 

of GICs, it is also expressed in normal neural stem cells(142). Therefore, multiple surface 

markers are needed to characterize GICs. Other recognized markers of GICs include CD44 

and ATP binding cassette transporters (143–145). We further elaborate on the molecular 

mechanisms of resistance in GICs.

3.2.2.1 Enhanced DNA repair capacity: In addition to protective responses by MGMT 

and MMR expression following chemotherapy, GICs may exhibit sensitizing mechanisms to 

radiation(146). Checkpoint kinases (Chks), in particular Chk1 and Chk2, play primary roles 

in cell cycle control. In response to DNA damage, Chk1 signal will be activated and holds 

the cells in the G2 phase until DNA is repaired and ready for the mitotic phase, whereas 

Chk2 is activated under double stranded break (DSB) and prevents cells from dividing in 

an uncontrolled manner. Bao et al reported that GBM displayed aberrant DNA damage 

response to radiotherapy. They observed that the addition of specific inhibitors of Chk1 and 

Chk2 checkpoint kinases restored the radiosensitivity of GICs(147). More recently, Ahmed, 

et al. observed that GICs have a prolonged cell cycle arrest at the G2 phase and noted that 

the inhibition of the Chk1 pathway induced double stranded breaks under ionizing radiation, 

in an ATM- and ATRdependent manner(148).
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The polycomb group protein, BMI1, also shows enhanced expression in CD133+ GBM 

cells, BMI1 coprecipitated with DNA DSB response proteins, and preferentially associated 

with NHEJ repair proteins. This interaction enormously improved DNA damage response to 

radiation and cell viability(149).

Additionally, homologous recombination (HR) defects can contribute concurrently to the 

radioresistance of GICs. The inhibition of DNA repair protein RAD51 homolog 1 (RAD51) 

has been found to delay G2 cell cycle arrest, thereby sensitizing GICs to radiation(150). Due 

to the prominent cellular DNA damage response of GICs, targeting DNA repair pathways 

may provide a beneficial therapeutic approach for eliminating GICs.

3.2.2.2 ATP binding cassette (ABC) transporter: ABC transporters are ubiquitous and 

one of the largest transmembrane protein pump families. Normally, ABC transporters 

move endogenous bile acids, cholesterol, ions, and peptides across cell membranes. GICs 

express high levels of ABC transporters that are normally inactive in mature cells. In GICs, 

overexpression of ABC transporters further hinders drug delivery. ABC transporters promote 

therapy resistance by promoting efflux of exogenous compounds, such as TMZ, at the 

cellular and BBB level, in order to detoxify cells(151, 152).

ABC transporters include 49 members classified into seven gene subfamilies, designated 

ABCA–G. Thus far, ABCB1 (MDR1), ABCC1 (MRP1), and ABCG2 (BCRP1) are the 

most well-known pumps that have been identified in tumor stem-like cells. ABCG2 was 

first identified and associated with subpopulations of cells that are stem-like and multidrug 

resistant(153). ABCC1 is assumed to be another cause for GBM recurrence since the 

blockage of ABCC1 improved therapeutic response in GBMs(154, 155). GICs are enriched 

in hypoxic niches of the tumor(156). Low oxygen levels further promote the expression of 

MGMT, ABCC1 and ABCB1, and thereby lead to chemoresistance(157). Very recently, Lee, 

et al., proposed ABCB5 as a new marker for CD133+ GICs in chemoresistant GBM. The 

knockdown of ABCB5 inhibited GBM proliferation and sensitized the GBM cells to TMZ 

treatment(158).

Multiple pathways (SHH, Wnt-β-catenin pathway, Bcl-2, Akt, survivin, etc.) have been 

associated with the role of ABC transporters in therapy resistant GICs(151), which suggests 

that the ABC transporter is yet another target for which new therapies could be developed.

3.2.2.3 Hypoxia and autophagy: Tumor hypoxia is consistently associated with poor 

prognosis across multiple cancer types(159–161). GBM is characterized by extensive tissue 

hypoxia(162) and the hypoxic microenvironment has been regarded as an indispensable 

environmental cue for the preservation of GICs(120). In response to the reduction of oxygen 

tension, hypoxia-inducible factor 1 (HIF-1) is stabilized to maintain GICs and promote their 

tumorigenic ability(163, 164). In tumor tissue, microvascular thromboses congest vessels, 

further boosting intratumoral hypoxia. GICs can be found in the perivascular niche and 

the tumor core region, where are usually less oxygenated (1.25% O2) than peritumoral 

areas (2.5% O2)(165). The poorly oxygenated tumor tissue creates a perfect GIC niche and 

can stimulate downstream oncogenic pathways resulting in heterogeneity, invasiveness, and 
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therapy resistance. Overall, the density and aggressiveness of GICs are negatively correlated 

with oxygen tension.

Several studies suggest that autophagy is induced by hypoxia as a cytoprotective mechanism, 

which is complementary to the ubiquitin system(166, 167). Autophagy is a survival­

promoting process that contributes to the clearance of damaged proteins and organelles 

to maintain cellular homeostasis and genomic integrity. Moreover, it has been shown that 

autophagy supports cellular metabolism by generating metabolic precursors such as amino 

acids and lipids, which further supports the function of autophagy as an adaptive mechanism 

responding to metabolic stress(168, 169). In GBM, protective autophagy is triggered in 

GICs when challenged by cytotoxic therapies(168, 169).

It has been of great interest to investigate how autophagy sustains tumor growth and 

contributes to therapy resistance. Gene-9/Syntenin (MDA-9) is associated with advanced 

tumor grades in various cancer types. A recent study showed that MDA-9 is critical to 

maintaining GICs by regulating essential autophagy-related molecules, including BCL-2 

and EGFR(170). Huang, et al., found that radiotherapy increases the level of MST4, which 

phosphorylates ATG4B and leads to autophagy. The inhibition of ATG4B significantly 

improved the survival benefit in radiation-treated mice(171). Inhibition of autophagy 

increased the massive accumulation of lipid peroxides and enhanced the sensitivity of 

GBM to TMZ treatment, which indicates initiation of ferroptosis in GICs(172). However, 

we observed an opposite role of autophagy. Aldehyde dehydrogenase 1A3 (ALDH1A3) 

has been regarded as a biomarker for various kinds of cancer stem cells, including GICs. 

We found that ALDH1A3 confers chemoresistance to GICs by deactivating toxic active 

aldehydes produced by lipid peroxidation under low concentrations of TMZ treatment. 

However, under high concentrations (500 μM) of TMZ, autophagy is induced, ALDH1A3 

binds to p62 (an autophagic substrate) and is degraded along with ubiquitin cargo, ultimately 

enhancing the susceptibility of GICs to TMZ(173, 174).

The autophagy inhibitor chloroquine could reduce GBM resistance to anti-angiogenic 

therapy(175). It also has been shown that chloroquine-treated patients have better median 

survival in adjuvant settings in a phase III clinical trial(176). Although the role of autophagy 

in GBM progression is controversial, nevertheless, it provides a new insight for targeted 

therapy and conquering therapy resistance of GICs.

3.2.2.4 Epigenetic regulation: There is growing evidence that non-genetic determinants, 

associated with epigenetic modifications, contribute to functional heterogeneity and 

maintenance of GIC hierarchies(177–180). Epigenetic regulation includes alterations in the 

chromatin structure as well as DNA methylation and post translational histone modification 

or even changes in noncoding RNAs including long noncoding RNAs and miRNAs (181, 

182). Specifically, the subpopulation of CD133+ cells, which are generally regarded as 

GICs, were found to be H3K9me2 negative, while the majority of cancer cells expressed 

strong H3K9me2. This data indicates that H3K9me2 is an important switch for maintaining 

stemness of GICs by regulating CD133(183). In a study based on histone modification 

expression analysis of 230 tumor samples, patients were divided into 10 separate prognostic 

groups. The 10 groups showed significantly different progression-free (P < 0.0001) and 
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overall survival (P < 0.0001), demonstrating that aberrant histone modifications are critical 

prognostic factors for GBMs(184).

Epigenetic deregulation of multiple GIC-related pathways enables cancer cells to gain 

self-renewal and drug resistance properties. Wnt/β-catenin signaling can be activated 

by DNA methylation and aberrant histone modifications (185). Wnt/β-catenin signaling 

stabilized the epigenetic regulator KDM4C, and enhanced tumorigeneses and survival 

of human GBM cells(186). Another pathway that regularly interacts with epigenetic 

regulators is Notch signaling. DNA methylation of NOTCH1 and NOTCH3 inhibits GBM 

cell proliferation(187). Another study used sodium butyrate (NaB), a DNA methylating 

agent, to induce GBM apoptosis by decreasing HEY1 expression, suggesting that promoter 

methylation may regulate Notch signaling(188). In parallel to Wnt/β-catenin and Notch 

signaling, GICs also have high Sonic Hedgehog (SHH) signaling which is associated 

with better epigenetic memory. Hedgehog signaling can be epigenetically triggered in 

CSCs by Shh promoter hypomethylation and HDAC1 expression induction(179). BRD4, 

a wellcharacterized “epigenetic reader”, is also a critical regulator of GLI1 and GLI2 

transcription(189). Lysine acetyltransferase 2B (PCAF/KAT2B) is another epigenetic 

modulator which is important in regulating SHH signaling in GBM (190). Collectively, 

a sophisticated network of signaling pathways can be deregulated as a result of aberrant 

epigenetic modifications in GICs. These genetic alterations uphold the stemness of GICs and 

promote tumor progression (Fig. 2).

