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Renewed interest in dynamic simulation models of biomolecular systems
has arisen from advances in genome-wide measurement and applications
of such models in biotechnology and synthetic biology. In particular,
genome-scale models of cellular metabolism beyond the steady state are
required in order to represent transient and dynamic regulatory properties
of the system. Development of such whole-cell models requires new
modelling approaches. Here, we propose the energy-based bond graph
methodology, which integrates stoichiometric models with thermodynamic
principles and kinetic modelling. We demonstrate how the bond graph
approach intrinsically enforces thermodynamic constraints, provides a
modular approach to modelling, and gives a basis for estimation of model
parameters leading to dynamic models of biomolecular systems. The
approach is illustrated using a well-established stoichiometric model of
Escherichia coli and published experimental data.
1. Introduction
The recent explosion of omics data has generated an interest in developingdynamic
whole-cell models that account for the function of every gene and biomolecule over
time. Such models have the potential to ‘predict phenotype from genotype’ [1–3]
and hence to ‘transform bioscience and medicine’ [4]. Critical to understanding
the large-scale metabolism within cells is the stoichiometric approach [5–8],
which has had notable successes including the genome-scale reconstruction of
the metabolism of Escherichia coli [9–11] and Neocallimastigomycota fungus [12].

The stoichiometric approach can give rise to constraint-based models such
as flux balance analysis (FBA) [13], which predict metabolic fluxes at steady
state. However, most implementations of such constraint-based models do
not explicitly consider energy. This can lead to mass flows that are not thermo-
dynamically possible because they violate the second law of thermodynamics.
Such non-physical flows can be detected and eliminated by adding additional
thermodynamic constraints, as in thermodynamics-based metabolic flux analysis
(TFA) [14,15], energy balance analysis (EBA) and expression, thermodynamics-
enabled flux models (ETFL) [16–20] and loopless FBA [21]. Whereas constraint-
based models provide metabolic fluxes, they generally do not explicitly account
for metabolite concentrations, or how fluxes vary over time, both of which are
required for dynamic whole-cell modelling. However, the stoichiometric
approach can help to bridge towards dynamic models capable of satisfying
these requirements. In this context, there has been work into developing two
types of large-scale dynamic models: fully detailed mass action stoichiometric

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2021.0478&domain=pdf&date_stamp=2021-08-25
mailto:peter.gawthrop@unimelb.edu.au
http://orcid.org/
http://orcid.org/0000-0002-6029-515X
http://orcid.org/0000-0002-8978-7350
http://orcid.org/0000-0001-6569-9543
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210478

2
simulation (MASS) models [7,22,23] and simplified network
models that use non-mass action rate laws such as lin-log
laws or modular rate laws [24,25]. Although mass-action
approaches seem restrictive, we note that models of
enzyme kinetics can be built from elementary mass-action
reactions [26].

MASS models are parameterized by reaction rate constants
which are subject to thermodynamic constraints such as the
Wegscheider conditions [27] (Wegscheider conditions are a
formulation of detailed balance conditions which avoid models
that are inconsistent with thermodynamic laws [26], §1.5).
This paper focuses on the mass-action formulation and intro-
duces an alternative to MASS which explicitly incorporates
thermodynamics. Specifically, the approach uses an alternative
parameterization related to that of thermodynamic–kineticmod-
elling (TKM) [27,28]. TKM explicitly divides parameters into
those associated with capacities and resistances by analogy
with electrical systems; this approach gives thermodynamic
consistency without invoking additional constraints such as
the Wegscheider conditions [27,28]. Mason and Covert [29]
developed a similar approach for a non-mass-action rate law.

Recently, the bond graph approach from engineering
[30–33] has been adapted to biochemistry [34–37]. Bond
graphs are close in spirit and application to TKM in that
they produce ordinary differential equations for dynamic
simulation [37] and that their parameters satisfy thermodyn-
amic consistency without the need to invoke Wegscheider
conditions [34–37]. However, bond graph models are
endowed with several additional features:

1. Bond graphs can be easily generalized to model multi-
physics systems and thus readily incorporate the physics
of electrically charged species into an integrated model
combining both chemical and electrical potential [38–42].

2. Bond graphs are modular [43,44], a key requirement of
any large-scale modelling endeavour [45].

3. Bond graph models can be systematically modified to give
simpler bond graph models which remain compatible
with thermodynamic laws [37,46,47].

The stoichiometric matrix of a biomolecular network
can be derived from the corresponding bond graph [37,43].
Similarly, as shown herein, a bond graph model can be con-
structed from a stoichiometric matrix. Thus, the large
repository of models of biomolecular systems available in
stoichiometric form are available as templates for developing
bond graph models; we provide a methodology for this later
in the paper. Furthermore, once rate laws such as mass action
are added, such templates provide a basis for complete
dynamic models of metabolic systems.

A key challenge in the development of dynamic models is
the fitting of parameters to experimental data, especially when
thermodynamic constraints need to be satisfied [48,49]. For
large-scale biomolecular models such as whole-cell models,
applying these constraints is particularly challenging [50]. In
this paper, we use the thermodynamically safe parameteriza-
tion provided by bond graphs to resolve this issue. As in the
TKM [27,28] approach, the bond graph approach uses an
alternative parameterization which satisfies thermodynamic
constraints as long as the parameters are positive; such inequality
constraints are easier to handle than nonlinear constraints. We
illustrate this approach by generating a dynamic bond graph
model of E. coli metabolism, using a well-established
stoichiometric model [51] as a template and show that the
use of thermodynamic parameters can significantly streamline
the process of parameter estimation.

In summary, this paper proposes the fusion of the stoi-
chiometric and bond graph approaches to modelling
biological systems and illustrates its potential for the unifica-
tion of stoichiometry, thermodynamics, kinetics and data.

Section 2 summarizes the bond graph background to the
rest of the paper. Section 3 shows how bond graph models
can be extracted from stoichiometric information, used to
create modular models and analysed in terms of pathways;
the relationship of the approach to energy balance analysis
is also discussed. Section 4 applies these concepts to two sub-
systems within the E. coli core model—a well-documented
[8,51] and readily available stoichiometric model of a bio-
molecular system. The model is available within the
COBRApy [52] package. Section 5 shows how thermodyna-
mically consistent bond graph parameters can be extracted
from experimental data and gives a dynamic simulation of
the parameterized model. Section 6 concludes the paper
and gives directions for future work.
2. Bond graphs
This section gives a brief introduction to the bond graph
approach to modelling biomolecular systems based on the
seminal work of Oster et al. [34,35] as extended by Gawthrop
& Crampin [37,44,53].

