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Hospital-acquired bacterial infections lead to prolonged hospital stays and
increased mortality. The problem is exacerbated by antibiotic-resistant
strains that delay or impede effective treatment. To ensure successful therapy
and to manage antibiotic resistance, treatment protocols that draw on several
different antibiotics might be used. This includes the administration of drug
cocktails to individual patients (combination therapy) but also the random
assignment of drugs to different patients (mixing) and a regular switch in
the default drug used in the hospital from drug A to drug B and back
(cycling). For more than 20 years, mathematical models have been used to
assess the prospects of antibiotic combination therapy, mixing and cycling.
But while tendencies in their ranking across studies have emerged, the pic-
ture remains surprisingly inconclusive and incomplete. In this article, we
review existing modelling studies and demonstrate by means of examples
how methodological factors complicate the emergence of a consistent pic-
ture. These factors include the choice of the criterion by which the effects
of the protocols are compared, the model implementation and its analysis.
We thereafter discuss how progress can be made and suggest future model-
ling directions.
1. Introduction
For many decades, bacterial infections have been successfully treated with anti-
biotics, making formerly life-threatening diseases easily treatable. However, the
rapid evolution of resistance and the slow discovery of new antimicrobial com-
pounds increasingly reduce treatment options. In the European Union, resistant
bacteria are responsible for more than 33 000 deaths per year, as estimated
based on data from 2015 [1]. On the one hand, to stop this alarming trend,
restrictions in the use of antibiotics are needed. On the other hand, antibiotics
must be used as wisely as possible whenever their application is required.
Unfortunately, knowing what is wise is far from obvious, and we need to
understand what the consequences of different treatment strategies are to be
able to make more rational choices.

While they are unable to replace empirical research and clinical trials, math-
ematical models have helped to gain insight into the effects of antimicrobial
stewardship. Mathematical studies profit from several strengths. They rely on
explicit and well-defined assumptions, allow us to explore ideas much faster
than clinical trials and are not subject to practical and ethical restrictions.
A question that has been repeatedly addressed in theoretical studies over the
past 20 years concerns the integrated application of multiple antibiotics across
a community—usually a hospital ward—during the phase of empirical therapy,
i.e. during initial treatment that is administered before the responsible bacter-
ium has been identified (table 1). The idea is that strains that are resistant to
one of the drugs are suppressed by another. Within a single patient, this can
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be achieved by the administration of two (or more) antibiotics
in combination (combination therapy). Another multi-drug
strategy for the treatment of individual patients is sequential
therapy, in which the different antibiotics are alternated
instead of being given simultaneously. This strategy has
attracted increasing attention in recent years [20–23], but
has to our knowledge not been modelled on a hospital
scale yet and is therefore not discussed further in this
review. Across a community, it is an option to prescribe
different drugs to different patients in order to create a het-
erogeneous environment for the bacteria. Most prominently,
the default drug can be cycled in time (cycling), creating tem-
poral heterogeneity, or a fraction of patients can receive each
drug (mixing), creating spatial heterogeneity. The use of two
(or more) antibiotics in either form, however, comes at the
risk of selecting for double (or multiply) resistant strains
that can withstand all drugs used. Identifying which strategy
best treats infections in the face of resistance and at the same
time selects least for multiply resistant bacteria is challenging.
In practice, the increased risk of side effects and higher econ-
omic costs possibly associated with combination therapy are
additional factors but current theoretical work only assesses
the disease dynamics and emergence of resistance under
the various strategies and omits other aspects.

Modelling studies tend to rank the three principal
treatment protocols in the order ‘combination therapy >
mixing≥ cycling’ but the picture is not conclusive (table 1).
No strategy is optimal under all circumstances [16,17], and
to date, despite substantial efforts, it has not been conclus-
ively resolved which conditions favour one or the other
strategy. Why is it so difficult to obtain a clear picture? In
this article, we pinpoint the difficulties that mathematical
studies face in the assessment of antimicrobial treatment
protocols. We entirely focus on modelling studies for this
review. It should be noted though that clinical studies have
not come to definite conclusions either (e.g. [24–28]). Asses-
sing the risk of evolution and spread of resistant strains
in clinical trials is hard, in part because of their timelines
and in part because of the stochastic nature of the evolution-
ary dynamics. This makes the importance of gaining clear
insights from modelling even more clear.