A better understanding of the mechanisms underlying GICs therapy resistance would 

improve the development of more effective therapies against GBM.

4. New therapies

Despite aggressive therapeutic measures, GBMs invariably continue to grow. Therefore, a 

broad search is underway for new and targeted therapies, such as inhibitors of specific 

molecular processes, nanoparticle carriers, and immunotherapy (Table.1 and Fig. 3).

4.1 Inhibitor therapy

Targeted inhibitors have been an additional therapeutic strategy for treating GBM(193). 

Inhibitors usually target a single biomarker or family of biomarkers that are markedly 

upregulated in malignant over healthy tissues. In general, inhibitors are developed either for 

extracellular targets like cell surface receptors or intracellular targets involved in signaling 

and activation of oncogenic pathways(193). These therapies have been tested alone and as 

a co-treatment with established therapeutics like TMZ or bevacizumab with varying but 

usually limited benefit.

4.1.1 PARP inhibitors—Poly (ADP ribose) polymerase (PARP) is a family of 17 

nuclear enzymes that catalyze the cleavage of NAD+ molecules leading to the addition 

of ADP-ribose to acceptor proteins(194). The PARP1 enzyme is a prognostic marker 

and its elevated expression is associated with poor survival in some cancer patients(194). 

PARP is important for repair of DNA nicks, cell death, and genomic stability(195). Cancer 

therapies like radiation and alkylating agents rely on DNA breaks for their anti-tumor effect. 
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Small molecule PARP inhibitors have been developed to improve the clinical efficacy of 

these therapies(196). PARP inhibitors can cause direct cytotoxic effects and potentiate the 

efficacy of alkylating agents. There is evidence to suggest that PARP inhibitors are most 

effective for GBM tumors with hypermethylated MGMT gene. In addition, PARP inhibitors 

can increase tumor sensitivity to TMZ chemotherapy, if the tumor has not previously 

been exposed to TMZ(196, 197). In addition to enhancing chemotherapy, PARP inhibitors 

synergize with radiation therapy because PARP1 activity increases 500-fold in the presence 

of DNA damage(198, 199). While several PARP inhibitors have been tested in vitro, only 

a few have been evaluated in GBM patients. A Veliparib-TMZ treatment regimen was 

evaluated in patients with recurrent GBM who had been previously treated with TMZ. 

Combination of TMZ and ABT-888 (veliparib) did not significantly improve PFS6 for either 

the bevacizumab-naïve or bevacizumab-failure patients (200). Similarly, co-treatment of 

children with diffuse intrinsic pontine glioma with veliparib, RT and TMZ did not show 

survival benefits(201). A phase I trial evaluating the safety and tolerability of cotreatment 

with olaparib and TMZ showed modest activity. Encouragingly, olaparib was found to have 

penetrated brain tumors both at the core and at the margins suggesting that the BBB was 

penetrated(202). Additional PARP inhibitors meriting further clinical study include niraparib 

and talazoparib (203–205). Many of these inhibitors show limited BBB penetration in 

preclinical models but evidence suggests the preclinical data might not faithfully predict 

clinical results(202, 204, 206). The true benefit, if any, of PARP inhibitor therapy for GBM 

patients remains to be determined.

4.1.2 Protein kinase inhibitors—Protein kinases are a involved in biochemical 

phosphate transfer reactions. Receptor tyrosine kinases are a family of high affinity 

cell surface receptors that have an extracellular domain with a ligand-binding site for 

many polypeptides, including growth factors and cytokines(207). Receptor tyrosine kinase 

pathways are known oncogenic drivers for malignant cancers(208). Several tyrosine kinase 

receptors, including vascular endothelial growth factor receptor (VEGFR), platelet derived 

growth factor (PDGF), fibroblast growth factor receptor (FGFR), and epidermal growth 

factor receptor (EGFR), are mutated and/or upregulated in GBM and have become 

attractive targets for novel therapy development(209–213). GBM is known to have high 

levels of VEGF expression resulting in highly angiogenic tumors and abnormal vessel 

formation(214). Inhibition of VEGFR or its substrates aims to stymie the growth of new 

blood vessels and starve the tumor of needed nutrients. Cediranib, an inhibitor of VEGF 

receptor tyrosine kinases has been evaluated in recurrent GBM as a monotherapy(215) 

or in combination with cilengitide(216), lomustine(217) or gefitinib(218), but has yet 

to receive FDA approval. Cediranib has the advantage of oral administration, targeting 

of multiple tyrosine kinases, and the ability to target intracellular VEGF receptors(215). 

Cediranib has been shown to help normalize tumor vascularization in a subset of patients 

which improved perfusion, oxygenation, and response to therapy. These patients had higher 

overall survival (OS) than the non-responding cohort(219). It was also recently discovered 

that cediranib sensitizes tumors to PARP inhibitors by downregulating homology-directed 

DNA repair(220). This discovery may encourage further investigations of combined anti­

angiogenic and PARP inhibitor chemotherapies. Unfortunately, to date, the use of anti­

angiogenic therapies for GBM has shown limited efficacy in clinical trials. One reason may 
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include inadequate patient selection (221). Lu-Emerson, et al., summarized results from 

recent anti-angiogenic trials for GBM and how to use biomarkers to select for patients in 

future trials(222).

Erlotinib is an inhibitor of EGFR and has been approved to treat non-small cell lung and 

pancreatic cancers. It garnered excitement as a possible therapy for GBM in the early 2000s 

with encouraging in vitro results. However, several clinical trials have failed to reproduce 

the positive results obtained in initial experimental studies or improve survival of patients 

with GBM(223–227). Gefitinib, another EGFR inhibitor, has similarly been tested with and 

without other therapies. A phase II trial showed some evidence of activity of gefitinib for 

recurrent GBM in a subset of patients. However, survival was worse for the majority of 

patients compared to treatment with TMZ at the first sign of relapse(228). Other clinical 

trials using gefitinib alone or with cotreatments have shown no significant improvements 

over currently approved therapies(229–231). While most clinicians agree that combination 

therapies will be needed to treat recurrent GBM, there has been little further investigation of 

these two EGFR inhibitors in recent years.

There are also a number of small molecular multi-targeted protein kinase inhibitors that 

have been evaluated in new and recurrent GBM. Imatinib was evaluated in phase II clinical 

trials in newly diagnosed GBM (inoperable or not fully resected) and recurrent GBM, 

with and without concurrent radiation, but showed no clinical activity(232–234). Imatinib 

was well-tolerated but suffered from poor BBB penetration, even after radiation therapy. 

Again, it is possible that lack of proper patient selection for tumors overexpressing the 

targeted protein kinases may have contributed to the trial’s unfavorable results. Phase II 

trials of imatinib with the addition of hydroxyurea, which inhibits ribonucleotide reductase, 

again showed little to no anti-tumor activity(235–237). Dasatinib is another small molecular 

multi-targeted tyrosine kinase inhibitor. An early phase I/II clinical trial in recurrent GBM 

demonstrated toxicity issues and was underpowered such that clinical efficacy could not 

be determined(238). A trial evaluating the efficacy of adding dasatinib to bevacizumab 

did not have any added treatment benefit in patients with recurrent GBM compared to 

bevacizumab alone(239). Dasatinib was also tested in pediatric patients with progressive/

recurrent GBM or diffuse intrinsic pontine gliomas with crizotinib, an oral c-Met inhibitor, 

but was poorly tolerated such that further investigation was discouraged in this patient 

population(240). Co-administration of dasatinib with lomustine (CCNU) unfortunately led 

to significant hematological toxicity(241). Sorafenib is another multi-targeted protein kinase 

inhibitor that has been tested in GBM patients(242). Several studies have evaluated the use 

of sorafenib with TMZ. Only one of these studies met its primary endpoint with 26% of 

patients achieving PFS at 6 months(243). The remaining trials with TMZ, bevacizumab, 

or erlotinib demonstrated safety of the combined therapy but no significant therapeutic 

efficacy(225, 244–246). Possible reasons leading to unfavorable study results included 

extensive prior therapy of some of the study participants and lack of selection of patients 

with tumors that expressed molecular targets for sorafenib (i.e., VEGFR, Raf-1 and wild­

type B-Raf, PDGFR, c-KIT, and Flt-3A). Additional studies combining sorafenib with 

temsirolimus, an inhibitor of mammalian target of rapamycin (mTOR) or tipifarnib, a 

farnesyltransferase inhibitor, led to significant toxicities(247, 248). Recent evidence suggests 

that sorafenib may sensitize GBM cells to tumor-treating fields (249). Sunitinib is a similar 
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multi-targeted protein kinase inhibitor that has been FDA-approved for the treatment of 

renal cell carcinoma but has failed to show efficacy for recurrent GBM in several clinical 

trials(250–252). Cabozantinib, another multi-targeted protein kinase inhibitor approved for 

the treatment of kidney cancer was evaluated in phase II trials for recurrent GBM and was 

welltolerated but did not meet predetermined statistical measures for success. Trials for 

pediatric patients are underway(253, 254).