2.1. Basic components
Bond graphs represent the energetic connections between
components of a system. The S symbol is used to indicate
an energetic connection, or ‘bond’, between components;
the half-arrow indicates the direction corresponding to posi-
tive energy flow. In the biomolecular context, each bond is
associated with two covariables: chemical potential μ
(J mol−1) and flow v (mol s−1). The key point is that the pro-
duct of μ and v is power p = μv (W). This ensures that models
are consistent with the laws of thermodynamics, as energy
flow is explicitly accounted for. In the context of cellular
metabolism, and in line with the measurement of redox
potentials, it is convenient to scale these co-variables by
Faraday’s constant F≈ 96485 C mol−1 to give

2f ¼ 1
F
m ðVÞ f ¼ Fv ðAÞ, ð2:1Þ

where (J C−1) has been replaced by the more convenient unit
volt (V) and (C mol−1) has been replaced by the more con-
venient unit ampere (A) [38]. As a useful rule-of-thumb,
μ (kJ mol−1) can be converted to ϕ (mV) by dividing by
106/F≈ 10. Bonds transmit, but do not store or dissipate
energy. Within this context, the bonds connect four distinct
types of component:

0 and 1 Junctions provide a method of connecting two or
more bonds, and therefore creating a network. Analogous
to electrical systems, there are two types of junction,
denoted 0 and 1 . The bonds impinging on a 0 junction
share a common effort (chemical potential); the bonds
impinging on a 1 junction share a common flow. Both 0
and 1 junctions transmit, but do not store or dissipate
energy. As discussed previously [37], the arrangement of
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bonds and junctions represents the stoichiometry of the
corresponding biomolecular system and thus the relation-
ship both between reaction and species flows and
between species potentials and reaction forward and
reverse potentials. Furthermore, the reverse is also true:
the stoichiometric matrix of a biomolecular system
uniquely determines the bond graph, as will be discussed
further below.
Ce represents biochemical species. Thus species A is rep-
resented by Ce:A with the equations:

xAðtÞ ¼
ðt
0
fAðt0Þdt0 þ xAð0Þ ð2:2Þ

fA ¼ f�A þ fN ln
xA
x�A
¼ fN lnKAxA ð2:3Þ

where fN ¼
RT
F
� 26:7mV at T ¼ 310K ð2:4Þ

and KA ¼ 1
x�A

exp
f�A
fN

: ð2:5Þ

Equation (2.2) accumulates the flow fA of species
A. Equation (2.3) generates chemical potential ϕA in terms
of the reference potential f�A at reference conditions x�A . Ce
components thus store, but do not dissipate, energy. An
equivalent parameterization that we use in this paper is to
express the chemical potential in terms of ϕN and the species
constant KA, as defined in equation (2.5).
Re represents reactions. The flow f associated with each
reaction is given by theMarcelin–de Donder formula [37,54]:

f ¼ k exp
Ff

fN
� exp

Fr

fN

 !
, ð2:6Þ

where Ff and Fr are the forward and reverse reaction
potentials (or affinities), defined as the sums of the
chemical potentials of the reactants and products, respect-
ively. If κ is constant, this represents the mass-action
formula.

In general, κ is a function of Ff , Fr and enzyme concen-
tration [37]; for example, a reversible Michaelis–Menten
formulation used in Gawthrop et al. [43] is:

k ¼ fmax

Kf þ ð1� rÞ expðFf=fNÞ þ r expðFr=fNÞ
, ð2:7Þ

where the three constants fmax, Kf and ρ define the kinetics.
As discussed elsewhere [26,37], enzyme kinetics can be mod-
elled using the pair of reactions with mass-action kinetics

Aþ E�! �
r1

C

C�! �
r2

Bþ E, ð2:8Þ

where A, B, E and C are the substrate, product, enzyme and
complex of substrate and enzyme, respectively; the bond
graph representation is given in appendix E. Equation (2.7)
arises from the steady-state analysis of this model [37]. In
particular

k1 ¼ �k

r
; k2 ¼ �k

1� r
where �k ¼ fmax

Kce0
and Kf ¼ KC

KE
: ð2:9Þ

KC and KE correspond to equation (2.5) for the complex and
enzyme, respectively, and e0 is the total amount of enzyme
(unbound and bound within the complex).

Re components dissipate, but do not store, energy. In
general

f ¼ f ðF, fÞ, ð2:10Þ
whereF ¼ Ff �Fr and ϕ is a vector containing the chemical
potentials of every species. Since f always has the same sign
as F, f() is dissipative in F for all ϕ:

fF . 0: ð2:11Þ

The key stoichiometric equations arising from bond graph
analysis are [37]

_x ¼ Nf ð2:12Þ
and

F ¼ �NTf: ð2:13Þ
where x, f, F and ϕ are the species amounts, reaction fluxes,
reaction potentials and species potentials , respectively, all
represented as vector quantities. N is the stoichiometric
matrix of the network. Combining equations (2.12) and (2.13)

fT _x ¼ fTNf ¼ �FTf : ð2:14Þ
fT _x is the rate of energy into the species (which must be
negative or zero for closed systems) and FTf is the rate of
energy dissipated by the reactions. Since fT _xþFTf ¼ 0, it
follows that the network of bonds and junctions transmits,
but does not dissipate or store, energy [37].

Moreover, the stoichiometric matrix N can be decomposed
as [37]

N ¼ Nr �Nf , ð2:15Þ
where Nr corresponds to the positive entries of N and Nf to the
negative entries. The forward and reverse reaction potentials
Ff and Fr are given by

Ff ¼ Nff, Fr ¼ Nrf: ð2:16Þ

In other words, the stoichiometric matrix N can be
derived from the system bond graph. Section 3 shows that,
conversely, the system bond graph can be derived from the
stoichiometric matrix N.
2.2. Chemostats, flowstats and pathways
Modularity implies the interconnection of subsystems; thus
such subsystems must be thermodynamically open. As dis-
cussed previously [38,44], the notion of a chemostat [55] is
useful in creating an open system from a closed system.
The chemostat has a number of interpretations [38]:

1. One or more species are fixed to give a constant concen-
tration [43]; this implies that an appropriate external
flow is applied to balance the internal flow of the species.

2. As a Ce component with a fixed state.
3. As an external port of a module which allows connection

to other modules.

In the context of stoichiometric analysis, the chemostat
concept provides a flexible alternative to the primary and
currency exchange reactions [6,8,56].

Alternatively, reaction flows can be fixed using the
dual concept of flowstats [44], which has a number of
interpretations:
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1. As an Re component with a fixed flow.
2. As an external port of a module which allows connection

to other modules.

In the context of this paper, we use flowstats to isolate
parts of a network by setting the flows of certain reactions
to zero. Such zero flow flowstats can also be interpreted as
removing the corresponding enzyme via gene knockout.

In terms of stoichiometric analysis, the closed system
equations (2.12) and (2.13) are replaced by

_x ¼ Ncdf ð2:17Þ

and

F ¼ �NTf, ð2:18Þ

where Ncd is created from the stoichiometric matrix N by set-
ting rows corresponding to chemostats species and columns
corresponding to flowstatted reactions to zero [44]. As dis-
cussed by Gawthrop & Crampin [44], system pathways
corresponding to equation (2.17) are defined by the right-
null space of Ncd, that is, the columns of a matrix Kp satisfying
the equation NcdKp = 0. At steady state, the flows through
these pathways are defined by

f ¼ Kpfp, ð2:19Þ

where fp is the pathway flow. It follows fromequation (2.17) that
equation (2.19) implies that _x ¼ 0. The pathway stoichiometric
matrix Np is defined as [53]

Np ¼ NKp: ð2:20Þ

In a similar fashion to equation (2.18), the pathway reaction
potentials Fp are given by

Fp ¼ �NT
p f: ð2:21Þ

In the same way as the stoichiometric matrix N relates reaction
flows to species and thus represents a set of reactions, the path-
way stoichiometric matrix Np also represents a set of reactions:
these reactions will be called the pathway reactions.

Pathways can be divided into three mutually exclusive
types [56] according to the species corresponding to the
non-zero elements in the relevant column of the pathway
stoichiometric matrix Np:

Type I The species include primary metabolites; these
pathways are of functional interest.
Type II The species include currency metabolites only; these
pathways dissipate energy without creating or con-
suming primary metabolites. Such pathways are
sometimes called futile cycles; however, they have
an important role to play in regulating metabolite
flow [57–62].

Type III There are no species. These may arise when the
same reaction is catalysed by different isoforms of
the same enzyme.