To illustrate the difficulties faced by theoretical studies,
we set up a model for the spread of bacterial infections
within a hospital that follows the traditional modelling
approach. It combines features of the two original models
by Bonhoeffer et al. [2] and Bergstrom et al. [3], similar to
the model by Tepekule et al. [17]. We chose to explicitly
refer to a hospital setting because the framework is most
relevant for antibiotic treatment in hospitals; however, for
most of this article, this is only a choice of wording. We
apply this model to demonstrate, by means of examples,
how the ranking of strategies is affected by factors other
than the biology of the pathogen. The most important one
is the choice of the optimality criterion by which the perform-
ance of a treatment protocol is assessed. Owing to the
complexity of the problem, which requires consideration
from several aspects, multiple criteria are in use, making
study outcomes difficult to compare. But also purely technical
aspects can pose obstacles in arriving at congruent con-
clusions. We discuss how these problems might be
addressed and how current models could be extended, help-
ing mathematical models to better meet their potential in
assessing antimicrobial treatment protocols.
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2. The modelling framework
While differing in many respects, almost all existing studies
are based on the same general approach. They follow the
number of uninfected and infected patients over time,
where infected patient populations are divided up into sev-
eral classes according to the infecting bacterial strain (which
is characterized by the resistance profile). For concreteness,
we introduce the modelling framework by presenting the
model that we apply throughout the article.

The examples in the present article are based on an over-
arching model that brings together elements from Bonhoeffer
et al. [2] and Bergstrom et al. [3] (as detailed below) and incor-
porates the most fundamental processes, which are influx and
efflux of patients, infection, clearance, the de novo emergence of
resistance and replacement infection, but it does not incorpor-
ate more detailed features such as explicitly modelled drug
interactions [17,18]. As in all studies except for the short com-
mentary article by Levin & Bonten [4], we consider the use of
two (and not more) drugs. All issues raised in the present
article carry over to future models that would incorporate
more drugs. (There is no a priori reason to assume that the rank-
ing of strategies is independent of the number of drugs used.)
The same applies to models considering other strategies such
as informed cycling strategies that make use of information
on the prevalence of resistance [5,9].

A flow diagram of the model is shown in figure 1. Patients
can be uninfected or infected by one of four bacterial
strains—the sensitive strain that responds to both drugs the
two strains that are resistant to only one drug, and
the double-resistant strain. Following the convention in the
field, we denote the number of uninfected patients by X,
the number of patients infected by the sensitive strain by S
and the number of patients infected by a resistant strain by
RA, RB and RAB, respectively.

New patients get admitted to the hospital at a total rate of
μntot, where ntot is the total number of patients in the hospital.
They can be uninfected or infected with one of the strains
as given by the probability m† (with ‘†’ standing for X, S,
A, B or AB and indicating the compartment). Irrespective of
infection status, patients leave the unit at a per capita rate μ,
i.e. the bacterial infection neither increases mortality nor
requirese stationary treatment. μ is thus the turnover rate.
Patients can get newly infected within the hospital. The trans-
mission rate for the sensitive strain is β. The cost of resistance
manifests itself in a lower transmission rate (reduction by fac-
tors (1− cA), (1− cB) and (1− cAB), respectively). While we
exclude co-infection from the model and assume that every
patient is only colonized by a single strain at any time, we
allow for the instantaneous replacement of infecting strains
by better-adapted strains, which we term ‘replacement infec-
tion’. Colonization of an infected patient happens at a lower
probability than colonization of an uninfected patient
(reduction by a factor σ). The immune system clears infections
at rate γ. A drug to which the infecting strain is susceptible
leads to recovery at rate τ.

Finally, resistance can evolve under drug pressure. During
treatment with drug A or B, resistance to the respective drug
evolves at rate νA and νB, respectively. Sensitive strains
become resistant to both drugs simultaneously at rate νAB.
These rates combine mutation and fixation of the resistant
strain; they also contain selection of pre-existing mutants.
We assume that reversal of drug resistance within a patient
due to back mutation or replacement infection through the
sensitive strain is negligible.

