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Undecidability in quantum thermalization
Naoto Shiraishi 1✉ & Keiji Matsumoto2✉

The investigation of thermalization in isolated quantum many-body systems has a long

history, dating back to the time of developing statistical mechanics. Most quantum many-

body systems in nature are considered to thermalize, while some never achieve thermal

equilibrium. The central problem is to clarify whether a given system thermalizes, which has

been addressed previously, but not resolved. Here, we show that this problem is undecidable.

The resulting undecidability even applies when the system is restricted to one-dimensional

shift-invariant systems with nearest-neighbour interaction, and the initial state is a fixed

product state. We construct a family of Hamiltonians encoding dynamics of a reversible

universal Turing machine, where the fate of a relaxation process changes considerably

depending on whether the Turing machine halts. Our result indicates that there is no general

theorem, algorithm, or systematic procedure determining the presence or absence of ther-

malization in any given Hamiltonian.
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Thermalization, or relaxation to equilibrium, in isolated
quantum many-body systems is a ubiquitous yet profound
phenomenon. The history of investigation of thermaliza-

tion dates back to Boltzmann1 and von Neumann2, and many
theoretical physicists have studied this problem. The problem
originated in the field of nonequilibrium statistical mechanics.
However, some techniques developed in quantum information
theory have gained attention to provide fresh insight into this old
problem3. From the experimental side, the recent development of
experimental techniques to manipulate cold atoms enabled us to
observe thermalization of isolated quantum many-body systems
in the laboratory4–9. Experimentalists not only tested established
theoretical results, but also revealed some unexpected
behaviours9.

A central problem in this field is whether a given system
thermalizes3,10. Although almost all-natural quantum many-body
systems are expected to thermalize, some systems, including
integrable and localized systems, are known to never achieve
thermalization11–15. To resolve this problem, the eigenstate
thermalization hypothesis (ETH) has been raised as a clue to
understanding thermalization phenomena. The ETH claims that
all the energy eigenstates of a given Hamiltonian are thermal, that
is, indistinguishable from the equilibrium state, as long as we
observe macroscopic observables16–21. Studies based on numer-
ical simulations support that most non-integrable thermalizing
systems satisfy the ETH20,22–24. In contrast, recent theoretical
studies and elaborated experiments have revealed that some non-
integrable systems do not satisfy the ETH9,25–31. Numerous other
theoretical ideas, including largeness of effective dimension10,
typicality10,32–34, and quantum correlation35–37 have been pro-
posed to elucidate thermalization phenomena; however, none of
them provides a decisive answer.

We approach the problem of thermalization from the opposite
side. We examine the difficulty of the problem from the viewpoint
of theoretical computer science. This type of approach is
employed in some problems in physics, including prediction of
dynamical systems38, repeated quantum measurements39, and the
spectral gap problem40. In this approach, these problems were
unexpectedly shown to be undecidable, that is, there is no algo-
rithm to determine, e.g., the presence or absence of a spectral gap
in arbitrary systems in the case of the spectral gap problem.

Our main achievement in this paper is the finding that whether a
given system thermalizes or not with respect to a given observable is
undecidable in general. This result shows not merely the difficulty
of this problem, but also the logical impossibility of solving it.
Hence, the fate of thermalization in a general setup is independent
of the basic axioms of mathematics, as implied in the Gödel’s
incompleteness theorem41. We prove this by demonstrating that the
relaxation and thermalization phenomena in one-dimensional
systems have the power of universal computation. Our result not
only sets a limit on what we can know about quantum thermali-
zation, but also elucidates a rich variety of thermalization phe-
nomena, which can implement any computational task.