4.1.3 Miscellaneous inhibitors—Additional molecular targets for inhibitors include 

myeloid cell leukemia-1 (MCL-1), and topoisomerase I inhibitors. MCL-1 is associated with 

PTEN deletion/mutation which occurs in 30–60% of GBM patients(255). Loss of PTEN in 

GBM cells led to upregulation of MCL-1 which is associated with resistance to apoptosis. 

There is preclinical evidence that the use of MCL-1 inhibitors in GBM may be an effective 

therapeutic strategy(255–257). A few MCL-1 inhibitors have gone to clinical trial (e.g., 

AZD5991, S64315, AMG 176, and AMG 397) mostly for the treatment of blood cancers 

but some have been halted due to concerns with cardiac toxicity(256, 257). Gossypol 

(AT-101), a polyphenolic compound that permeates cells and inhibits several dehydrogenase 

enzymes, has shown modest benefit in treating recurrent GBM, though few subsequent 

clinical trials have been initiated(258). Another biomarker under investigation is mTOR. 

Temsirolimus and everolimus are small molecular inhibitors that have been developed for 

mTOR which plays a role in glioma induction, growth, and progression(259). With these 

inhibitors, little to no radiographic improvements or benefit to progression-free survival 

have been observed when used as monotherapy and no added benefit was observed when 

used with bevacizumab or when compared against TMZ for patients with unmethylated 

MGMT promoters(260–265). The addition of everolimus and bevacizumab to radiation and 

TMZ as first-line treatment for GBM gave similar results compared to other phase II trials 

where bevacaizumab was added to first-line treatment(266). Additional mTOR inhibitors 

are currently being evaluated as potential cancer therapies (e.g., AZD-8055, OSI-027, and 

CC-115)(267). Irinotecan is a small molecular prodrug that, upon hydrolysis, is converted 

to SN-38, a topoisomerase I inhibitor(76). As a monotherapy, irinotecan has shown little to 

no benefit(268). It has been shown to have some activity in recurrent GBM although with 

some toxicity concerns(269–271). Use of irinotecan with TMZ for newly diagnosed GBM 

following concurrent chemoradiation therapy did not improve OS compared to TMZ alone 

and resulted in significant toxicities(272).

Targeted therapies for GBM have largely failed in clinical trials. A greater emphasis is now 

being placed on selecting patients whose tumors express the specific biomarkers targeted by 

the therapy(273, 274).

4.2 Immunotherapy

Immunotherapy has seen great success in the treatment of numerous cancers, but GBM has 

not been among the immunotherapy success stories. Several candidate therapies spanning 

antibodies and vaccines have reached phase III trials but yielded only modest gains in 

terms of clinical endpoints and survival. These experiences have underscored that additional 

interventions may be needed to achieve robust immune activation, potent effector cell 

activity, and durable treatment response. Here, we describe some of the most advanced 
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immunotherapies studied to date for GBM and the specific mechanisms of resistance that 

accompany each strategy.

4.2.1 Checkpoint inhibitors—Checkpoint inhibitors are among the most successful 

innovations in immunotherapy. They are monoclonal antibodies designed to interrupt 

binding of regulatory receptors on T cells. In the normal cell, downstream signaling by 

these activated checkpoint receptors exist to prevent excessive inflammation(275). However, 

tumor cells can also produce the corresponding ligand, thereby abrogating and eluding an 

immune response that would lead to tumor clearance. Hence, such receptors are sometimes 

considered markers of T cell exhaustion, as they are no longer able to mount an immune 

response despite their successful tumor infiltration(276). A number of these receptors and 

inhibitors have since been identified, with anti-CTLA4 (cytotoxic T-lymphocyte-associated 

protein 4), anti-PD-1(programmed cell death protein 1), and anti-PDL1 already being used 

in the clinic (Fig. 4).

For GBM, the greatest translational success has been seen with anti-PD-1 agents, nivolumab 

and pembrolizumab. When PD-1 binds to its ligand, there is downregulation of T cell 

activation(275). A trial from Dana-Farber Cancer Institute revealed patients who received 

pembrolizumab prior to surgery showed significant improvement in overall survival(281). 

However, in a Phase 3 clinical trial, CheckMate 143, nivolumab monotherapy failed to 

demonstrate an increase in overall survival versus bevacizumab (9.8 vs 10 months) for 

recurrent GBM(282). Additionally, monotherapy was found to be better tolerated than 

dual therapy with anti-CTLA4. Further findings in phase III trials, CheckMate 498 and 

CheckMate 548, also did not identify improvement in overall survival for standard therapy 

with and without anti-PD-1 in patients with MGMTmethylated GBM(283, 284).

Several checkpoint inhibitor-specific mechanisms of resistance have been described across 

cancers and may generalize for GBM. One transcriptome analysis of melanoma biopsies 

found an “innate PD-1 resistance gene signature” that could predict response to anti­

PD-1(285). In this study, resistant tumors exhibited increased expression of genes regulating 

mesenchymal transition, cell adhesion, extracellular matrix remodeling, angiogenesis, and 

wound healing. Other work in a lung tumor model has shown that anti-inflammatory 

immune cells in the tumor microenvironment (TME) can decrease the efficacy of checkpoint 

inhibitors. For example, tumor-associated macrophages (TAMs) have been observed to 

remove anti-PD1 antibodies bound to CD8+ T cells (286). Additional preclinical studies on 

several cell lines have suggested that Treg apoptosis due to TME-related oxidative stress can 

generate adenosine release and anti-PD-L1 resistance(287).

Various mechanisms also prevent checkpoint inhibitors from generating a robust or durable 

T cell response. This is, in part, due to impaired epigenetics and memory cell formation, 

resulting in T cell exhaustion and immune evasion of the tumor(288, 289). Furthermore, 

several other checkpoint molecules may compensate for blocked PD-1 function(290). LAG3 

is one example found on CD4, CD8, and Tregs. Like PD1, LAG3 normally inhibits T cell 

receptor activation and cytokine production(291). TIM3 is another promising checkpoint 

target, seen during the late stages of disease and T cell exhaustion. Binding to its ligand can 

lead to effector T cell apoptosis(292). Both LAG3 and TIM3 inhibitors are being assessed in 
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combination with anti-PD1 in GBM Phase I clinical trials. (NCT02658981, NCT03961971). 

Given the complex interplay of checkpoint regulators, clinical trials have also begun to 

explore combination therapies.

4.2.2 Vaccines—Vaccines can be largely divided into peptide-based vaccines and cell­

based vaccines. While the vehicles may differ, both ultimately require antigen presentation 

and T cell activation. Much of the early enthusiasm for cancer vaccines has since been 

redirected due to their limited success. Nevertheless, cancer vaccines have provided 

important insights on immune responses of GBM and are continuously investigated, 

especially in conjunction with multimodal treatment regimens.

4.2.2.1 Peptide-based vaccines: The most studied peptide-based vaccine, rindopepimut, 

targets the EGFRvIII variant. Wildtype EGFR of the ErbB family of kinase receptors is 

activated by EGF signal for cell proliferation, cell migration, and apoptosis inhibition(293). 

In approximately 20–30% of GBMs, EGFRvIII has a truncated extracellular domain, which 

prevents binding and leads to constitutive activation. The resulting amino acid sequence 

spanning across the deleted portion is tumor-specific, not found in any normal tissues(294). 

This specific epitope led to the development of rindopepimut (CDX-110-KLH), a 14 amino 

acid peptide, enhanced by the keyhole limpet hemocyanin carrier protein.

Rindopepimut underwent several early clinical trials, ultimately reaching a phase III trial 

(ACT IV) assessing vaccine efficacy in GBM patients with minimal residual disease. The 

control arm surpassed expectations and was statistically insignificant from rindopepimut, 

with a median OS of 20.0 and 20.1 months, respectively(295). The investigators had 

previously used historical controls during their phase I and II trials, which might have 

led to an overestimation of rindopepimut’s efficacy. Reasons for subsequently noted lower 

performance of the vaccine in GBM included variable responses to human leukocyte antigen 

(HLA) haplotype and antigen escape (296). One study reported that 82% of treated GBMs 

did not express EGFRvIII at the time of tumor recurrence(297). Since then, one small phase 

II trial (ReACT) combined rindopepimut with bevacizumab for recurrent GBM and reported 

a small survival benefit of the experimental group (12 months) compared to the control 

group (8.8 months)(298).