Pathway reactions for type I pathways contain both pri-
mary and currency metabolites; pathway reactions for type
II pathways contain currency metabolites only; pathway reac-
tions for type III pathways are empty. The concept of
pathways is applied to a simple example in appendix B and
to a biomolecular example (the pentose phosphate pathway)
in §4.1.
3. Bond graphs integrate stoichiometry and
energy

As discussed in the previous section, the stoichiometric
matrix can be directly derived from the bond graph; this sec-
tion shows that the converse is true and thus bond graphs can
be automatically derived from preexisting stoichiometric rep-
resentations thereby allowing bond graph energy-based
analysis and modularity to be applied to such models.

3.1. Generating a bond graph from a stoichiometric
matrix

A bond graph can be constructed from a stoichiometric
matrix by using the following procedure:

For example, the reaction A�! �
r1

2 B has the stoichiometric
matrix

N ¼ �1 2ð ÞT , ð3:1Þ
and the bond graph of figure 1a. The reaction Bþ C�! �

r2
Dþ E

has the stoichiometric matrix

N ¼ �1 �1 1 1ð ÞT , ð3:2Þ
and has the bond graph of figure 1b.

Bond graphs provide a graphical representation of a
system. While this provides an intuitive and clear visual rep-
resentation when dealing with small systems such as the ones



1. For each species create a Ce component with appropriate name and
a 0 junction; connect a bond from the 0 junction to the Ce
component.

2. For each reaction create an Re component with appropriate name
and two 1 junctions; connect a bond from one 1 junction to the
forward port of the Re component and a bond from the reverse
port of the Re component to the other 1 junction.

3. For each negative entry Nij in the stoichiometric matrix, connect −
Nij bonds from the zero junction connected to the ith species to
the 1 junction connected to the forward port of the jth reaction.

4. For each positive entry Nij in the stoichiometric matrix, connect Nij
bonds from the one junction connected to the reverse port of the
jth reaction to the zero junction connected to the ith species.

5. If an Michaelis–Menten formulation is required, each Re
component is replaced by a bond graph module (§3.2)
corresponding to the enzyme catalysed reaction pair (2.8) and
appendix E.

1. Within each module, each Ce component corresponding to a
common species is exposed, that is, replaced by a port, or external
connection.

2. For each common species, create a Ce component connected to a 0
component.

3. Connect all module ports associated with each species to the 0
junction associated with the species; all instances of Ce
components corresponding to each species are thus unified into
the same component.
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shown above, such visualization becomes cumbersome for
large systems. We employ two approaches to overcome this
issue for the large-scale systems considered in this paper:
modularity and a non-graphical (or programmatic) repre-
sentation. In particular, we use a recent concept of bond
graph modularity [38] in §3.2 and the recently developed
BondGraphTools package [63] (https://pypi.org/project/
BondGraphTools/) as a non-graphical representation that
allows large-scale systems to be constructed in a scalable
and automated manner. This is discussed further below.

3.2. Modularity
Two related but distinct concepts of modularity [44] are com-
putational modularity, where physical correctness is retained,
and behavioural modularity, where module behaviour (such
as ultra-sensitivity) is retained. Here, we discuss compu-
tational modularity. In particular, it is shown how the
concept of external flows, as discussed in §2.2, is key to
bond graph modularity.

Modular bond graphs provide a way of decomposing
complex biomolecular systems into manageable subsystems
[43,44,53]. This paper combines the modularity concepts of
Neal et al. [64–66] with the bond graph approach to give a
more flexible approach to modularity. The basic idea is
simple [38] . Modules are self-contained and have no explicit
ports, but any species represented by a Ce component has the
potential to become a port available for external connection.
Thus, if two modules share the same species, the correspond-
ing Ce component in each module is replaced by a port
(labelled with the same name), and the species is explicitly
represented as a Ce component in the parent model. This
approach allows each module to be individually tested
prior to being integrated into a larger model.

We use the following algorithm to merge bond graph
models of stoichiometric networks:

For example, let modules M1 and M2 correspond to
figure 1a,b, respectively. The composition of these modules
requires the common species B to be exposed in both mod-
ules. This is illustrated in figure 2, where both modules are
connected to the new Ce:B component via a 0 junction. The
composite system contains the two coupled reactions

A�! �
r2

2B ð3:3Þ
and

Cþ B�! �
r2

Dþ E: ð3:4Þ
Section 4 gives examples of modular decomposition of a
metabolic system and §4.2 gives an example of how such
modules can be combined using the methods of this section.
The pathway analysis of §2.2 can be applied to modules
themselves, and to systems built of modules, to give insight
into the overall behaviour of complex systems; this is
illustrated in §4.2.

The concept of modularity can be extended to include
common Re (reaction) components [67]; but this concept is
not pursued in this paper.
3.3. Energy balance analysis in a bond graph context
FBA [13] uses the linear equation (2.19) within a constrained
linear optimization to compute pathway flows. EBA [16]
adds two sorts of nonlinear constraint arising from
thermodynamics. This section shows that the bond graph
approach automatically includes the EBA constraint
equations by considering Inequality (2.11) and equation
(2.18). In particular

1. Inequality (2.11) corresponds to equation (8) of Beard et al.
[16]. This inequality can be re-expressed as

Fi ¼ riðfÞfi where riðfÞ . 0: ð3:5Þ
ri corresponds to the ‘flux resistances’ on p. 83 of Beard &
Qian [16].
(i) If K is the right nullspace matrix of N, it follows from

equation (2.18) that

KTF ¼ 0: ð3:6Þ
This corresponds to equation (7) of Beard et al. [16].
Note that K defines the pathways of the closed
system, with no chemostats.

Moreover, the pathways of the open system as defined by
Kcd can be considered by defining R = diag ri and using
equation (2.19)

KTRKpfp ¼ 0: ð3:7Þ

https://pypi.org/project/BondGraphTools/
https://pypi.org/project/BondGraphTools/
https://pypi.org/project/BondGraphTools/


(B) (B)
M1 M20

Ce:B

modular bond graph

0

Ce:A

R
e:r1 1 1

R
e:r2 1

Ce:D

0

0

Ce:C

0

0

Ce:E

0

Ce:B

M1 M2

(B) (B)

equivalent bond graph

(a)

(b)

1 0
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Equation (3.7) and inequality (3.5) constrain the pathway
flows fp. This is illustrated in appendix A.
4. Application to the E. coli core model
The E. coli core model [8,51] (see figure 3) is a well-
documented and readily available stoichiometric model of a
biomolecular system; species, reactions and stoichiometric
matrix were extracted from the CobraPy model: ‘textbook’.
Using the methods of §3.1, the corresponding bond graph
model was created which, as discussed in the Introduction,
automatically satisfies thermodynamic constraints.

To illustrate the concepts developed above, we analyse
two subsets of reactions within this model

1. Section 4.1 uses the methods of §2.2 to examine possible
pathways within the system formed from the combined
glycolysis and pentose phosphate pathway (which
produces precursors to the synthesis of nucleotides).

2. Section 4.2 uses the modularity approach of §3.2 to build a
modular model of respiration using glycolysis, the TCA
cycle, the electron transport chain and ATP synthase as
modules. Furthermore, the methods of §2.2 are applied
to examine the pathway properties of an individual
module (the TCA cycle) as well as the overall system.

4.1. Glycolysis and pentose phosphate pathway
The combination of the glycolysis and pentose phosphate net-
works provides a number of different products from the
metabolismof glucose. This flexibility is adoptedbyproliferating
cells, such as those associated with cancer, to adapt to changing
requirements of biomass and energy production [69,70].

We construct a stoichiometric model of these pathways,
consisting of the upper reactions of glycolysis and the
pentose phosphate pathway. The full reaction network is
given in appendix C, and a bond graph is constructed
using the methods of §3.1.