Results
Statement of main results. We first clarify the precise statements of
our results, namely, the undecidability of relaxation and thermali-
zation. Since the undecidability of thermalization can be obtained by
modifying the result on relaxation, we shall mainly treat relaxation
and briefly comment on how to extend this result to thermalization.
Throughout this study, we consider a one-dimensional lattice system
of size L with the periodic boundary condition (we finally take
L→∞ limit), with d-dimensional local Hilbert space H. Although
we do not specify the necessary dimension, we roughly estimate that
d≃ 120 suffices to obtain undecidability, which is minuscule

compared to other results of undecidability in physics40. Let ψðtÞ
�� �

be the state of the system at time t. The long-time average of an
observable AL for a given initial state ψð0Þ

�� � ¼ ψL
0

�� �
is given by

�AL ¼ limT!1
1
T

R T
0 dthψðtÞjALjψðtÞi. Our interest takes the form of

whether the thermodynamic limit of the long-time average �AL,
denoted by �A :¼ limL!1 �AL, converges to the vicinity of a given
target value A*. This question concerns the fate of a relaxation
process with an initial state, an observable, and a Hamiltonian. If A*

is equal to the equilibrium value AMC :¼ limL!1Tr½ALρ
MC
L � with

the microcanonical state ρMC
L , this question asks whether thermali-

zation with respect to A takes place. We remark that we take the
long-time limit (T→∞) first, and then take the thermodynamic limit
(L→∞). The symbol A means the thermodynamic limit of AL,
while the order of the limit is always in the aforementioned one.

We restrict the class of the Hamiltonians, observables, and
initial states to simple ones. The Hamiltonian of the system is
restricted to be nearest-neighbour interaction and shift-invariant.
Hence, the d2 × d2 local Hamiltonian hi,i+1, which acts only on
sites i and i+ 1, fully determines the system Hamiltonian as
H≔∑ihi,i+1. We further restrict observables to a spatial average
of a single-site operator: AL :¼ 1

L∑
L
i¼1 Ai, where Ai acts only on

the site i. In addition, we restrict the initial state as the following
form of a product state: ψL

0

�� � ¼ ϕ0
�� �� ϕ1

�� �� ϕ1
�� �� � � � � ϕ1

�� �
,

where ϕ0
�� �

and ϕ1
�� �

are states on a single-site orthogonal to each
other; 〈ϕ0∣ϕ1〉= 0.

In our setup, both the observable (A) and the initial state ( ϕ0
�� �

and ϕ1
�� �

) are given arbitrarily and fixed. Moreover, we put a
promise that either �A� A��� ��< ε1 or �A� A��� ��> ε2 holds with
errors 0 < ε1 < ε2. An alternative expression of the above promise
is that we are allowed to answer incorrectly for ε1 ≤ �A� A��� ��≤ ε2.
The ratio of errors M := ε2/ε1 can be set arbitrarily large. The
input of this decision problem is the Hamiltonian. Even in this
very simple setup, we show that whether the long-time average of
A from this initial state ψL

0

�� �
under a given Hamiltonian H

relaxes to the vicinity of a given value A* is undecidable.

Theorem 1 Given two states ϕ0
�� �

and ϕ1
�� �

on a single site,
orthogonal to each other, and a single-site operator A arbitrarily.
We require that there exists a state ϕ2

�� �
orthogonal to ϕ0

�� �
and

ϕ1
�� �

such that 〈ϕ2∣A∣ϕ2〉 ≠ 〈ϕ1∣A∣ϕ1〉. The initial state and the
observable are set as ψL

0

�� � ¼ ϕ0
�� �� ϕ1

�� �� � � � � ϕ1
�� �

and
AL :¼ 1

L∑
L
i¼1 Ai. Here, the long-time average �A is a function of the

Hamiltonian H. We also fix M > 0 arbitrarily large. Then, there
exist ε1, ε2 with ε2=Mε1, and A* which satisfy the following: we
suppose the promise that either �A� A��� ��< ε1 or �A� A��� ��> ε2
holds (see Fig. 1). In this setting, deciding which is true
for a given shift-invariant nearest-neighbour interaction
Hamiltonian H= ∑ihi,i+1 is undecidable.