4.2.2.2 Cell-based vaccines: Among cell-based vaccines, the DCVax is possibly the most 

prominent. In this strategy, dendritic cells (DCs) generated ex vivo from patient derived 

peripheral blood are pulsed with different sources of tumor-associated antigens (TAAs), such 

as autologous tumor lysates, antigen peptide, and TAA-encoding RNA. These naturally­

derived, mature DCs showed stronger antigen presentation potential(299). Moreover, the 

DCVax enabled customized targeting of multiple tumor antigens for potentially durable 

response. This approach has been cautiously monitored for the theoretical risk of developing 

an immune response to normal tissue antigens(300). Multiple early clinical trials were able 

to identify GBM patients for safe DCVax application, culminating in a phase III study. 

Although the study has yet to be formally completed, median overall survival has been 

reported at 23.1 months(301).
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Several challenges unique to DCs have precluded the efficiency of cell-based vaccines. 

Interestingly, one group described that mature DCs in melanoma may be more motile 

and capable of migration to lymph nodes(302). Additionally, the immune suppressive 

environment can hinder a desirable DC-NK cross talk, whereby DC maturation leads to 

enhancement of NK cytotoxicity and IFN-y production. This has led to consideration of 

vaccine adjuvants such as, alpha-galactosylceramide or poly(I:C) to enhance NKT and 

DC activity in GBM treatment(303–305). Current clinical trials continue to incorporate 

these adjuvants while optimizing the antigen selection with personalized strategies. In 

addition, combination strategies with checkpoint inhibitors such as anti-PD-1 are also being 

considered at the preclinical phase in glioma(306).

4.2.3 Virotherapy—Over the past few decades, virotherapy has evolved from a primarily 

oncolytic to a broader viroimmunotherapeutic approach. Previously, treatment was designed 

to infiltrate the tumor, mitigate tumor defenses and induce a rapid, large-scale tumor cell 

death. Now, the focus of the field has shifted from direct oncolysis (payloads of virus) 

to immunostimulatory effects to induce long-lasting antitumor immune response (307). 

There are a variety of oncolytic viruses that can be armed with immunoregulatory inserts, 

like IL14, GMCSF, OX40 ligand or INFbeta to increase safety (308–311).The release of 

tumor associated antigens or damage-associated molecules can lead to durable and systemic 

effects, as evidenced in metastatic melanoma(312). Some parallels have been seen in GBM, 

where the application of an oncolytic adenovirus has led to CD8 effector T cell activation 

and downregulation of checkpoint inhibitors (313).

A challenge of therapy with oncolytic viruses is to achieve adequate replication of the virus 

in the tumor and tumor lysis. Viral vectors must avoid triggering an inflammatory response 

that would invite early elimination(314). Combination regimens have been proposed to avoid 

this premature viral clearance. Chemotherapies, radiation, and steroids are all post-operative 

steps that can temporarily suppress the innate immunity and support viral infection and 

dissemination(315, 316).

Several virotherapies have been investigated in clinical trials for the treatment of GBM, most 

notably vocimagene amiretrorepvec (Toca 511), which depends on a non-lytic strategy. In 

this model, a replicating retrovirus encoded with a cytosine deaminase is injected into the 

tumor bed with the goal to achieve preferential tumor cell infection over several weeks. 

At that time, the encoded virus converts a prodrug, Toca FC, to 5-fluorouracil which will 

in turn impair thymidylate synthase and cell replication(317). Several weeks later, when 

viral infection has been achieved, this prodrug-converting enzyme can convert valaciclovir 

into a nucleotide analogue and interrupt tumor cell replication(318). Early clinical trials 

reported a median overall survival of 13.6 months for recurrent or progressive GBM, 

which is promising when compared to historical controls. Additional viral studies have 

been performed with alternative vectors as adenovirus, poliovirus, cytomegalovirus and 

herpes virus(319). ASPECT is one such Phase III clinical trial for patients with operable 

high-grade glioma currently underway which assesses the use of an adenovirus encoded with 

herpes-simplexvirus thymidine kinase(320).
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4.2.4 Chimeric antigen receptor T (CAR T) cells—Treatment with CAR T cells 

involves collection of allogeneic T cells from peripheral blood, ex vivo genetic engineering 

of the cells to express receptors against specific tumor associated antigens, and adoptive 

transfer of the tumor-targeted T cells. CAR T cells can bind the tumor antigen without 

antigen processing and independent of HLA-mediated antigen presentation. Immune cell 

activation signals are derived from CD3 and co-stimulatory receptors, such as CD28 or 

TNFRSF9/4–1BB (321). Several early phase clinical trials with tumortargeted CAR-T cells 

have been completed, targeting various tumor antigens such as EGFRvIII, HER2, and 

IL13R α2(322–324) in GBM. It remains to be seen whether there are significant and 

durable survival benefits for patients with GBM(322, 323). Several other targets for GBM 

are also actively being evaluated including CD147, also known as extracellular matrix 

metalloproteinase inducer, as well as B7-H3, an immune checkpoint transmembrane protein 

overexpressed in GBM(325). (NCT04045847, NCT04385173)

As with other therapies, CAR T cell therapies are subject to many barriers affecting a robust 

T cell response such as adequate T cell infiltration and activation. Tumor plasticity, antigen 

loss and heterogeneity continuously counteract CAR T cell therapies(326). Decreased 

expression of the target antigen, presence of splice variants and epitope modifications 

after treatment have all been observed(327). Additionally, not all tumor cells express 

the targeted antigen at any given time, while current versions of CAR T cells have a 

limited receptor repertoire. Recent work has described the expansion into bispecific T 

cell engager (BiTE) and trivalent CAR T cells, enabling recognition of multiple tumor 

antigens. Unfortunately, immunosuppressive features of the tumor microenvironment, Tregs 

and TAMs can counteract the efficacy of CAR T cells or promote T cell exhaustion (328). 

Finally, intrinsic pathways can interrupt sustained therapeutic activity of CAR T cells, 

such as chronic antigen exposure and tonic CAR signaling, which can also lead to T cell 

exhaustion.

Overall, many approaches for immunotherapy of GBM rely on activated T cells. Unlike 

other solid malignancies, GBM treatment is uniquely challenged by its immune-privileged 

state(326). Intrinsic characteristics of tumor cells can block this activation, leading to 

a “cold” tumor(329). For example, continuous changes in the tumor cell’s mutational 

profile can lead to loss of neoantigens that are initial targets for therapeutic T-cells 

(330). This differs from many hematologic malignances which exhibit more clonal cell 

populations(331). Meanwhile, extrinsic mechanisms can also hinder immune cell infiltration 

and coordinate an immunosuppressive tumor microenvironment. This can contribute to 

tumor-promoting resident immune cell populations and secreted factors in the tissue space. 

While immunotherapy alone fails to provide significant survival benefits for brain cancer 

patients, accumulating evidence shows that adjuvant radiation can prime and activate 

immune cells to tumor-derived antigens, induce presentation of neo-antigens in the tumor, 

and improve immune-suppressive environment, all of which sensitize brain cancers to 

immunotherapies by converting the immune environment from “cold” to “hot”(278, 332) 

(Fig.5). We found that irradiation improves IL-8 secretion by tumors, thus, we constructed 

IL-8 receptor-modified CD70CAR T cells to migrate into the tumor and induce an 

enhanced antitumor response in GBM(333). Additionally, Murty et al. found concurrent 
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irradiation improved intravenous adoptive T-cell administration in the treatment of GBM in a 

preclinical immunocompetent GBM model(334).

4.3 Nanotherapy

Conventional therapies for GBM can only marginally prolong the survival of patients 

with GBM. The vast majority of patients with GBM will die within 1–2 years after their 

diagnosis. Some challenges to successful treatment include the difficulty of complete tumor 

resection, the inefficient delivery of chemotherapeutic drugs, and the incomplete eradication 

of GICs. To overcome these obstacles, the application of nanoparticulate anti-GBM drugs 

has been proposed.

4.3.1 Passive tumor targeting: EPR effect—Nanoscale drug systems are based on 

polymeric micelles, liposomes, inorganic nanoparticles, nanotubes, or dendrimers(335, 336) 

(Fig.6) with attached or internalized chemotherapeutic drugs, sensitizers, or RNA(337). A 

limited permeability of the blood brain barrier (BBB) is the major obstacle in traditional 

GBM treatment. As a result of the angiogenesis process, the blood vessels in a tumor 

may develop a leaky endothelium which allows the entry of macromolecules, such as 

nanoparticles. After intravenous administration, nanoparticles diffuse into tumor tissue. 