As discussed in the textbooks [61,71], it is illuminating to
pick out individual paths through the network to see how
these may be used to provide a variety of products. This is
reproduced here by choosing appropriate chemostats and
flowstats (§2.2) to give the results listed by Garrett & Grisham
[61] §22.6d. In each case, the corresponding pathway reaction
potential is given. For consistencywith Garrett &Grisham [61]
§22.6d, each pathway starts with glucose 6-phosphate (G6P).

We use the following list of chemostats (together with
additional chemostats) for the pathway analysis below:
{ADP, ATP, CO2, G6P, H, H2O, NAD, NADH, NADP,
NADPH, PI, PYR}. The pathways are generated using the
methods of §2.2.
1. R5P and NADPH generation
Chemostats: RP5
Flowstats: PGI, TKT2
Pathway: G6PDH2R + PGL + GND + RPI
Reaction: G6P + H2O + 2 NADP ⇄ CO2 + 2 H + 2 NADPH

+ R5P
2. R5P generation

Chemostats: RP5
Flowstats: GAPD, G6PDH2R
Pathway: - 5 PGI - PFK - FBA - TPI - 4 RPI + 2 TKT2 +

2 TALA + 2 TKT1 + 4 RPE
Reaction: ADP + H + 6 R5P ⇄ ATP + 5 G6P

3. NADPH generation

Chemostats: None
Flowstats: GAPD
Pathway: - 5 PGI - PFK - FBA - TPI + 6 G6PDH2R +

6 PGL + 6 GND + 2 RPI + 2 TKT2 + 2 TALA +
2 TKT1 + 4RPE
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Figure 3. Escherichia coli core model. The extracted reactions corresponding to the glycolysis, pentose phosphate pathways and TCA cycle parts of the model are
shown; a complete list of reactions is given in appendix D. The diagram was created using Escher [68].
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Reaction: ADP + G6P + 6 H2O + 12 NADP ⇄ ATP + 6 CO2

+ 11 H + 12 NADPH.
In §5, we use the model of the glycolysis and pentose

phosphate pathways as a basis for inferring parameters
from experimental data. Once the parameters have been
identified (§5.4), dynamic simulations of these pathways
can be run. This is shown later in §5.6.

4.2. Respiration
To illustrate the utility of using bond graphs for the modular
construction of stoichiometric models, we construct a model
of respiration by combining the subsystems of glycolysis,
TCA cycle, electron transport chain and ATP synthase. Reac-
tions for each of these subnetworks were extracted from the
CobraPy model; these reactions are listed in appendix
D. For simplicity, reactions PDH and PFL (converting PYR
to ACCOA) and reaction NADTRHD (converting NADP/
NADPH to NAD/NADH) were included in the TCA cycle
module. Once these are converted into bond graphs, the
algorithm in §3.2 was used to combine these models together
into a model of respiration.

4.2.1. Analysis of individual modules
An advantage of considering subsystems as separate mod-
ules is that these modules can be analysed individually. For
example, the TCA cycle module can be analysed using the
set of chemostats (see §2.2)

fPYR, CO2, ADP, ATP, H2O, NAD, NADH, PI, NADP;

NADPH, H, Q8, Q8H2, FORg:
Three pathways result from this analysis

1. - FRD7 + SUCDI
This is a type III pathway with no overall reaction.
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Figure 4. Modularity. (a) The two modules GLY (glycolysis) and TCA (TCA cycle) each contain a bond graph representation of the relevant reactions. As discussed in
§3.2, they are combined into a single module by combining common species; in this case PYR is shown explicitly—other common species are {ATP, ADP, PI, H, NAD,
NADH, H2O}. (b) The three modules GLYTCA (containing the two modules GLY and TCA), ETC and ATP synthase are combined by unifying common species. This is
shown for principle common species and emphasizes that ETC is powered by NADH from GLYTCA, ATP synthase is powered by the external protons H˙E and both
GLYTCA and ATP synthase generate ATP from ADP. Common species not explicitly shown are {PI, H2O, Q8, Q8H2}. (a) glycolysis–TCA module (GLYTCA), (b) modular
metabolism.
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2. CS + ACONTA + ACONTB + ICDHYR + AKGDH +
SUCOAS + FRD7 + FUM + MDH + PDH

This is a type I pathway with the reaction

ADPþ 2H2Oþ 3NAD

þNADPþ PIþ PYRþQ8
�! �ATPþ 3CO2 þ 2H

þ 3NADHþNADPHþQ8H2

3. CS + ACONTA + ACONTB + ICDHYR + AKGDH +
SUCOAS + FRD7 + FUM + MDH + PFL

This is a type I pathway with the reaction

ADPþ 2H2Oþ 2NAD

þNADPþ PIþ PYRþQ8
�! �ATPþ 2CO2 þ FOR

þ 2Hþ 2NADHþNADPHþQ8H2

Pathways 2 and 3 use the potential of PYR to generate
NADH, NADHP, ATP and Q8H2 while releasing CO2 and H.
4.2.2. Analysis of combined network
The bond graph approach provides a method for easily com-
bining stoichiometric models using the methods of §3.2.
Here, we demonstrate this by constructing a model of respir-
ation from the individual modules glycolysis, TCA cycle,
electron transport chain and ATP synthase. We begin by
first combining the glycolysis and TCA modules, as indicated
in figure 4a. As well as the common species PYR (pyruvate)
explicitly shown, the set of species

fATP, ADP, PI, H, NAD, NADH, H2Og,

were also declared to be common.
The full model of respiration is then constructed by com-

bining the glycolysis + TCA cycle module with the electron
transport chain and ATP synthase modules, as indicated in
figure 4b. In addition to the common species explicitly shown

fATP, ADP, H, HE, NAD, NADHg,
the set of species

fPI, H2O;Q8, Q8H2g,
were also declared to be common.

To analyse this overall module, the chemostats were
chosen to be

fGLCDE, CO2, O2, ADP, ATP, H2O, PI, Hg:
Using the methods of §2.2, the three pathways in this net-
work are

1. PFK + FBP
This is a type II pathway with the overall reaction

ATP + H2O�! �
P1

ADP + PI + H :

This futile cycle has regulatory implications [62].
2. -FRD7 + SUCDI

This is a type III pathway with no overall reaction.
3. 2 GLCPTS + 2 PGI + 2 PFK + 2 FBA + 2 TPI + 4 GAPD +

4 PGK - 4 PGM + 4 ENO + 2 PYK + 4 PDH + 4 CS +
4 ACONTA + 4 ACONTB + 4 ICDHYR + 4 AKGDH +
4 SUCOAS + 4 FRD7 + 4 FUM + 4 MDH + 4
NADTRHD + 20 NADH16 + 12 CYTBD + 27 ATPS4R

This is a type I pathway with the reaction

2GLCDE þ 12O2 þ 35ADPþ 35 PIþ 35H�! �
P3

12CO2

þ 35ATPþ 47H2O:

Pathway 3 corresponds to the metabolic generation of
ATP using the free energy of GLCD˙E. The ratio of ATP to
GLCD˙E is 17.5; this is the value quoted by Palsson [8] §19.2.
5. Dynamic modelling and parameter estimation
Dynamic models of biochemical networks have the potential
to aid the understanding of how subprocesses change over
time, and can potentially elucidate important control struc-
tures within these networks [72]. However, due to their
nonlinear nature, parameter estimation is one of the most
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challenging aspects of developing models of biomolecular
systems [73].