If A* is equal to the equilibrium value AMC, our result
reads undecidability of thermalization: Whether a
given system with a fixed initial state thermalizes or not
with respect to a fixed observable A is undecidable. By
defining A01

max :¼ max ψ
�� � 2 spanf ϕ0

�� �
; ϕ1
�� �ghψjAjψi and

A01
min :¼ min ψj i2spanf ϕ0j i; ϕ1j ighψjAjψi, the precise statement can

be expressed as follows:

Theorem 2 Given two states ϕ0
�� �

and ϕ1
�� �

on a single site,
orthogonal to each other, and a single-site operator A arbitrarily.
We require that there exist states ϕ2

�� �
and ϕ3

�� �
orthogonal to

ϕ0
�� �

, ϕ1
�� �

, A ϕ0
�� �

, and A ϕ1
�� �

such that hϕ2jAjϕ2i>A01
max and

hϕ3jAjϕ3i<A01
min. The initial state and the observable are set as
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ψL
0

�� � ¼ ϕ0
�� �� ϕ1

�� �� � � � � ϕ1
�� �

and AL :¼ 1
L∑

L
i¼1 Ai. We also

fix M > 0 arbitrarily large. Then, there exist ε1, ε2 with ε2=Mε1,
which satisfy the following: We suppose the promise that either
�A�AMC
�� ��< ε1 or �A�AMC

�� ��> ε2 holds. In this setting, deciding
which is true for a given shift-invariant nearest-neighbour
interaction Hamiltonian H= ∑ihi,i+1 is undecidable.

The condition on the presence of ϕ2
�� �

and ϕ3
�� �

ensures that
the initial state is not at the edge of the spectrum of A. We note
that the equilibrium value AMC depends on the choice of the
Hamiltonian, and thus the promise restricts the class of
Hamiltonians.

Mapping classical Turing machines to a quantum system. We
here sketch the main idea of the proof. A rigorous proof is pre-
sented in the Supplementary Note. We first introduce a key
ingredient, the halting problem of a Turing machine (TM), which
is a prominent example of undecidable problems. The halting
problem of a TM asks whether the TM with a given input halts at
some time or does not halt and runs forever. Turing proved in his
celebrated paper that there exists no general procedure to solve
the halting problem42.

Following various studies demonstrating undecidability43, we
apply the reduction to the halting problem. We shall construct a
family of Hamiltonians with which the long-time average of an
observable is connected to the halting or non-halting of a TM.
Below, a universal reversible Turing machine (URTM) is arbitrarily
given and fixed, whose possible input code is denoted by u.

Lemma: Given a complete orthogonal normal basis of the local
Hilbert space f ei

�� �g and an observable A on a single site satisfying
〈e1∣A∣e1〉= 0 and 〈e2∣A∣e2〉 > 0 arbitrarily. Then, for any η > 0,

there exists a shift-invariant nearest-neighbour interaction
Hamiltonian H and a set of unitary operators {Vu} on the local
Hilbert space H corresponding to all possible inputs for the fixed
URTM u such that they satisfy Vu e0

�� � ¼ e0
�� �

for any u and the
following property:

Set the initial state as

ψL
0

�� � ¼ ðVu e0
�� �Þ � Vu e1

�� �� ��L�1
: ð1Þ

If the URTM halts with the input u, then

�A≥
1
4
� η

� �
he2jAje2i ð2Þ

holds, and if the URTM does not halt with the input u, then

�A≤ η ð3Þ
holds.

By setting the initial state, the observable, and the Hamiltonian

in Theorem 1 as e0
�� �� ð e1

�� �Þ�L�1
, V†AV, and Vy

u
�L
HV�L

u ,
respectively, the degree of freedom in the choice of unitary
transformation is mapped onto that of the local Hamiltonian.
Then, the setup of Lemma can be mapped onto that of Theorem 1
by shifting the origin of A so that 〈ϕ1∣A∣ϕ1〉= 0, and setting ϕi

�� �
(i= 0, 1, 2) to ei

�� �
. Because the halting problem of the URTM is

undecidable, the above lemma directly implies the undecidability
of the long-time average in quantum many-body systems.

To prove the lemma, we first introduce an elaborated classical
machine that simulates the given URTM and changes the value of
A depending on whether the URTM halts. We then construct a
quantum many-body system emulating the above classical
machine. Since the dynamics of the quantum system is a
superposition of classical machines with different inputs, we first
compute the long-time average for computational basis initial
states, which corresponds to a single input, and then treat the
quantum superposition.