While small molecular drugs extravasate more easily into tumors, they can also diffuse 

quickly back into the blood. By contrast, the large size of nanomaterials prevents diffusion 

of extravasated macromolecules back into the blood. This phenomenon is known as the 

enhanced permeability and retention (EPR) effect(338–340). The size of macromolecular 

drugs is critically important to achieve an ideal compromise between vascular extravasation 

and tumor retention. Xu et al. compared the tumor targeting efficiency of nanoparticles 

between 3 nm and 30 nm. The study showed that 3 nm nanoparticles exhibited much greater 

tumor targeting efficiency and penetration compared to the 30 nm nanoparticles(341). Bort 

et al developed ultrasmall polysiloxane-based nanoparticles with a hydrodynamic diameter 

of approximately 4 nm, which extravasated into rodent tumors and have recently been 

further developed towards a phase I clinical trial in patients with brain metastases(342).

4.3.2 Active tumor targeting—The EPR effect is highly dependent on the permeability 

of blood vessels within a tumor, to improve tumor targeting, nanoparticle carriers have been 

decorated with specific antibodies, peptides, or aptamers, which can be actively targeted to 

specific surface markers of tumor cells (Fig.6).

Nanocarriers can transport RNA inhibitors such as siRNAs, miRNAs and LncRNAs(343–

347), can be targeted against specific surface markers such as Cx43, CD133, CD44, 

CD163, CD15, CD49f, CD90 or target signaling pathways such as Hedgehog, Notch, 

PI3K/Akt/PTEN/mTOR, cAMP-Epac, NF-κB, Jak/STAT(337, 348, 349). Specific tumor 

targeting is commonly associated with certain nanocarriers. PEG-modified liposomes allow 

the attachment of functional groups targeting tumor tissues and reduce uptake by the 

reticuloendothelial system (350). In one case, Pep-1-conjugated PEGylated nanoparticles 

loaded with paclitaxel (Pep-NP-PTX) improved anti-glioma efficacy with a median survival 

time of 32 days in mouse models, which was significantly longer than that of control mice 

treated with PTX-NP (23 days) and Taxol® (22 days)(351). Grafals-Ruiz et al developed 
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gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein 

E (ApoE) and rabies virus glycoprotein (RVG). Spherical nucleic acids (SNAs)-Liposome­

ApoE were able to cross the BBB and showed a high accumulation in brain tumor 

tissues. Furthermore, SNA-Liposome-ApoE specifically targeted a highly abundant miRNA 

(miR-92b), which is aberrantly overexpressed in GBM (352). Belhadj et al developed 

a multifunctional liposomal glioma-targeted drug delivery system (c(RGDyK)/pHA-LS) 

modified with cyclic RGD (c(RGDyK)) and p-hydroxybenzoic acid (pHA). In their study, 

c(RGDyK)/pHA-LS/DOX showed a median survival time of 35 days, which was 2.31-, 

1.76- and 1.5-fold higher than that of LS/DOX, c(RGDyK)-LS/DOX, and pHA-LS/DOX, 

respectively(353).

4.3.3 Stimuli-responsive drug release—Although various delivery platforms, such 

as PEGylated nanocarriers, have been developed to prolong circulation and improve drug 

solubility, the delivery efficacy of most nanocarriers is still quite low(354). Thus, stimuli­

responsive nanocarriers are rationally designed to deliver and release drugs by responding 

to internal stimuli, such as pH, hypoxia, reactive oxygen species, enzyme activity, etc., 

or external stimuli, including ultrasound, light (e.g., laser), temperature (i.e., thermal) 

and magnetic field, etc (336, 355) (Fig.6). can specifically delivery cargos to the tumor 

microenvironment.

GBMs are characterized by extensive tissue hypoxia and various nanocarriers have been 

designed to target hypoxic tumors (356). Liu et al developed hypoxia-responsive ionizable 

liposomes, which showed enhanced therapeutic efficacy of small interference RNA (siRNA) 

anticancer drugs when exposed to low pH and hypoxic tumor microenvironment in 

glioma(357). GBMs are known for their resistance to radiotherapy due to intratumoral 

hypoxia. Hua et al have designed angiopep-2-lipid-poly-(metronidazoles)n (ALP-(MIs)n) 

hypoxic radiosensitizer-polyprodrug nanoparticles (NPs), which enhanced the radiotherapy 

sensitivity of gliomas(358). Enzyme activity is another internal stimuli to be considered. 

We developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine 

(CLIO-ICT), which is specifically activated by the enzyme, matrix-metalloproteinase 14 

(MMP-14). Since MMP-14 is highly expressed in GBM, but not in the normal brain or 

normal visceral organs, it provides cancer-specific therapy with little or no side effects. 

Upon-cleavage by MMP-14, CLIO-ICT releases azademethylcolchizine in the tumor tissue, 

which disrupted the tumor vasculature and killed tumor cells and GIC in GBM (359, 

360). Our study showed that treatment with CLIO-ICT plus TMZ and irradiation lead to 

significantly improved tumor growth inhibition and overall survival of mice with GBM 

when compared to controls that received monotherapy. In addition, the iron core of CLIO­

ICT enabled in vivo drug tracking with MR imaging, demonstrating in vivo tumor drug 

accummulation.

External stimuli also have been studied extensively to improve nanodrug delivery 

in GBM. Although the BBB is disrupted in GBM patients, overwhelming clinical 

evidence demonstrates the existence of an intact BBB in all GBM, which limit 

therapeutics delivery and efficacy (361). The combination of focused ultrasound (FUS)­

BBB opening and externally applied magnetic field (MT) could deliver nanodrugs more 

effectively to deepseated GBM tumors(362, 363). Most recently, Curley et al. used 
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MRI–FUS and microbubbles to deliver “brainpenetrating” nanoparticle (BPN), which 

yielded markedly augmented interstitial tumor flow and enhanced BPN penetration 

in GBM(364). Fan et al. developed boron-containing polyanion [polyethylene glycol-b­

poly((closododecaboranyl)thiomethylstyrene) (PEG-b-PMBSH)] nanoparticles (295 ± 2.3 

nm in aqueous media) and coupled them with microbubble-assisted FUS for GBM 

treatment. They found the combination may improve boron neutron capture therapy 

(BNCT) in GBM(365). Li et al. developed polysorbate 80- modified paclitaxel-loaded 

PLGA nanoparticles (PS- 80- PTX- NPs, PPNP), which showed significantly stronger anti­

tumor efficacy in the tumor- bearing mice when combined with FUS(366). Furthermore, 

magnetic hyperthermiamediated cancer therapy (MHCT) has shown promising results in the 

preclinical studies. MHCT has applied magnetic nanoparticles to heat tumor tissues, which 

is based on an alternating magnetic field (AMF)(367, 368). Gupta et al. have developed 

manganese-doped magnetic nanoclusters for hyperthermia and photothermal GBM therapy, 

they observed oxidative stress produced in the cellular environment and confirmed the 

ROS-dependent apoptosis of GBM cells via the mitochondrial pathway(369). Mamani et al. 

found magnetic hyperthermia effectively decreased cell viability (about 20% and 100% after 

10- and 30-minutes therapy) with a GBM 3D cells culture model(370).

4.3.4 Different administration routes for drug delivery—An intranasal route of 

drug administration can enable therapeutic compounds to reach GBM tumors in significantly 

higher doses than with intravenous administration. Sousa et al. developed BCZ-loaded 

PLGA nanoparticles and intranasally injected them into a GBM mouse model. The drug was 

found to be efficiently delivered to the brain with very limited off-target delivery to visceral 

organs, such as the lung and liver(371). Khan et al established nano-lipid chitosan hydrogel 

formulations for a nose-to-brain delivery of TMZ. After intranasal administration, TMZ 

release to GBM was 60% within 24 h and Wistar rats showed an increased drug targeting 

efficiency (DTE) of 326% and a direct transport percentage (DTP) of 93% compared to the 

intranasal administration of nano-lipid formulation as a control (DTE, 113.36% and DTP, 

71.74%)(372). Similarly, the concomitant intranasal administration of chitosan nanoparticles 

attached with a Gal-1 siRNA enhanced the efficacy of anti-PD-1 antibodies with a median 

survival of 51.5 days, which is significantly higher than the control groups (17.5 and 30 days 

for untreated mice and anti-PD-1 antibodies alone, respectively)(373).