We assume that only infected patients receive antibiotics
(no prophylactic treatment). χA, χB and χAB are the fractions
of infected patients that get treated with drug A, drug B or
both drugs, respectively. As done in most modelling studies,
we assume that the treatment protocols can be perfectly
implemented. For combination therapy, we thus have χAB =
1; for mixing, χA = χB = 1/2; for cycling, χA = 1, χB = 0 in
periods during which drug A is used and χA = 0, χB = 1 in
periods during which drug B is used. We always start the
cycling protocol with drug A. Note that these fractions are
identical for all compartments and constant in time (except
for drug cycling).

Overall, we obtain the following set of ordinary differen-
tial equations (ODEs) that describe the flow between the
different compartments:
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dS
dt

¼ mSntotm� mS� ðgþ tÞS� (xAnA þ xBnB þ nAB)Sþ bSX

� xAsð1� cAÞbSRA � xBsð1� cBÞbSRB � ð1� cABÞsbSRAB,

dRA

dt
¼ mAntotm� mRA � ðgþ ðxB þ xABÞtÞRA � ðxB þ xABÞnBRA

þ bð1� cAÞRAX þ xAnASþ xAsbð1� cAÞSRA

þ sb{xAð1� cAÞ � xBð1� cBÞ}RARB � ðxB þ xABÞsbð1� cABÞRARAB,

dRB

dt
¼ mBntotm� mRB � ðgþ ðxA þ xABÞtÞRB � ðxA þ xABÞnARB

þ bð1� cBÞRBX þ xBnBSþ xBsbð1� cBÞSRB

� sb{xAð1� cAÞ � xBð1� cBÞ}RARB � ðxA þ xABÞsbð1� cABÞRBRAB,

dRAB

dt
¼ mABntotm� mRAB � gRAB þ nABSþ ðxB þ xABÞnBRA

þ ðxA þ xABÞnARB þ bð1� cABÞRABX þ sbð1� cABÞsSRAB

þ ðxB þ xABÞsbð1� cABÞRARAB þ ðxA þ xABÞsbð1� cABÞRBRAB

and
dX
dt

¼ ð1�mS �mA �mB �mABÞntotm� mX þ ðgþ tÞS� bSX þ ðgþ ðxB þ xABÞtÞRA

� bð1� cAÞRAX þ ðgþ ðxA þ xABÞtÞRB � bð1� cBÞRBX þ gRAB � bð1� cABÞRABX:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð2:1Þ
We numerically integrate equation (2.1) using Mathematica
version 10.4.1.0 (Wolfram Research).

To conclude the outline of the model, we briefly give
some details on the choice of model in the context of the
existing literature. Our model combines features of the
models by Bonhoeffer et al. [2] and Bergstrom et al. [3],
which were among the first studies published. Bonhoeffer
et al. [2] do not specifically refer to antibiotic treatment in hos-
pitals but generally across a community. There is only influx
into the compartment of uninfecteds (in our model that
would mean mS =mA =mB =mAB = 0). Resistance may pre-
exist (as reflected by the initial conditions of the system) or
emerge de novo during treatment. Unlike in our model, the
cost of resistance is implemented as a higher pathogen recov-
ery rate rather than a reduced pathogen transmission rate.
The model in Bonhoeffer et al. [2] allows for a higher death
rate of infecteds compared with uninfecteds, while the
efflux rate μ is the same for all patients in our model. Bon-
hoeffer et al. [2] assume that the protocols can be perfectly
implemented such that all patients are treated according to
the respective treatment protocol, and we make this assump-
tion as well. The study by Bergstrom et al. [3] explicitly refers
to a hospital setting. In contrast to Bonhoeffer et al. [2] and
our model, their ODE system does not contain the RAB com-
partment. Double resistance is studied by considering the
rate at which it first appears. For example based on our
model, under combination therapy, double resistance appears
at rate νARB(t) + νBRA(t) + νABRAB(t). We discuss this model
implementation in more detail below. Bergstrom et al. [3]
allow for influx from the outside into all patient classes,
and we allow for this as well. The cost of resistance is
implemented as a lower rate of transmission. There is no de
novo emergence of resistance contained in their model
equations. Efflux rates are the same for all patients, as in
our model. Bergstrom et al. [3] include the possibility
that some patients receive the off-schedule drug in the
cycling strategy.
Considerable work has built on these early studies by
Bonhoeffer et al. [2] and Bergstrom et al. [3], and a range of
biological features have been added to the two models.
These comprise various strategies of drug adjustment in
case of resistance, an explicit description of drug interactions
in combination therapy and trade-offs to double resistance.
Moreover, mixing and cycling with an unequal use of both
drugs have been considered as well as more sophisticated
strategies that monitor resistance and adjust the drug usage
accordingly. The modelling framework has also been used
to specifically describe treatment of gonorrhoea infection
[10,14]. Table 1 gives an overview of the existing literature,
including conclusions about the best treatment protocol.
The table contains entries for all factors that we discuss as
crucial in the following section. More details can be found
in electronic supplementary material, table S1.
3. Challenges in the assessment of treatment
strategies