Classical machines. Here, we outline the construction of a clas-
sical TM, which simulates the halting problem of a given URTM
and changes the long-time average of the observable A depending
on the behaviour of the URTM. This machine consists of three
TMs, TM1, TM2, and TM3, on two types of cells, M-cells and A-
cells. Unlike conventional TMs, the finite control settles in the
line of cells. TM2 simulates the URTM with the input code u,
whose reversibility is induced by the unique direction property44.
TM1 decodes the input code u from a sequence of two qubits.
Two TMs, TM1 and TM2, work in M-cells. TM3 is a simple TM,
which flips the state of A-cells if and only if TM2 halts. Through
the above trick, the long-time average �A in our system reflects the
result of the halting problem of TM2.

An M-cell consists of three layers: The first layer simulates the
URTM, and the second and the third layers, both of which consist
of sequences of qubits, store the input code of TM2. The relative
frequency of 1 in the second layer is set to β whose binary
expansion is equal to the input code u. TM1 decodes a bit
sequence u on the first layer from the second and the third layers
by estimating the relative frequency of 1 (see the first part of
Fig. 2), and then TM2 runs with this input u. Throughout this
procedure, the machine passes all A-cells transparently.

A-cells are responsible for changing the long-time average of
AL. At the initial state, all A-cells are set to the state a1, whose
expectation value of A is zero. If and only if TM2 halts,
TM3 starts flipping states of A-cells from a1 to another state a2,
whose expectation value of A is a nonzero value. To inflate the

*

?

?

?

?
equilibrium

not equilibrium

(a)

(b)

Fig. 1 The problem of thermalization concerns the long-time average of
the observable. a We consider whether a nonequilibrium initial state
relaxes to the equilibrium or not. b More precisely, we decide whether the
long-time average of ψðtÞjALjψðtÞ

� �
converges to the value A* with

precision ε1, or deviates from A* at least ε2 > ε1, in the thermodynamic limit
(If the long-time average settles between ε1 and ε2, we do not have to
answer). This problem is shown to be an undecidable problem.
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difference between the halting and non-halting cases, we set the
initial state such that most of the cells are A-cells.

The procedure is summarized as follows:

(i) TM1 decodes the input code u on the first layer.
(ii) TM2, a URTM, runs with the input u in the first layer.
(iii) If and only if TM2 halts, then TM3 starts flipping the states

in A-cells (see the second part of Fig. 2). This induces a
visible difference between the long-time average of AL in
the case of halting and non-halting.

(iv) In the case of halting, the head returns to the cell where
TM2 halts due to the periodic boundary condition. By
this time, all A-cells have already been flipped, and
TM3 stops.

Because the halting problem of TM2 with an arbitrary input u
is undecidable, the long-time average ofAL with an arbitrary local
unitary transformation Vu is likewise undecidable.

Hamiltonian construction and its eigenstates. Our imple-
mentation of the classical TM in quantum systems stems from the
construction of the Feynman-Kitaev Hamiltonian45,46, while we
delete the clock part. Each site takes one of the states of the finite
control or that of a single cell in the tape, or some additional

symbols. If the site i is a state of the finite control, then the head
reads the site i+ 1 or i− 1 (see Fig. 3). In the initial state, we set
the finite control at site 1, and set all other sites not to the states of
the finite control. Because the dynamics conserve the number of
sites of the finite control, only a single site takes the state of the
finite control at all times.

The dynamics of TM are encoded in the local Hamiltonian as
follows. Suppose, e.g., that the cell at the head is sa, the state of the
finite control is qb, and the TM moves to the right with keeping
the state of the finite control and the cell. Then, the local
Hamiltonian hi,i+1 must contain the term

sa; qb
�� �

qb; sa
� ��þ c:c: : ð4Þ

Similarly, we add all transition rules of TMs (both TM1, TM2,
and TM3) to the local Hamiltonian in the form of (4). Owing to
the deterministic property of TMs, all the legal states of the total
system have a unique descendant state.