Intratumor administration can also be effective in cases of a solitary tumor which cannot 

be surgically removed. The injection can be carried out with a syringe or catheter 

at the tumor location or with the help of convection enhanced delivery (CED). CED 

is a technique which can precisely control the infusion rates of anti-GBM compound 

towards GBM tumors by maintaining a hydrostatic pressure gradient(374). CED was first 

introduced in 1994(375) and applied widely in clinical trials for the non-nano-formulated 

anti-cancer compounds(376–380). CED involves drilling a small burr hole into the skull and 

stereotactically positioning catheters to the interstitial space next to the tumor using image 

guidance. Once in position, the catheter can deliver many different kinds of therapeutic 

or imaging contrast agents to the site (e.g., small molecules, proteins, viruses, liposomes, 

nanoparticles, etc.)(381, 382). This technique ensures delivery to the tumor without 

needing to bypass the blood-brain barrier (BBB), but it failed mostly due to insufficient 
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drug distribution(383). Later, it was tested with nano-formulated drugs and showed high 

retention time in tumors. Polymeric nanoparticles such as poly(lactide-coglycolide) (PLGA) 

nanoparticles were used for CED. CED of carboplatin nanoparticles conferred greater tumor 

cytotoxicity and reduced neuronal toxicity in rat and porcine models(374). Finbloom et 

al found that the CED of virus-like particles (VLPs) and nanophage filamentous rods 

modified with doxorubicin (DOX) required smaller doses than traditional intravenous routes 

to achieve comparable survival outcomes(384).

Several potential benefits of anti-GBM nano-drugs have been identified: 1) Improving 

surgical tumor removal. Most recently, fluorescence guided resection of GBM after 

intravenous administration of a fluorescent mini nanoimaging agent (NIA) or fluorescent 

silica coated iron oxide nanoparticles greatly improved the intraoperative delineation of 

GBM(385, 386). 2) Improving the efficacy of chemotherapy and reducing side effects. 

As described above, nano-scale drugs have a greater blood circulation half-life and can 

be predominantly delivered to the tumor via the EPR effect or active delivery systems. 

Targeting specific markers of tumor cells reduces toxicity to healthy cells and thus decreases 

side effects(339) 3) Enhancing the efficacy of radiotherapy. Recent studies have shown that 

nanodrugs that kill GICs can enhance the efficacy of radiotherapy(360, 387). Radiation 

therapy could, in turn, enhance nanotherapy by affecting the prevalence and polarization of 

tumor-associated macrophages(388). 4) The nanoparticle carrier can be designed to actively 

induce an immune response (389, 390). Our group showed that the iron oxide nanoparticle 

ferumoxytol induced pro-inflammatory macrophage polarization and thus inhibited tumor 

growth(391). Overall, nanotherapeutics have many advantages for treating GBM, which can 

enhance the efficacy of traditional therapy.

4.4 Miscellaneous therapies

4.4.1 Laser interstitial thermal therapy (LITT)—LITT is a method for delivering 

thermal energy to GBM using a stereotaxic device with the goal to ablate the tumor tissue. A 

small burr hole is drilled into the skull through which an optical fiber is threaded and guided 

to the center of the tumor. The fiber creates heat which burns and kills the tumor tissue. The 

heat generated can be monitored using MR-thermometry to ensure safe use and no harm to 

healthy adjacent tissue. Advantages of LITT over standard surgery include the minimally 

invasive approach and feasibility to treat inoperable tumors. This technology has been used 

with other types of brain lesions and was particularly useful for high grade gliomas(392). 

After treatment with LITT, patients with smaller tumors (<4 cm3) demonstrated higher 

survival rates and fewer perioperative complications compared to patients with larger tumors 

(>4 cm3)(392, 393). Despite promising results, side effects from LITT can include swelling 

and inflammation which can cause neurological side effects. Traditional surgery also leads 

to inflammation; however, the effect is mitigated since there is space left where tissue was 

removed. With LITT, the dead treated tissue is still present. There is still no clear guidance 

on who should receive this treatment, but it is a useful tool to supplement existing treatment 

strategies.

4.4.2 Tumor-treating fields (TTFields)—Tumor treating fields are a new treatment 

modality for GBM. It was approved by the FDA in 2011 for recurrent GBM and in 2015 
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for newly diagnosed GBM. More recently, TTFields has been approved by the FDA for 

the treatment of patients with pleural malignant mesothelioma(394). The treatment requires 

the patient to wear a device on their shaved head that delivers low-intensity, intermediate 

frequency, alternating electric fields(395). The alternating electric fields produce antimitotic 

effects that are selective for rapidly dividing cells with the maximal benefit occurring when 

the electric fields are parallel to the axis of cell division(396). Given that cells in a tumor 

are turned in many different directions, the treatment is most effective when two or more 

orthogonal pairs of transducer arrays are used. One major benefit to TTFields is the limited 

toxicity and mild side effects (usually only skin irritation that can be managed with topical 

treatments). The greatest determinant of treatment success is patient compliance in wearing 

the device since the treatment is only working when the device is worn and the electric 

fields are “on”. This technology has been slow to gain traction in the clinic possibly due 

to the sparse scientific literature and variable compliance of patients to shave their head, 

wearing the device > 75% of the time, and carrying around a large battery pack. However, 

the benefits of TTFields are clear. In a phase III multi-center clinical trial, it was shown that 

in a population of nearly 700 patients, those that received TTField therapy in addition to 

TMZ had a significantly enhanced progression-free survival (~5 months) and significantly 

enhanced overall survival(397). Optimization of therapy will come from further examination 

of the mechanisms of actions of TTFields. For instance, it has been shown that TTFields 

can disrupt the membrane composition and permeability of cancer cells(398) and this could 

explain the synergistic effects of combination therapies of TTFields with chemotherapeutics 

such as Withaferin A (399).

5. Future therapeutic strategies

In 2005, when Stupp et al. demonstrated a major pharmaceutical progress for GBM 

management by combining radiotherapy and adjuvant TMZ therapy(5). Since then, there 

have been advances in understanding genetic drivers of tumor development and progression. 

Many of these molecular characteristics were included in the World Health Organization 

(WHO) 2016 updated classification of tumors of the central nervous system including 

IDH mutant/wildtype status, 1p/19q deletions, EGFR amplification, and mutations in TP53, 
PTEN, ATRX, and TERT promoters(400). There have been improved 2- and 3- year survival 

rates, but 5-year survival rates remain poor(401). Advances in precision medicine, surgical 

techniques, and combination therapies will shape the future directions for GBM treatment.

5.1 Precision medicine

Ideally, a given patient’s brain tumor would be screened for specific biomarkers that could 

be paired with selective drugs. Only patients having high expression of the biomarker 

would receive a targeted drug. The treatment plan would likely change over time as the 

tumor evolves and would also look different for patients with different tumor characteristics. 

For example, O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation 

has already been shown to predict tumor response to TMZ therapy (402). Exosomes, 

extracellular vesicles, and microRNA assays are also being used as biomarkers for 

GBM (403–406). Intraoperatively, mass spectrometry (MS) can sensitively and specifically 
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identify molecules in the tumor(407), aiding the surgeon in defining the tumor margin and 

determining the most effective systemic therapy.

GBM is marked by extensive inter- and intra-individual heterogeneity in driver mutations 

and molecular subtypes (408). Identification of new biomarkers is also important for 

treatment of recurrent GBM as 90% of druggable targets are differentially expressed in 

a recurrent tumor compared to the tumor at initial diagnosis(409). Patients may need to 

receive new therapies over the course of their disease. Le Rhun et al. provided an in depth 

summary of known GBM-specific biomarkers(410). Many GIC markers are also being 

explored, including CD133, CD44, CD15, CD70, S100A4, ALDH1A3, NANOG, OCT-4, 

SOX-2, and NESTIN(411–414).

Tools that aid discovery and understanding of biochemical pathways will likely include 

new genetic screening techniques(415, 416), next generation sequencing and epigenetic 

studies(417). In addition, machine learning algorithms and bioinformatics analyses of tumor 

omics data will enable correlations of complex multi-factorial clinical information with 

tailored treatment options(418, 419). Machine learning algorithms could be designed to 

predict responses to treatment and support treatment decisions(420). Furthermore, organoids 

gain more and more attention in recent years. Organoids possess greater predictive power 

compared to assays of single cell monolayers and can be used to test patient-specific 

therapies(421, 422). They are especially useful in situations where patient samples are 

difficult to obtain(423, 424). Some organoid models have even been shown to exhibit 

stage-specific neural development and yield pathology results similar to resected patient 

tumors(425).

Unfortunately, targeted therapies in clinical trials have had limited success thus far, partly 

due to the heterogeneity and plasticity of GBM but also due to practical limitations(193). 

A future clinical trial would likely have the following elements: i) strong evidence of 

anti-tumor activity in relevant pre-clinical models, ii) selection of patients with molecular 

enrichment for the drug target ideally with a non-invasive diagnostic technique, iii) a 

drug that by design or by delivery route accounts for the restrictive nature of the BBB, 

iv) inclusion of tissue collection or advanced molecular imaging during the treatment 

for analysis of pharmacodynamic markers, and v) close integration of advanced imaging 

technologies and treatment, including advanced imaging biomarkers for improved tumor 

detection, characterization and treatment monitoring.