In the following, we highlight and discuss a series of factors
that influence the ranking of treatment strategies even though
the underlying biological assumptions are (mostly) not
altered. Based on the model defined in equation (2.1), we pro-
vide examples to demonstrate that these factors are indeed
relevant for the ranking. For now, we do not have the infor-
mation to say in which way modelling choices influence the
ranking, e.g. we cannot make statements such as ‘including
factor X into the model turns cycling into the most promising
strategy’. Considering the current studies, it is not apparent
that a specific choice or circumstance would systematically
favour one or the other strategy (table 1).

3.1. The optimality criterion
A range of optimality criteria are currently applied to assess
treatment protocols. Some focus on overall treatment success
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(number of uninfecteds/infecteds in some time interval or at
equilibrium, number of inappropriately treated patients, i.e.
patients who are treated by a drug to which the infecting
strain is resistant such as patients in the RA compartment by
drug A) and others on the dynamics of the resistant strains
(number of patients infected with a resistant strain, emergence
or spread of double resistance). As illustrated in figure 2, the
choice of the optimality criterion can substantially influence
the conclusions. Different treatment strategies might optimize
different quantities, and a strategy might be well suited to
achieve one goal but perform poorly to achieve another [16].
Hence,which criterion should be used? If the goal is to enhance
our understanding of the evolutionary dynamics, any of the
above listed criteria could be insightful and meaningful. If
the goal is to foster clinical trials or to come to conclusions
that directly guide clinical applications, answering this ques-
tion is difficult. Essentially, three factors need to be taken into
account: the clinical benefits (e.g. clearance of the infection)
and costs (e.g. side effects) and economic costs. In any case,
the modelling framework directly targets only the first of
these factors. Yet, even when focusing exclusively on the clini-
cal benefits, several aspects need to be taken into account, as
discussed below. Moreover, if aiming at fostering or guiding
clinical trials, one needs to choose a criterion that is suitable
to serve as a clinical endpoint. Time horizons that would
allow us to observe the first emergence of multiple resistance
and monitor the subsequent spread of it are often not practical
in clinical trials. In the discussion in the following paragraphs,
we assume that sufficiently long clinical studies can be per-
formed. However, it should be kept in mind that this may be
challenging in reality, making the definition of a meaningful
clinical endpoint a difficult problem, at least in situations
where multiple resistant strains have not yet emerged. This
emphasizes once more the importance of modelling, where
no such limitations exist.

Generally, we advocate using a criterion that aims at
maximizing overall treatment success rather than focusing on
resistance evolution. This is because, eventually, we are not
interested in the evolution of resistance per se—resistance
could be avoided by simply not treating anybody—but rather
in its harmful consequence, which is to prevent (rapid) patient
recovery.Nevertheless,monitoring resistance under the various
treatment strategies is by no means irrelevant for their evalu-
ation, neither in modelling nor in clinical studies. One reason
for this is that antibiotics may be abandoned when resistance
reaches a threshold. That is, even if a treatment strategy reduces
overall treatment failure compared with another protocol, it
might lead to the earlier removal of a certain antibiotic. Given
the decelerated discovery of new antibiotics, this will reduce
treatment options. Moreover, the alternative antibiotic might
have more severe side effects or might be substantially more
expensive. A priori, we think that criteria that incorporate the
spread of resistance are more relevant than those purely quan-
tifying the rate of emergence. Moreover, for clinical trials, a
criterion that integrates information from a time period is
more robust than a criterion that relies on a single incidence
or time point and that is therefore more strongly affected by sto-
chastic effects (e.g. the first appearance of resistance).