Because treatment of almost uniform initial states is slightly
complicated, we first take an analogous and easier setting. Our
original setting is discussed in the next section. We set the initial
state as a non-uniform computational basis state, such that the
dynamic of TMs is uniquely determined without quantum
fluctuation. Let x1

�� �
denote the initial configuration of the total

system, and xnj i be the n-th state (i.e., after n− 1 steps from
x1
�� �

). By restricting the Hilbert space to the subspace spanned by
f xnj ig, the total Hamiltonian is expressed as (see also Fig. 3)

H0 ¼ ∑
J�1

n¼1
xnþ1
�� �

xnh j þ c:c:; ð5Þ

where the J-th state is the final state of this dynamics. This
Hamiltonian takes the same form as a single-particle system on a
closed one-dimensional lattice with only hopping terms. Employ-
ing the result on a tridiagonal matrix, eigenenergies and energy
eigenstates are calculated as

Ej ¼ 2 cos
jπ

J þ 1

� �
; ð6Þ

0 0 0 0 0 0 1 0

0

1 0

1 11 0 11 0

0 0 0 0 0 0
TM1

first layer

second layer

third layer

Read qubits up to here.

Ratio of 1 is β (=input u).

TM2 (with input u)

TM3

a2 a20

If TM2 halts...

First part (only M-cells)

Second part

flipping a1 to a2

a1a1a1 0 0 1 0 0qu

qj

a1 0 1 0 0r

Fig. 2 Roles of three layers in M-cells and schematic of dynamics of two
Turing machines. [Top]: In the first part, a Turing machine, TM1, decodes a
bit sequence u on the first layer through the estimation of the number of 1j i
in the second layer (step (i)). The relative frequency of 1 in the second layer
is set to β, whose binary expansion is equal to u. The number of qubits
TM1 should read is determined by the leftmost cell with 1 in the third layer.
Here, we draw only M-cells and omit A-cells for visibility. [Bottom]: In the
second part, a universal reversible Turing machine, TM2, runs with the
input u (step (ii)). If TM2 halts, then TM3 starts to flip the state in the A-
cells from a1 to a2 (step (iii)). If TM2 does not halt, the states in A-cells are
not flipped. Note that we have not drawn the second and third layers of M-
cells for visibility. In these figures, qj, qu, and r are examples of internal
states of TM1, TM2, and TM3, respectively.

a1a1a1

a1a1a1

a1a1a1

0 0 1 0 0qu

0 0 1 0 0qu

0 0 1 0 0q 2     

Fig. 3 Evolution of the quantum state of the total system. We draw a
possible hopping between quantum states in the computational basis.
Although here, we depict only the first and second layers for visibility, the
quantum state actually consists of three layers. Similar to the Feynman-
Kitaev Hamiltonian case, the total Hamiltonian induces the forward and
backward one-step time evolution of the TM. We denote the state of the
classical TM at the nth step by xn. The symbols a1, 0 and 1 represent the
states of cells, and qu and q2 represent the internal states of the TM.
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Ej

��� E
¼

ffiffiffiffiffiffiffiffiffiffiffi
2

J þ 1

r
∑
J

k¼1
sin

kjπ
J þ 2

� �
xk
�� �

; ð7Þ

with j= 1, 2,…, J.
By expanding the initial state as x1

�� � ¼ ∑J
j¼1 cjjEji, the long-

time average of AL reads �AL ¼ ∑J
j¼1 jcjj2hEjjAjEji, because all the

off-diagonal elements vanish in the long-time average. Since the
number of steps until TM2 halts is independent of the system size
L, by setting L to be sufficiently large, we can make the flipping of
A-cells start before J/2 steps. In this condition, half of the A-cells
have been flipped before 3J/4 steps, which confirms the nonzero
expectation value of �AL in the case of halting. In contrast, in the
case of non-halting, the flipping by TM3 does not occur, and
hence the long-time average �AL is kept close to zero.

Uniform initial state. We now describe the decoding process
from the second and third layers of M-cells in our original setting,
almost uniform initial states. The sites in the second and third
layers are set to

ffiffiffi
β

p
1j i þ

ffiffiffiffiffiffiffiffiffiffiffi
1� β

p
0j i and

ffiffiffi
γ

p
1j i þ ffiffiffiffiffiffiffiffiffiffiffi

1� γ
p

0j i,
respectively. The state on m of M-cells is a superposition of 2m ×
2m computational basis states. TM1 runs on each computational
basis state, and thus the dynamics of TMs is also a superposition
of 2m × 2m branches.