Parameter estimation depends on both the form of the
model and the type of data available. This section assumes
a bond graph model with the mass-action kinetics of equation
(2.6) and that the following data are available for a single
steady-state condition:

1. Reaction potentials F (equivalent to reaction Gibbs free
energy).

2. Reaction flows f.
3. Species concentration c.

If data at three or more steady-state conditions were avail-
able, more complex kinetics such as the reversible Michaelis–
Menten formulation (2.7) could be used but this is not
pursued in this paper.

In recent times, such data are becoming more readily
available; species concentrations can be obtained from meta-
bolomics data, and tracer experiments involving 13C and 2H
have been used to infer both fluxomics data for reaction
flows [74,75] and thermodynamic data for reaction potentials
[74,76,77]. In the following examples, we make use of the
dataset obtained by Park et al. [74] to infer the thermo-
dynamic parameters using a relatively fast quadratic
programming algorithm.

Because bond graph models are thermodynamically con-
sistent, the estimated parameters have physical meaning and
the resultant estimated model, though not necessarily correct,
is physically plausible [47]. Moreover, physical constraints
imply parametric constraints thus reducing the parameter
search space.
5.1. Species potentials
Because of the energetic constraints implied by the bond
graph, the reaction potentials F are related to the species
potentials ϕ by equation (2.13). Since some reaction potentials
may be unavailable, we rearrange and partition F and the
stoichiometric matrix N so that

N ¼ N0 N1½ � and F ¼ F0

F1

� �
, ð5:1Þ

where F0 and F1 contain the known and unknown values of
F respectively.

Given the measured value of F0 and the estimated species
potentials f̂, the estimation error ϵ is defined as

e ¼F̂0 �F0 ¼ �NT
0f̂�F0 ð5:2Þ

hence e2 ¼f̂TN0NT
0f̂þ 2FT

0N
T
0 fþFT

0F0, ð5:3Þ
where the hat notation denotes estimated quantities.
Although F1 is unknown, it is subject to the physical inequal-
ity (2.11). In this case, all of the measured flows are positive,
hence inequality (2.11) can be combined with equation (2.13)
and rewritten as

�NT
1 f . 0: ð5:4Þ

Equation (5.2) and inequality (5.4) can be embedded in a
quadratic program (QP) [78]:

minimize
1
2
f̂TPf̂þ qTf subject to NT

1f̂ , 0, ð5:5Þ

where P ¼ N0NT
0 þ lI and q ¼ N0F0: ð5:6Þ
I is the nf � nf unit matrix and λ > 0 a small positive number.
In some cases, there are more species than reactions and so
the stoichiometric matrix N has more rows than columns;
as a result, the number of species potentials ϕ is greater
than the number of reaction potentials F and so equation
(2.13) has no unique solution for ϕ given F. In such cases,
it is standard practice to use the λI term to turn a non-
unique solution for ϕ into a minimum norm solution.

Having deduced a set of estimated species potentials f̂
using the QP, the corresponding reaction potentials F̂0 and
F̂ can be obtained from equation (2.13) rewritten as

F̂0 ¼ �NT
0f̂ and F̂1 ¼ �NT

1f̂: ð5:7Þ
Once again, F̂0 ¼ F0 and the other values of F can be
deduced from (5.7); because of the inequality constraint in
the QP, these values are positive and thus physically
plausible.

QP also handles equality constraints [78]; this provides a
potential mechanism for incorporating known parameters
into the procedure.
5.2. Pathway flows
From basic stoichiometric analysis, steady-state flows f can be
written in terms of the pathway matrix Kp and pathway flows
fp by equation (2.19) repeated here as

f ¼ Kpfp: ð5:8Þ
Note that, as discussed in §2.2, the pathway matrix Kp is
dependent on the choice of chemostats. In general, Kp has
more rows than columns and thus the pathway flow fp is
over-determined by the reaction flows f. Hence, given a set
of experimental flows f, an estimate f̂p of fp can be obtained
from the least-squares formula

ðKT
p KpÞ̂fp ¼ KT

p f : ð5:9Þ

Note that

1. ðKT
p KpÞ is a square np × np matrix where np is the number

of pathways.
2. If some flows are not measured, the corresponding rows

of Kp are deleted.
3. The reaction flows (including the missing ones) can be

estimated from f̂ ¼ Kpf̂p.
4. From equation (2.12), the estimated chemostat flows are

given by the non-zero elements of

_̂x ¼ Nf̂ : ð5:10Þ

5.3. Reaction constants
In terms of estimated quantities, the reaction flow of equation
(2.6) can be rewritten as

f̂ ¼ k̂f̂0 where f̂0 ¼ f̂þ0 � f̂�0 ð5:11Þ
and

f̂þ0 ¼ exp
^
Ff

fN
; f̂�0 ¼ exp

F̂r

fN
and

^
Ff ¼ Nff̂; F̂r ¼ Nrf̂:

ð5:12Þ

For each reaction, the estimated reaction constant k̂ is then
given by equation (5.11).
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Similarly, reversible Michaelis–Menten reaction kinetics
can be written in terms of estimated quantities and three
estimated parameters f̂max, K̂f and r̂ from equation (2.7)

f̂ ¼ f̂max f̂0
K̂f þ ð1� r̂Þ̂fþ0 þ r̂f̂�0

: ð5:13Þ

This can be rearranged as

f̂max þ f̂ r̂� f̂

f̂0
K̂f ¼ f̂

f̂0
f̂þ0 ð5:14Þ

and can be in rewritten in linear-in-the-parameters form [79] as

y ¼ Xu ð5:15Þ
where X ¼ 1f̂ � f̂

f̂0

� �
ð5:16Þ

u ¼ fmaxrKf
� �T ð5:17Þ

and y ¼ f̂

f̂0
f̂þ0 : ð5:18Þ

Given an estimate û of θ, the estimation error ϵ0 is

e0 ¼ y� Xû: ð5:19Þ
Because there are three unknown parameters (̂fmax, K̂f and r̂),
at least three different sets of steady-state data are required
to uniquely determine the parameters; this case is not con-
sidered here. Alternatively, these unknown parameters can
be determined using measured constants from the literature
[29]. Such known parameters can be included using an equality
constraint of the form Aecû ¼ bec—an example appears in
§5.5. Noting that all elements of θ are positive, û also has
the inequality constraint û . 0, the error equation (5.19)
together with the constraints can be embedded QP [78]

minimize
1
2
ûTPûþ qT û subject to û . 0 and Aecû ¼ bec,

where P ¼ XTX þ lI; q ¼ XTy ð5:20Þ
I is the nu � nu unit matrix and λ > 0 a small number. The par-
ameters of the equivalent bond graph model can be deduced
using equation (2.9).

More general reaction kinetics [29] can be incorporated in
a straightforward manner but, however, would require
nonlinear fitting procedures to determine parameters.
5.4. Dynamical parameters
The parameter K of the species components (Ce) deter-
mines the time course of species amounts and reaction
flows when there is a deviation from steady-state. Using
equation (2.5), this can be determined from the species
potential estimate f̂ and the amount of species x� at the
steady-state conditions. Expressing amounts per unit
volume, it follows that x� ¼ c, the species concentration at
the steady-state conditions.
5.5. Parameters for the glycolysis and pentose
phosphate model

The bond graph of the glycolysis and pentose phosphate
model (§4.1) was parameterized to fit E. coli experimental
data [74] using the approach described in this section.
Table 2 [74] gives experimentally measured values of the
reaction Gibbs energy ΔG for all of the reactions in the
model except for G6PDH2R and PGL. The known values of
ΔG were converted to reaction potentials F0 ðmVÞ. The
unknown potentials F1 were constrained to be greater than
1mV. The first column of table 1c gives the experimental
values of reaction potential F with the unknown values indi-
cated by –; the second column gives the corresponding
estimatesF̂ ðmVÞ. The estimated and known values are iden-
tical; of the two estimated unknown values, that for PGL
lies on the constraint that unconstrained optimization gives
a physically impossible negative value.