5.2 Advances in surgical techniques

Given the importance of complete tumor resection toward positive patient outcomes, 

advances in surgical techniques and image guidance will be critical for the future of GBM 

treatment. LITT has shown efficacy in improving quality of life, cognition, and stabilization 

of Karnofsky Performance Status (KPS) score for patients suffering from radiation 

necrosis(426). Appropriate patient selection is important. LITT may not be appropriate for 

patients who are significantly functionally compromised(393). The development of novel 

fluorescent imaging agents and trelated equipment may improve the surgeon’s ability to 

see and remove the entire tumor. Only 5-aminolevulinic acid (5-ALA) is approved for 

intraoperative use in GBM resection(49, 427, 428). Unfortunately, the US was a full decade 
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behind Europe in approving this clinical imaging agent(49). In addition, diffusion tensor 

imaging (DTI)-MRI has also shown promise to visually help locate important motor fibers 

which can be spared during tumor resection(429). In addition to improving tumor resection, 

emphasis should be placed equally on improving safety as new deficits after surgery can 

eliminate the survival benefits of surgery(430).

5.3 Combination therapies

Unfortunately, current combination therapies for the treatment of GBM are often rendered 

ineffective because the tumor can find redundant compensatory mechanisms. This was 

likely the reason why isolated studies that targeted PI3K/AKT/mTOR, p53/RB pathways, 

or EGFR gene amplification or mutation, have failed to improve outcomes(410). Therefore, 

to be successful, novel GBM therapies target distinct biological pathways and include 

novel methodologies such as electric field, viral, or cell-based therapeutic strategies. Tumor 

treating fields (TTFields) may be particularly suited for combination therapy(431). TTFields 

elicit a therapeutic effect by applying alternating electric fields that alter DNA repair, 

membrane permeability, and immunological responses(432).

Major considerations for combination therapies are the method of delivery, time of 

administration, and the order of therapy(433). Nanocarriers hold promise for delivery of 

multiple chemical therapeutics and/or a high payload to GBM tumors in a single dose. 

Nanoparticles are then often phagocytosed by tumor-associated macrophages which can 

create both limitations and opportunities (434). Encapsulating several agents in a single 

nanocarrier can deliver them together (435). For radiation therapy, fractionated doses are 

important for normal cell recovery and reoxygenation of acutely hypoxic tissues(436). 

In addition to DNA damage induced by radiation, the “abscopal effect” can prime and 

activate the innate immune system (437–439). The order of combination therapies also 

needs to be carefully evaluated. For example, a first therapy could be used to “prime” the 

tumor microenvironment and make it more receptive for a subsequent second therapy(440). 

“Priming” may include normalizing the vasculature, reducing stress associated with the large 

solid tumor mass, or degrading the extracellular matrix for better drug penetration (441).

6. Conclusion

GBM continues to be the most lethal tumor type with limited treatment options. Given 

the genomic complexity and multiple signaling pathways of GBM, a monotherapy will 

likely not be effective. An effective treatment approach for GBM will require combination 

therapies targeting distinct oncogenic pathways. A comprehensive understanding of the 

molecular biology of GBM, along with mechanisms of therapy resistance and effective 

integration of different therapy approaches will be key for the development of effective 

therapies. While histology and the identification of chromosomal deletions are important to 

estimate prognosis and plan targeted therapies, imaging can help in guiding surgeries and 

monitoring treatment response.
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Fig.1. 
Cellular origin and heterogeneity of glioblastoma multiform (GBM). GBM tumors originate 

from three types of cells in the brain parenchyma: neural stem cells (NSCs), NSC-derived 

astrocytes, and oligodendrocyte precursor cells (OPCs). GBM is characterized by extensive 

intertumor and intratumor heterogeneity, and has, therefore, been divided into four sub­

groups: mesenchymal, classical, proneural, and neural.
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Fig. 2. 
The molecular mechanisms of resistance in glioma initiating cells (GICs). GBM is 

characterized by extensive intratumoral hypoxia. GIC niches are most commonly to be 

found in tumor core regions that are lessoxygenated. GICs are generally resistant to 

therapies and mostly due to following mechanisms: 1) Enhanced DNA repair capacity. 

Cell cycle arrest at G2 phase in GICs allows the DNA repair and further enter mitotic 

phase. 2) GICs express higher level of ABC transporters which promote efflux of 

therapeutic compounds. 3) The poorly oxygenated tumor tissue creates perfect GIC 

niches, which induce autophagy to maintain cellular homeostasis. Protective autophagy 

can also be triggered in GICs when challenged by cytotoxic therapies. 4) Epigenetic 

modifications contribute to functional heterogeneity and maintenance of GIC hierarchies. 

Multiple GICs-related signaling pathways (Wnt/β-catenin, Sonic Hedgehog (SHH), Notch) 

can be epigenetically regulated to gain self-renewing capabilities and drug resistance 

properties(179, 191, 192).
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Fig. 3. 
New therapies described in this review.
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Fig.4. 
The inhibition of CTLA-4 and PD-1 in GBM immunotherapy. Dendritic Cells (DCs) 

traffic between CNS tumors and the cervical lymph nodes to prime T cells against tumor 

neo-antigens. T cells receive effective activation signals with the engagement of two T 

cell receptors, antigen-specific T-cell receptor (TCR) and CD28, simultaneously. TCR 

binds to tumor-associated antigens (TAA) presented on major histocompatibility complex 

(MHC) molecule while CD28 interact with CD80/CD86(B7–1/2 receptors) costimulatory 

molecules on the surface of DCs. T cell activation leads to upregulation of checkpoint 

molecule CTLA-4(cytotoxic Tlymphocyte-associated protein 4). The interaction of CTLA-4 

and CD80/CD86 of DCs results in blockage of T cell activation. The effector T cells 

can proliferate and migrate to the tumor microenvironment, leading to tumor eradication 

via MHC-I/TCR interaction. Some GBM cells and TAM-BMDMs express high levels 

of checkpoint molecules including transmembrane protein PD-L1. PD-L1 binds to PD-1 

receptors on T cells, which leads to attenuation of TCR and CD28 signals, and subsequently 

promotes T cell apoptosis and functional exhaustion. Cytotoxic T cell responses are 

further inhibited by immune-suppressive cytokines by Tregs, astrocytes and neurons(277, 

278). Immune checkpoint blockade (ICB) is based on a range of monoclonal antibody­

based therapies, especially checkpoint inhibitors that block CTLA-4, PD-1, or PD-L1. 

Anti-CTLA-4 antibodies restore T cell activation in the lymph nodes, and PD-1/PD-L1 

antibodies enhance the functional properties of effector T cells at the tumor site(279, 280). 

TAM: tumor-associated macrophage, BMDMs: bone marrow–derived macrophages, TCR: 

antigen-specific T-cell receptor.
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Fig.5. 
Immune modulatory effects of radiotherapy. The localized cytotoxic effects of radiation 

have been shown to cause immunogenic cell death (ICD). Radiation can induce all three 

arms of ICD: upregulation of the release of adenosine triphosphate (ATP), the extracellular 

release of “danger signal” high motility group box 1 (HMGB1) and translocation of “eat 

me” signal calreticulin (CRT) to the cell surface. Additionally, radiation regimens unmask 

the tumor by upregulating major histocompatibility complex (MHC) on the tumor cell, 

which enhances neo-antigen presentation in tumor cells for recognition by cytotoxic T-cells. 

Besides the effects on tumor cells, irradiation also affects tumor-associated stromal cells, 

such as reactive astrocytes, and the recruitment of microglia, which further contribute to the 

establishment of radiation-induced immune responses.
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Fig.6. 
Advanced delivery platforms and delivery mechanisms of nanoparticulate anti-GBM drugs. 

Nanocarriers have been proposed based on various materials and principles as shown in the 

figure (a-g). Ligand-installed nanocarriers achieve therapeutic effects by actively targeting 

the surface marker or signaling pathway of cancer cells. Stimuli-responsive nanocarriers can 

release drug by responding to internal/external stimuli, which enable specific delivery cargos 

into the tumor microenvironment.
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Table 1.

Summary of therapeutic strategies to treat GBM.

Treatment Biological Action Notes

Image-guided Surgery

 Intraoperative 
ultrasonography

tumor removal Routine clinical use. Used in ORs for maximal safe resection of brain tumors 
since the 1980s.

 Intraoperative MRI tumor removal Routine clinical use. The first iMRI system was installed in 1994 at Brigham 
and Women’s Hospital.

 Intraoperative 
fluorescence imaging

tumor removal New clinical use. In 2017, Gleolan® (5-aminolevulinic acid) was FDA­
approved for intraoperative fluorescence imaging.

Chemotherapy (small 
Molecules)

 Temozolomide alkylates DNA base pairs Routine clinical use. Approved by the FDA in 1999 as a monotherapy 
and again in 2005 for use in newly diagnosed GBM concomitantly with 
radiotherapy and as maintenance treatment.

 Carmustine (BCNU) alkylates DNA base pairs Routine clinical use. Gliadel® wafers were approved by the FDA for recurrent 
GBM in 1997 and for the newly diagnosed high-grade gliomas (III and IV) in 
2003.