The quantity β stores the input code in the form such that the
binary expansion of β equals the input code u. TM1 calculates β
by estimating the relative frequency of the state 1j i in the second
layer. Due to the law of large numbers, the set of computational
basis states such that the relative frequency of 1j i is not close to β
has negligibly small probability amplitude. The quantity γ (more
precisely, �1=ln γ) characterizes the length of qubits that TM1
must read in. TM1 reads the qubits in the second layer until it
first encounters 1j i in the third layer (the first part of Fig. 2). By
setting γ to be sufficiently small, the probability of two unwanted
cases, namely, (a) TM1 stops decoding before u is decoded to the
last, and (b) TM1 can access only an insufficiently small number
of qubits in the second layer and fails to estimate the correct β,
becomes negligible.

From relaxation to thermalization. We shall sketch how The-
orem 2, the undecidability of thermalization, is derived from the
proof techniques of Theorem 1. Careful calculation with slightly
modified version of TM3 implies that the long-time average �A
when TM2 halts approaches 〈e2∣A∣e2〉. Since the basis f ei

�� �g with
i ≥ 2 can be set arbitrarily in the proof of Theorem 1, it suffices to
show the presence of an orthogonal normal basis f ei

�� �g such that
he2jAje2i ¼ AMC. We remark that the Hamiltonian depends on
the basis f ei

�� �g, and thus AMC also depends on it through the
Hamiltonian.

Since ϕ0
�� �

and ϕ1
�� �

are not at the edge of the spectrum of A,
the equilibrium value AMC always settles between the maximum
and the minimum expectation values of A in the subspace
orthogonal to ϕ0

�� �
, ϕ1
�� �

, A ϕ0
�� �

, and A ϕ1
�� �

. Let σmax

�� �
and σmin

�� �
be states in this subspace accompanying the maximum and
minimum expectation values of A. We set e2ðpÞ

�� �
:¼ ffiffiffi

p
p

σmax

�� �þffiffiffiffiffiffiffiffiffiffiffi
1� p

p
σmin

�� �
and change p from p= 0 to p= 1. With recalling

he2ð0ÞjAje2ð0Þi≤AMC ≤ he2ð1ÞjAje2ð1Þi and the continuity of
〈e2(p)∣A∣e2(p)〉, we find that there exists a proper p (a proper
e2
�� �

) which realizes he2ðpÞjAje2ðpÞi ¼ AMC. Using this Hamilto-
nian with this basis f ei

�� �g, we arrive at the undecidability of
thermalization by following the same argument to that of
relaxation.

We here remark two points. First, the tuning of e2
�� �

can be
accomplished in the choice of the local Hamiltonian, and both the
observable and the initial state are kept as arbitrary fixed
parameters. Second, since a finite error from the equilibrium
value is allowed, we can compute a proper p (i.e., a proper local
Hamiltonian) within this error in a finite number of steps.

No sufficiently large system size. Our result claims that we
cannot solve the problem of thermalization by any elaborated
method even with unlimited computational resource. In order to
elucidate the significance of the constructed systems, we compare
them with near-integrable systems, H=Hint+ εV, where Hint is
an integrable Hamiltonian and ε is a small parameter. In near-
integrable systems, the small parameter ε determines the neces-
sary system size and time length to distinguish the true ther-
modynamic limit from prethermal plateaus, and by taking ε→ 0
the necessary size diverges. If our computational resource is
unlimited, by setting the system size and running time sufficiently
large depending on ε as determined above we safely obtain the
true long-time behaviour in the thermodynamic limit within an
arbitrarily small error.

In contrast to near-integrable systems, the constructed systems
of undecidability have no such small parameters and no
sufficiently large system size. This fact is clearly demonstrated
by introducing the busy beaver function BB(n). The busy beaver
function gives the largest number of steps which a halting TM
with n internal states and an empty input can take. Since the
number of internal states can be connected to the length of
the input code to a TM with a fixed number of internal states, the
busy beaver function also serves as the indicator of the necessary
time steps with respect to the length of the input. In terms of
thermalization, the busy beaver function provides the necessary
system size and time length to observe the true thermodynamic
limit. However, the busy beaver function is proven to be
uncomputable. More surprisingly, if the Zermelo-Fraenkel set
theory with the axiom of choice (ZFC), which is roughly
equivalent to the whole of our mathematics, is consistent, then
BB(748) is shown to be uncomputable47,48. Notice that all
possible TMs with 748 internal states can be implemented by a
(large but) finite set of Hamiltonians. These Hamiltonians
obviously have no small parameters going to zero, because no
quantity tends to go to zero in a finite set. In spite of this, we do
not have a sufficiently large system size for these (finite number
of) Hamiltonians.