As discussed in §2.2, pathways are determined by chemo-
stats. In this case, it was assumed that the set of chemostats
was: {ADP, ATP, CO2, G3P, G6P, H, H2O, NADP, NADPH,
R5P}. Using the methods of §2.2, there were three pathways

1. PGI + PFK + FBA + TPI
2. G6PDH2R + PGL + GND + RPI
3. - 2 PGI + 2 G6PDH2R + 2 PGL + 2 GND + TKT2 + TALA

+ TKT1 + 2 RPE

with pathway matrix Kp given by

KT
p ¼

1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
�2 0 0 0 2 2 2 0 1 1 1 2

0
@

1
A, ð5:21Þ

and corresponding reactions

ATPþG6P �! �
PPP1

ADPþ 2G3PþH ð5:22Þ

G6PþH2Oþ 2NADP �! �
PPP2

CO2 þ 2Hþ 2NADPH

þ R5P ð5:23Þ

and 2H2Oþ 4NADPþ R5P �! �
PPP3

2CO2 þG3Pþ 4H

þ 4NADPH
ð5:24Þ

Data normalization is important in the context of par-
ameter identification in systems biology [80]. Here, the
experimental concentration and flow data [74] was normal-
ized with respect to the concentration of G6P and flow of
PGI (given in mM/min) by defining:

c0 ¼ cG6P ¼ 7:88mM f0 ¼ fPGI
60
¼ 0:992mMs�1 t0

¼ c0
f0
¼ 7:95 s, ð5:25Þ

where t0 is the corresponding time unit.
Using the pathway decomposition and the method of

§5.2, the three pathway flows were deduced to be those of
table 1d. The estimated reaction flows f̂ are then deduced
from equation (5.8) and given in the fifth column of table
1c. The chemostat flows are given in table 1b. The concen-
trations given in table 3 [74] were used to derive the species
parameters of table 1a.

The reaction constants κ of the mass action formulation
are given in table 1d together with the reaction constants κ1
and κ2 of the Michaelis–Menten formulation derived using
the QP of (5.20). These parameters are used to perform a
dynamical simulation in §5.6.
5.6. Simulation
The parameters of table 1a,d were used with the bond graph
model of the glycolysis and pentose phosphate pathway
(§4.1) to run simulations. In §4.1, we derived three pathways



Table 1. Estimated flows and parameters; flows and concentration normalized by f0 and c0 (5.25). Missing data indicated by —. (a) Estimated species
potentials f̂ (§5.1), normalized concentration and species constants (§5.4). (b) Estimated chemostat flows (§5.2). (c) Estimated pathway flows (§5.2). (d) The
estimated reaction potentialsF̂; these are identical to the measured reaction potentials F where known (§5.1). The estimated reaction flows f̂ are close to the
measured reaction flows where known (§5.2). The estimated mass-action reaction constants k̂ and the estimated Michaelis–Menten equivalent parameters k̂1
and k̂2 using (2.9) (§5.3) with Kf = 0.1 and ρ = 0.2.

(a) species parameters

species f̂ mV c/c0 K̂

6PGC 29 0.4784 6.2335

ADP −27 0.0704 5.1546

ATP 27 1.2221 2.2539

CO2 −30 0.0095 33.7942

DHAP −10 0.3883 1.7790

E4P −27 0.0062 57.9353

F6P −21 0.3198 1.4140

FDP −8 1.9289 0.3880

G3P −18 0.0344 14.9020

G6P −5 1.0000 0.8377

NADP 30 0.0003 11747.0633

NADPH −30 0.0154 21.0027

R5P 5 0.0999 12.2419

RU5PD 5 0.0142 86.1551

S7P 24 0.1119 21.7513

XU5PD 5 0.0230 51.6829

(b) chemostat flows

chemostat flow

ADP 63.12

ATP −63.12
CO2 11.58

G3P 128.03

G6P −71.10
H 86.27

H2O −11.58
NADP −23.16
NADPH 23.16

R5P 6.19

(c) pathway flows

pathway f̂p

PPP1 63.12

PPP2 7.98

PPP3 1.80

(d) reaction flows and parameters

reaction F mV F̂ mV f/f0 f̂=f0 k̂ k̂1 k̂2

PGI 16.48 16.48 60.00 59.52 154.39 66.44 16.61

PFK 68.82 68.82 62.62 63.12 54.85 30.59 7.65

FBA 20.00 20.00 63.43 63.12 160.08 61.59 15.40

TPI 7.98 7.98 62.82 63.12 353.93 133.64 33.41

G6PDH2R — 82.84 — 11.58 4.67 5.14 1.28

(Continued.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210478

11



Table 1. (Continued.)

reaction F mV F̂ mV f/f0 f̂=f0 k̂ k̂1 k̂2

PGL — 1.00 — 11.58 291.64 171.06 42.77

GND 114.53 114.53 11.70 11.58 1.27 4.78 1.19

RPI 0.04 0.04 7.87 7.98 4206.98 2785.35 696.34

TKT2 16.38 16.38 0.91 1.80 9.17 2.24 0.56

TALA 54.41 54.41 — 1.80 1.66 0.94 0.23

TKT1 4.04 4.04 2.92 1.80 8.82 6.66 1.67

RPE 0.83 0.83 3.83 3.59 96.07 63.27 15.82
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Figure 5. Pathway simulation. Ratios (ρ) of product (R5P and NADPH) chemostat flow to substrate (G6P) chemostat flow, plotted against time normalized by t0
(5.25), for each of the three pathways of §2.2. The results are given for two cases: using the estimated mass-action (MA) parameter k̂ and using the estimated
Michaelis–Menten equivalent parameters (MM) k̂1 and k̂2 from table 1. As discussed in §2.2, pathway i yields both products, pathway ii yields more R5P at the
expense of NADPH and pathway iii yields more NADPH at the expense of R5P. In this case, both MA and MM give the same steady-state values but with differing
dynamic response. (a) R5P (MA), (b) NADPH (MA), (c) R5P (MM) and (d ) NADPH (MM).
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within this system; these are now simulated separately here.
In particular, chemostats and flowstats (as defined in §4.1)
were implemented for the three cases and the initial concen-
trations were set to those in table 1awhere known and to unit
values where unknown.

The simulation was performed separately for two cases: the
mass-action formulation using the κ parameters and the
Michaelis–Menten formulation using the k̂1 and k̂2 parameters.

Figure 5 shows the ratios ρR5P = fR5P/fG6P and ρNADPH =
fNADPH/fG6P of the chemostat flows corresponding to the
products R5P and NADH to the chemostat flow correspond-
ing to the substrate G6P. At steady state, these ratios
correspond to the stoichiometry of the three pathways
of §2.2. In particular, pathway i yields both products,
pathway ii yields more R5P at the expense of NADPH
and pathway iii yields more NADPH at the expense of
R5P. Figure 5a,b correspond to the mass-action formulation
and figure 5c,d correspond to the Michaelis–Menten
formulation.

Because the two-reaction Michaelis–Menten formulation
of enzyme catalysed reactions (2.8) explicitly includes the
enzyme, such models can be used to examine system
behaviour as enzyme levels change.
6. Conclusion
The formulation of dynamic simulation models for large-
scale biological systems remains a key challenge in systems
biology. With the advent of genome-scale simulation and
whole-cell modelling, there is increasing recognition of the
need for a modular approach in which model components
can be formulated, tested and validated independently, and
then seamlessly integrated together to form a model of the
whole system. However, a dynamic modelling framework
which is modular and which can in principle describe the
broad range of biochemical and biophysical cellular processes
has been elusive.