 Lomustine (CCNU) alkylates DNA base pairs Routine clinical use. FDA approved in 2014 for patients with brain tumors 
following surgery and/or radiotherapy.

 Fotemustine alkylates DNA base pairs Approved in Europe but not in the US. Phase II clinical trials have shown 
therapeutic benefit in recurrent GBM.

Radiation therapy (RT)

 2D conventional RT creates DNA double-strand 
breaks and ROS

Routine clinical use. Largely being phased out for brain RT. Still used in some 
instances of uncomplicated bone metastases.

 3D conformal RT creates DNA double-strand 
breaks and ROS

Routine clinical use. Good for advanced and inoperable tumors; used post­
operatively.

 Intensity-modulated RT creates DNA double-strand 
breaks and ROS

Routine clinical use as adjuvant therapy after surgical tumor resection.

 Stereotactic radiosurgery 
(SRS)

creates DNA double-strand 
breaks and ROS

Routine clinical use with either a gamma emitter (e.g., Gamma Knife) or a 
linear accelerator (e.g., Cyber Knife).

 Brachytherapy creates DNA double-strand 
breaks and ROS

Clinical adoption is slow due to adverse events and risk of exposure to people 
in close proximity to the patient.

 Particle RT (Proton 
therapy)

creates DNA double-strand 
breaks and ROS

FDA approved but reimbursement for the procedure is low. Phase II clinical 
trials are underway to evaluate the efficacy of proton versus photon irradiation 
(NCT02179086, NCT01854554).

Inhibitor Therapy

 Bevacizumab (mAb) inhibits VEGF-A Routine clinical use. FDA approved for recurrent GBM in 2009.

 Irinotecan (CPT-11) 
(small molecule)

inhibits topoisomerase I Phase I/II trials for recurrent GBM showed mixed results. Phase II clinical 
trials for combination therapies are under way for recurrent and pediatric GBM 
(NCT04267978, NCT02192359).

 Veliparib (ABT-888) 
(small molecule)

inhibits PARP Phase II trials in adults with recurrent (NCT01026493) and new 
(NCT00770471, NCT02152982) GBM showed limited benefit. A phase I/II 
study of veliparib with RT and TMZ in children with diffuse intrinsic pontine 
glioma reported little to no survival benefit (NCT01514201).

 Olaparib (AZD-2281, 
MK-7339) (small molecule)

inhibits PARP Phase II trials in recurrent GBM are ongoing (NCT03212274). Olaparib 
exacerbated hematological toxicities when used with TMZ in patients with 
recurrent GBM (NCT01390571). Further studies are warranted to understand 
potential clinical benefit.

 Niraparib (MK-4827) 
(small molecule)

inhibits PARP A phase I trial evaluated niraparib and TMZ in advanced cancer but with few 
GBM patients (NCT01294735). A phase II trial evaluating niraparib with TTFs 
in recurrent GBM is underway (NCT04221503). May be good treatment option 
for tumors over-expressing EGFR.
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Treatment Biological Action Notes

 Pamiparib (BGB-290) 
(small molecule)

inhibits PARP Phase I/II trials are underway studying pamiparib with TMZ in new and 
recurrent GBM (NCT03914742, NCT03150862).

 Cediranib (AZD-2171) 
(small molecule)

inhibits VEGFR Phase II-III trials in recurrent GBM showed little to no benefit. Some 
studies may be underpowered or lack proper patient selection (NCT00777153, 
NCT01310855, NCT00305656). A phase II trial is comparing cediranib and 
olaparib to bevacizumab for recurrent GBM (NCT02974621).

 Gossypol (AT-101) (small 
molecule)

binds with and inhibits 
Bcl-2, Bcl-xL and Mcl-1

Phase II trials were performed in recurrent and new GBM (NCT00390403, 
NCT00540722). Very little follow-up data exists.

 Cabozantinimb (XL-184) 
(small molecule)

tyrosine kinase inhibitor Phase II trial in adult patients with recurrent GBM showed modest clinical 
activity (NCT00704288). Phase II trial in pediatric patients with recurrent or 
progressive high grade gliomas is ongoing (NCT02885324).

 Erlotinib EGFR inhibitor Phase II studies in recurrent GBM as monotherapy (NCT00337883,) 
and in combination with other therapies (NCT00039494, NCT00445588, 
NCT00525525 NCT00335764). Also evaluated in new GBM (NCT00187486, 
NCT00720356). Clinical results have not confirmed benefit.

 Gefitinib EGFR inhibitor Phase II trials in new and recurrent GBM for both adult and pediatric patients 
(NCT00052208, NCT00014170, NCT00025675, NCT00042991).

 Depatuxizumab 
mafodotin (ABT-414)

Ab targets EGFR and drug 
inhibits tubulin

Phase III trial was halted when no survival benefit for new GBM patients could 
be demonstrated over placebo plus TMZ/radiation (NCT02573324).

 Imatinib multi-targeted tyrosine 
kinase inhibitor

Phase II trials in new and recurrent GBM showed no clinical activity. Drug has 
poor BBB penetration.

 Dasatinib multi-targeted tyrosine 
kinase inhibitor

Phase I/II clinical trials in recurrent GBM failed to show treatment efficacy 
and have been limited by toxicity, especially when used in combination with a 
second chemotherapy (NCT00948389, NCT00423735).

 Sorafenib multi-targeted protein 
kinase inhibitor

Clinical trials to date have not been promising. Ongoing phase I/II trial 
evaluating sorafenib + everolimus (NCT01434602) and sorafenib, valproic 
acid, and sildenafil (NCT01817751) in recurrent high grade gliomas.

 Sunitinib multi-targeted protein 
kinase inhibitor

Several phase II clinical trials have not shown anti-glioma effects. There are no 
ongoing clinical trials known currently.

 Temsirolimus (CCI-779) inhibits mTOR Phase I/II trials as a mono- and co-therapy mostly for recurrent GBM 
(NCT00329719, NCT00112736, NCT00022724). Little added benefit.

 Everolimus inhibits mTOR Underway: Phase II trial evaluating combination with sorafenib 
(NCT01434602), Phase I trial evaluating combination with ribociclib in 
children (NCT03355794).

Liposomes

2B3–101 PEGylated 
liposomes

Target GSH/GSH 
transporters

Phase I/IIa trial to explore the preliminary antitumor activity of 2B3-101 in 
brain metastases or recurrent malignant glioma (NCT01386580).

SGT-53 Cationic liposomes Target Scfv/TfR Phase II trial of combined temozolomide and SGT-53 for treatment of recurrent 
glioblastoma (NCT02340156).

Liposomal irinotecan convection enhanced 
delivery (CED)

Phase II trial of convection-enhanced, image-assisted delivery of liposomal­
irinotecan in recurrent high grade glioma (NCT02022644).

Immunotherapy

 Cemiplimab checkpoint inhibitor that 
binds to PD-1

Phase II trials are underway for recurrent (NCT04006119) and newly 
diagnosed (NCT03491683) GBM.

Nivolumab checkpoint inhibitor that 
binds to PD-1

Phase III trials are underway for recurrent (NCT02017717) and newly 
diagnosed (NCT02617589, NCT02667587) GBM.

 Rindopepimut peptide 
vaccine

targets EGFR deletion 
mutation EGFRvIII

Phase III clinical trial is ongoing (NCT01480479).

 DCVax®-L DCs are primed to 
recognize tumor-specific 
antigens

Ongoing phase III clinical trial (NCT00045968).

 VB-111 (Ofranergene 
obadenovec) gene therapy 

Virus carries a trans-gene 
for chimeric death receptor 

Phase I/II trials showed statistically significant improvement for VB-111 
monotherapy in recurrent GBM (NCT01260506). Phase III trial using dual 
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Treatment Biological Action Notes

using an adenovirus type 5 
vector

that connects Fas to hTNF 
receptor 1.

administration of VB-111 and bevacizumab failed to improve outcomes in 
recurrent GBM. (NCT02511405).

 CAR T cell therapy T cells are engineered to 
express receptors against 
specific tumor markers

There are currently 19 clinical trials listed under clinicaltrials.gov, 
including ongoing studies NCT04385173, NCT04077866, NCT04045847, 
NCT04045847, NCT04214392, NCT04003649, NCT02937844, 
NCT03392545, NCT02208362, NCT0338923

Misc. Therapies

 Laser interstitial thermal 
therapy (LITT)

thermal ablation of tumor 
tissue

Studied for its applications toward tumor therapy and treatment of 
radiation necrosis. Current clinical trials: NCT02970448 (Phase I: LITT + 
chemoradiation for new HGGs), NCT03341806 (Phase 1: LITT + avelumab for 
recurrent GBM), NCT04699773/ NCT04181684 (LITT + hypofractionated RT 
for new/recurrent GBM)

 Tumor Treating Fields 
(TTF)

disrupts mitotic cell 
division

May be good for recurrent GBM, inoperable tumors, and/or effective 
supplement to chemo/radiotherapy
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