Discussion
The presence or absence of thermalization in a given quantum
many-body system, which has been a topic of debate among
researchers in various fields, is proven to be undecidable. Hence,
there exists no general systematic procedure to determine the
long-time behaviour of quantum many-body systems. The
undecidability is still valid for a class of simple systems; one-
dimensional systems with a shift-invariant and nearest-neighbour
interaction. Our result leads to a fundamental limitation to reach
a general theory on thermalization.

Our proof also shows the computational universality of ther-
malization phenomena. Contrary to the apparent simplicity of
thermalization phenomena, the above fact leads to an astonishing
consequence that the variety of thermalization phenomena is no
less than all possible tasks computers can manage. A striking
example bridging physics and mathematics is a system that
thermalizes if and only if the Riemann hypothesis is true. The
above system reflects the existence of a TM which halts if and
only if the Riemann hypothesis is false49.
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From the context of physics, the extremely slow relaxation of
our model in case of halting is induced by quasi-conserved non-
local quantities, which are close to conserved quantities but not
conserved. Recently, some non-integrable systems (the transverse
Ising model with z magnetic field) have been reported to relax
very slowly, which is caused by quasi-conserved local
quantities23,50,51. Numerical simulations with ordinal size and
time length fail to address thermalization in these systems.
Similar things can also be seen in glassy systems, whose con-
nection with computational hardness is also discussed
intensively52. The extremely slow relaxation in our system might
be understood from the aforementioned more general viewpoints,
which is worth further investigation.

We remark that our definition of thermalization is conditional
with respect to an observable. There exists another definition of
thermalization in an unconditional form, where a system is said
to thermalize if and only if the system thermalizes with respect to
all macroscopic observables. In this article, we do not employ this
alternative definition because no shift-invariant system is proven
to thermalize in this sense. To prove undecidability, we should
prepare infinitely many thermalizing and non-thermalizing sys-
tems with proof. Constructing a thermalizing system in this sense
is considered to be a very hard problem, and therefore we give up
adopting this definition.

We finally comment on the limitations of our result and
conclude this study. First, our result does not exclude the possi-
bility that one proves the presence or absence of thermalization in
specific systems. Our result only excludes the possibility to obtain
a general and ultimate criterion to judge the presence or absence
of thermalization. We emphasize that our results do not tarnish
the meaningfulness of numerical simulations in ordinal systems
with finite size. Second, our undecidability is shown in only a
highly artificial model with a particular form of Hamiltonians,
which is another limitation of our result. One needs to proceed to
a more natural model exhibiting undecidability, or to find a set of
a restricted class of physical Hamiltonians whose fate of ther-
malization is now decidable. These problems are left for
future works.

Method
Decoding from the second and third layers. We discuss how to decode the input
code u from the sequence of two qubits in the second and third layers. The amount
of β, whose binary expansion is equal to u, is guessed by the relative frequency of
1’s in the second layer (see Fig. 2). We expand m copies of

ffiffiffi
β

p
1j i þ ffiffiffiffiffiffiffiffiffiffiffi

1� β
p

0j i as

ð ffiffiffi
β

p
1j i þ ffiffiffiffiffiffiffiffiffiffiffi

1� β
p

0j iÞ�m ¼ ∑
w2f0;1g�m

ffiffiffi
β

p N1 ðwÞ ffiffiffiffiffiffiffiffiffiffiffi
1� β

p m�N1ðwÞ wj i; ð8Þ

where w is a sequence of 01 with length m, and N1(w) is the number of 1’s in the
binary sequence w. The probability amplitude for a state wj i is
cw
�� ��2 ¼ βN1 ðwÞð1� βÞm�N1ðwÞ . Due to the law of large numbers, the probability
amplitude for states with relative frequency of 1’s close to β converges to 1 in the
large m limit:

lim
m!1

∑
w:N1 ðwÞ

m ’β

cw
�� ��2 ¼ 1: ð9Þ

Here, the symbol N1ðwÞ
m ’ β means that N1 ðwÞ

m is close to β, whose rigorous definition
is presented soon later (in (11)). Hence, if m is sufficiently large compared with the
length of the input code, TM1 guesses β correctly from the frequency of 1’s.