Several authors have acknowledged the need for energetic
considerations to be integrated into modelling approaches,
both to ensure that models are consistent with basic
thermodynamic principles, and to enable calculation of
energy flows and related concepts such as efficiency [67].
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Here, we have shown that thermodynamically compliant
dynamic models of metabolism can be generated using
the bond graph modelling approach, with the stoichiometric
matrix as the starting point. Bond graphs, first advocated in
the context of biological network thermodynamics by Oster
et al. [34], represent both energy and mass flow through the
biochemical network. Bond graphs separate the system con-
nectivity from energy-dissipating processes (reactions), and
thus are a very natural fit to network-based modelling in sys-
tems biology. As a port-based modelling approach, bond
graphs are also inherently modular. Furthermore, application
of bond graph modelling principles automatically endows
models with a number of necessary features for large-scale
modelling including modularity, thermodynamically distin-
guished parameters (wherein system-wide thermodynamic
parameters relating to biochemical species are distinguished
from reaction-specific parameters) and hence, as noted by
Mason & Covert [29], improved opportunity for parameter
identification from data.

Energy-based modelling of biochemical reaction net-
works using bond graphs naturally encompasses the EBA
approach [16], where we have shown that the key equations
of EBA are implicit in the system bond graph. This is a
powerful advantage as it means that no additional steps are
required in order to satisfy thermodynamic constraints. Any
model formulated as a bond graph implicitly satisfies these
constraints; it is not possible to impose, or infer from data,
parameters which break these constraints.

A further benefit for large-scale modelling is that
bond graphs naturally lend themselves to model reduction,
for example through generation of reduced-order models
using pathway analysis [53,81]: any such simplified
model will also satisfy the same thermodynamic constraints.
This enables a hierarchical approach to modelling, and
it is not necessary to model all aspects of the system
at the same level of detail. Different levels of represen-
tation can be used as required, for example reflecting
available knowledge and data about different parts of
the system.

As noted in the Introduction, a key challenge in the devel-
opment of dynamic models is the fitting of parameters to
experimental data. We have shown that both mass-action kin-
etics and (reversible) Michaelis–Menten kinetics fall within
the bond graph framework and therefore have a thermodyna-
mically safe parameterization; moreover, it is shown this
parameterization leads to a linear-in-the parameters esti-
mation problem. Bond graphs separate the constitutive
relations describing the reactions from the connectivity of
the model; it is therefore possible to incorporate more com-
plex kinetic schemes [59], including inhibition, allosteric
modulation and cooperativity within the bond graph
approach thus retaining thermodynamically safe parameteri-
zation. However, the resultant parameter estimation problem
will not, in general, be linear-in-the parameters and will
therefore require an optimization approach such as that
used by K-FIT [82]. Optimization approaches such as K-FIT
do not use a set of parameters that is thermodynamically
safe by design, hence they need to derive additional con-
straints to incorporate thermodynamic consistency. Future
work will examine how the thermodynamically safe parame-
terization induced by the bond graph approach can be used
to simplify such optimization when applied to large systems
and datasets.
According to Noor et al. [83] in the context of obtaining
biological insights though omics data integration: ‘To maxi-
mize predictive power and mechanistic insights on the
molecular level, ODE simulations based on physical models
of binding and catalysis remain the gold standard.’ The
illustrative example of this paper shows how data involving
flows, concentrations and chemical potentials can be
integrated using the physical model structure provided by
combining stoichiometric and bond graph approaches. It is
believed that this provides a basis for integrating the larger
and more varied omics data becoming available.
Moreover, the physical basis of the approach can be used to
indicate what additional data should be gathered to fully
parameterize the model.

Here, we have demonstrated that thermodynamically
compliant dynamic models can be constructed starting
from the stoichiometric matrix. The plethora of existing stoi-
chiometric models for metabolic networks provides a
natural starting point for this endeavour. However, while
metabolic models are of central importance in a number of
contexts, models of cellular physiology in general, and
whole-cell models in particular, require a framework that
can incorporate a much broader range of cellular processes,
feedback and regulation. As a general tool for physically
plausible systems modelling, bond graphs can naturally
include energy compliant connections to other physical
domains and processes, including transport [84], electroche-
mical transduction [38,39], membrane potential dynamics
[41], mechanochemical transduction and photosynthesis. Fur-
thermore, through incorporation of control-theoretic
concepts, enzyme modulation and feedback control can be
represented in a coherent manner [62]. There remain however
several key domains of cellular biology where to our knowl-
edge there are as yet no examples of bond graph modelling,
including transcription and translation [20,85,86]. These will
need to be demonstrated in order to provide a complete
road map for construction of modular and thermodynamically
compliant whole-cell models using bond graphs.
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Appendix A. EBA examples
These examples refer to §3.3 andaredrawn fromBeard et al. [16].

A.1. Example: parallel reactions
Beard et al. [16] motivate EBA using the example of two resis-
tors in parallel. Figure 6a shows the bond graph of the
analogous reaction system: the species A and B are joined

https://github.com/gawthrop/GawPanCra21
https://github.com/gawthrop/GawPanCra21
https://github.com/gawthrop/GawPanCra21
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Figure 6. Bond graphs corresponding to examples from Beard et al. [16] (1 junctions are not shown for clarity). (a) Beard et al. ([16], Fig. 2), (b) Beard et al. ([16],
Fig. 3). (a) Example: Parallel reaction and (b) example: three-reaction cycle.
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by two reactions

A�! �
r1

B (A 1Þ

and

A�! �
r2

B: (A 2Þ

The stoichiometric matrix is

N ¼ �1 �1
1 1

� 	
(A 3Þ

and the null space matrix K is

K ¼ �1
1

� 	
, (A 4Þ

corresponding to the pathway: −r1 + r2.
Setting A and B as chemostats

Ncd ¼ 0 0
0 0

� 	
(A 5Þ

and

Kp ¼ 1 0
0 1

� 	
: (A 6Þ

Equation (3.7) then becomes

� r1v1 þ r2v2 ¼ 0: (A 7Þ

As ri > 0, it follows that v1 and v2 must either be zero or have
the same sign.
A.2. Example: three-reaction cycle
Beard et al. [16] give the example of a three-reaction cycle.
Figure 6b shows the corresponding bond graph. The species
A, B and C are joined by three reactions

A�! �
r1

B (A 8Þ

B�! �
r2

C (A 9Þ

and C�! �
r3

A: (A 10Þ

The stoichiometric matrix is

N ¼
�1 0 1
1 �1 0
0 1 �1

0
@

1
A, (A 11Þ
and the null space matrix K is

K ¼
1
1
1

0
@

1
A, (A 12Þ

corresponding to the pathway: r1 + r2 + r3.
Setting A and B as chemostats

Ncd ¼
0 0 0
0 0 0
0 1 �1

0
@

1
A (A 13Þ

and

Kp ¼
1 0
0 1
0 1

0
@

1
A: (A 14Þ

Equation (3.7) then becomes

r1v1 þ r2v2 þ r3v2 ¼ r1v1 þ (r2 þ r3) v2 ¼ 0: (A 15Þ
As ri > 0, it follows that v1 and v2 must either be zero or have
the opposite sign.