The length m is determined by another bit sequence,
ffiffiffi
γ

p
1j i þ ffiffiffiffiffiffiffiffiffiffiffi

1� γ
p

0j i, in the
third layer. Let 0 < ξ < 1 be a given accuracy. We encode the information of m into
γ as satisfying

ð1� γÞm ≥ 1� ξ: ð10Þ

In other words, almost all qubits are 0j i in this sequence, and 1j i appears only after
m-th digit with probability larger than 1− ξ. Owing to this, if 1j i appears at the
m0-th digit for the first time, this is taken as the sign that m≤m0 . Based on the
observed value m0 , the length of the output by TM1 (i.e., the presumed length of

the digit of β) is determined as n0 ¼ d14 log 2m
0e, which ensures

lim
m0!1

Prob
N1ðwÞ
m0 � β

����
����< 1

2n
0þ1


 �
¼ 1: ð11Þ

With this choice of output length n0 , guessing m0 larger than the true value m does
not affect the correctness of the estimation of β.

Modification of TM3 in case of thermalization. When we show the undecid-
ability of thermalization, we need to modify TM3 to another TM named TM3+.
TM3 flips all A-cells from a1 to a2, and after the flipping TM3 stops. Similarly,
TM3+ first flips all A-cells from a1 to a2, but after the flipping TM3+ still
runs in order to spend time steps of order O(L2). Note that TM1 and TM2
take O(1) steps, and TM3 takes O(L) steps. In TM3+, most of the steps before
stopping are dominated by those after flipping. This additional trick makes the
long-time average of A with halting TM2 from 〈e2∣A∣e2〉/2 (in case with TM3) to
〈e2∣A∣e2〉.

In the construction of TM3+, we introduce two new states of A-cells, bl, and br,
and equip the rule such that the position of bl is fixed and the position of br moves
right one cell through a single round trip of the finite control between bl and br. At
the beginning, br sits right of bl, and we set TM3+ stop when br hits bl from left. In
this setting, it takes O(L2) steps until br hits bl from left, which indeed meets the
requirement.

Busy beaver function. The busy beaver function BB(n) is defined as follows:
We consider all possible TMs with n internal states, and start running these TMs
with empty inputs. Some TMs will halt, and some other TMs will not. We pay
attention only to the former TMs and record the maximum number of steps before
halting, which is BB(n). Since we exclude non-halting TMs, BB(n) must be finite
for all n.

We remark that a TM with m internal states and input u with length l can be
emulated by another TM with m+ l internal states and empty input. The
emulation is performed as follows: This TM first outputs the code u on the blank
tape by using l internal states, and then works as the TM with m internal states.
Conversely, a URTM can emulate any TM with any number of internal states,
whose information is given in the input code for the URTM. Thus, the busy beaver
function also characterizes the maximum number of steps in terms of the length of
the input.

The uncomputability of BB(n) is a direct consequence of the undecidability of
the halting problem. We show this by contradiction. Suppose that BB(n) is
computable for any n. Then, for any input code u with length l, we run this TM
with this input for BB(m+ l) steps and observe whether this TM halts or not. By
definition, if this TM does not halt at this step, we can confirm that this TM does
not halt forever. This procedure solves the halting problem, which is a
contradiction.

The uncomputability of BB(748) is shown by resorting to the fact that there is a
TM with 748 internal states such that this TM halts if and only if ZFC is
inconsistent47,48. Gödel’s incompleteness theorem shows that ZFC cannot prove
the consistency of ZFC itself if ZFC is consistent. Following a similar argument to
above, ZFC cannot compute BB(748) if ZFC is consistent.

Proof All the results in this paper are rigorously proved in the
Supplementary Note.

Data availability
Data sharing is not applicable to this article as no datasets were generated or analyzed
during the current study.
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