Alternatively, setting A, B and C as chemostats

Ncd ¼
0 0 0
0 0 0
0 0 0

0
@

1
A (A 16Þ

and

Kp ¼
1 0 0
0 1 0
0 0 1

0
@

1
A: (A 17Þ

Equation (3.7) then becomes

r1v1 þ r2v2 þ r3v3 ¼ 0: (A 18Þ
As ri > 0, there are three possibilities: all flows are zero; one of
the three pathway flows must have one sign and the other
two flows the opposite sign; or one flow is zero and the
other two have opposite signs.
Appendix B. Pathways: illustrative example
This example refers to §2.2. Noor [19] gives a simple illustra-
tive example of the three types of pathway; figure 7a gives the
corresponding bond graph. the reactions are

A�! �
r1

B (B 1Þ
ATPþ B�! �

r2
ADPþ C (B 2Þ

C�! �
r3

D (B 3Þ
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Figure 7. Bond graphs for illustrative example [19]. (a) Bond graph and (b) pathway bond graph.
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D�! �
r4

A (B 4Þ

A�! �
r5

C (B 5Þ

and C�! �
r6

E: (B 6Þ

The there are seven species and six reactions giving states x
and flows v

2x ¼

xA
xADP
xATP
xB
xC
xD
xE

0
BBBBBBBB@

1
CCCCCCCCA

v ¼

vr1
vr2
vr3
vr4
vr5
vr6:

0
BBBBBB@

1
CCCCCCA

(B 7Þ

The stoichiometric matrix is

N ¼

�1 0 0 1 �1 0
0 1 0 0 0 0
0 �1 0 0 0 0
1 �1 0 0 0 0
0 1 �1 0 1 �1
0 0 1 �1 0 0
0 0 0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

(B 8Þ

Setting A, E, ATP and ADP as chemostats, Ncd is con-
structed by setting the corresponding rows of N to zero.
The corresponding null space is three dimensional and corre-
sponds to the three pathways

(i) r1 + r2 + r3 + r4
(ii) r3 + r4 + r5
(iii) r1 + r2 + r6.

Using (2.20), the pathway stoichiometric matrix Np is

Np ¼

0 0 �1
1 0 1
�1 0 �1
0 0 0
0 0 0
0 0 0
0 0 1

0
BBBBBBBB@

1
CCCCCCCCA
: (B 9Þ
The three pathway reactions are

ATP�! �
P1

ADP (B 10Þ
�! �
P2

(B 11Þ

and AþATP�! �
P3

ADPþ E: (B 12Þ
Pathway reaction P1 corresponds to a type II pathway, path-
way reaction P2 to a type III pathway and pathway reaction
P3 to a type I pathway where A is converted to E driven
by the conversion of ATP to ADP. The example is extended
by assigning a set of nominal chemical potentials f� to the
species: f�A ¼ 1, ϕATP = 0, ϕADP = 3, f�B ¼ 1, f�C ¼ 1,
f�D ¼ 1, f�E ¼ 0. The pathway reaction potentials are then
computed using (2.21) as FP1 ¼ �2, FP2 ¼ 0, FP3 ¼ �1. As
the potential for each pathway only depends on the species
appearing in the pathway reactions, the potential of non-che-
mostatted species are irrelevant for this computation. In fact,
the potentials of the species will correspond to the steady-
state values of concentrations of the non-chemostatted species
arising from the flow patterns corresponding to the chemo-
stat potentials [87]. The pathway bond graph appears in
figure 7b.
Appendix C. Glycolysis and pentose phosphate
pathways
This section contains the reactions used in §4.1 to generate the
three pathways arising from the upper reactions of glycolysis
and the pentose phosphate pathway. The reactions are
extracted as discussed in §4.

The reactions are

G6P�! �
PGI

F6P (C 1Þ

ATPþ F6P�! �
PFK

ADPþ FDPþH (C2Þ

FDP�! �
FBA

DHAPþG3P (C 3Þ

DHAP�! �
TPI

G3P (C 4Þ

G6PþNADP �! �
G6PDH2R

6PGLþHþNADPH (C5Þ

6PGLþH2O�! �
PGL

6PGCþH (C6Þ
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Figure 8. Bond graph representation of an enzyme-catalysed reaction.
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6PGCþNADP �! �

GND
CO2 þNADPHþ RU5PD (C 7Þ

RU5PD�! �
RPI

R5P (C 8Þ

E4Pþ XU5PD �! �
TKT2

F6PþG3P (C 9Þ

G3Pþ S7P �! �
TALA

E4Pþ F6P (C 10Þ

R5Pþ XU5PD �! �
TKT1

G3Pþ S7P (C 11Þ

and RU5PD�! �
RPE

XU5PD: (C 12Þ
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Appendix D. Modular representation of
metabolism: reactions
This section contains the reactions used in §4.2 which illus-
trates the utility of using bond graphs for the modular
construction of stoichiometric models by constructing a
model of respiration by combining the modular subsystems:
glycolysis, TCA cycle, electron transport chain and ATP
synthase.

The reaction CYTBD (containing 1
2O2) was multiplied by

2 to give integer stoichiometry and, for clarity, the reactions
RPI, PGK, PGM, SUCOAS and FRD7 were reversed to give
the conventional direction.

D.1. Glycolysis
The reactions extracted are

GLCDE þ PEP �! �
GLCPTS

G6Pþ PYR (D1Þ

G6P�! �
PGI

F6P (D 2Þ

ATPþ F6P�! �
PFK

ADPþ FDPþH (D3Þ

FDPþH2O�! �
FBP

F6Pþ PI (D 4Þ

FDP�! �
FBA

DHAPþG3P (D 5Þ

DHAP�! �
TPI

G3P (D 6Þ

G3PþNADþ PI �! �
GAPD

13DPGþHþNADH (D7Þ

13DPGþADP�! �
PGK

3PGþATP (D8Þ

3PG �! �
PGM

2PG (D9Þ

2PG�! �
ENO

H2Oþ PEP (D 10Þ

and ADPþHþ PEP�! �
PYK

ATPþ PYR: (D 11Þ

D.2. TCA cycle
As well as the TCA cycle itself, this module includes

1. The pyruvate (PYR) connection reactions: PDH and PFL
and

2. The NAD/NADP interconversion reaction NADTRHD.
The reactions extracted are

ACCOAþH2OþOAA�! �
CS

CITþ COAþH (D12Þ

CIT �! �
ACONTA

ACONþH2O (D13Þ

ACONþH2O �! �
ACONTB

ICIT (D 14Þ

ICITþNADP �! �
ICDHYR

AKGþ CO2 þNADPH (D15Þ

AKGþ COAþNAD �! �
AKGDH

CO2

þNADHþ SUCCOA (D16Þ

ADPþ PIþ SUCCOA �! �
SUCOAS

ATPþ COAþ SUCC (D17Þ

Q8 þ SUCC �! �
FRD7

FUMþQ8H2 (D 18Þ

Q8 þ SUCC �! �
SUCDI

FUMþQ8H2 (D 19Þ

FUMþH2O�! �
FUM

MALL (D20Þ

MALLþNAD �! �
MDH

HþNADHþOAA (D21Þ

NADþNADPH �! �
NADTRHD

NADHþNADP (D22Þ

COAþNADþ PYR�! �
PDH

ACCOAþ CO2 þNADH (D23Þ

and COAþ PYR�! �
PFL

ACCOAþ FOR: (D 24Þ

D.3. Electron transport chain
The reactions extracted are

4HþNADHþQ8
�! �

NADH

16
3HE þNADþQ8H2 (D 25Þ

and

4HþO2 þ 2Q8H2
�! �

CYTBD
2H2Oþ 4HE þ 2Q8: (D 26Þ

D.4. ATP synthase
The reaction extracted is

ADPþ 4HE þ PI �! �
ATPS4R

ATPþ 3HþH2O: (D 27Þ
Appendix E. Enzyme-catalysed reaction
See figure 8.
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