A criterion that explicitly combines the efficacy of treatment
and the spread of resistance is provided by the number of unin-
fected patients until the frequency of (double) resistance has
reached a threshold. The disadvantage is that this entirely
ignores what happens after that point in time, and this time is
potentially very different for different strategies. In particular,
this time is infinite in the absence of treatment, implying
that treating no one achieves a perfect score, given that the
number of uninfecteds at equilibrium is non-zero. Moreover,
such a composite criterionmakes itmore difficult to understand
the underlying dynamics. For clinical trials, it is again proble-
matic since the prevalence of resistance is most likely subject
to strong fluctuations, at least if measured in small units such
as in a single hospital ward. Hence, the point in time at which
resistance crosses the threshold is subject to stochastic variation,
adding considerable extra noise and uncertainty to the data.

Two criteria that are used in a clinical context tomeasure the
health burden of resistant infections but that have not received
much attention in themathematical literature so far are themor-
tality rate and the length of hospital stay (but see [16], discussed
further below). Following Bergstrom et al. [3], many models
assume that the efflux rate is independent of the infectious
status, and both criteria are hence inherently meaningless in
these models. Some models, in the tradition of Bonhoeffer
et al. [2], allow for differential efflux rates of infecteds and unin-
fecteds. However, they do not distinguish between discharge
and death (partially because they do not consider the dynamics
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of a hospital but of a general community, where discharge of
recovereds does not occur). However, empirical therapy is
especially important for critically ill and immuno-compromised
patients where the bacterial infection constitutes a true burden
on their health and a risk to their life. It is hence very likely that
the choice of treatment—effective or ineffective—influences (i)
the duration of hospitalization and (ii) the survival chances of
the patient. It therefore seems highly relevant to focus on
rates of discharge and death that depend on the infectious
status of the patient. In this setting, the length of stay in the hos-
pital and the mortality rate could be used as a measure of
success for a treatment strategy. To assess these quantities in a
deterministic framework, it is straightforward to complement
the current ODE system by two further compartments, one
for successfully treated and discharged (former) patients and
one for the deceased. The size of the former is closely linked
to the length of hospitalization; the size of the latter is closely
linked to the mortality rate.

It is important to note that none of the three criteria—dis-
ease prevalence, mortality rate, length of hospitalization—is
sufficient on its own but an assessment of the mortality rate
should be combined with an assessment of disease prevalence
or the duration of hospitalization in order to take both out-
comes of inappropriate treatment (death and prolonged
illness) into account. A caveat with all three criteria is that
one needs to choose a time period during which their per-
formance is assessed. At short time scales, the outcome is
dominated by the transient behaviour following instalment
of the new protocol. By contrast, with a long observation
period, the equilibrium dynamics determine the ranking.
Depending on the chosen time frame, conclusions might
hence differ, and, optimally, both the short- and long-term
performance should be assessed.

Since themultifacetedness of the problemdoes not allowus
to pin down one ‘correct’ universally applicable criterion, how
can we still make progress? Applying more than one criterion
(ideally targeting treatment success and resistance) seems to be
a sensible approach and has also been done in several studies in
the past (table 1). Even if no strategy is the best under all
aspects, it would be helpful to know under which criterion it
is the best. This knowledge would make it possible to make
an informed decision in specific cases, depending onwhich cri-
terion seems to be the most important one under the given
circumstances. For example, for infections where the mortality
rate is high unless appropriate treatment is initiated immedi-
ately, good performance under a criterion that evaluates
overall treatment success is more relevant than good perform-
ance under a criterion that focuses on the emergence of
resistance. This is particularly true if a large number of anti-
biotics are available for this particular bacterial species. By
contrast, for an infection that takes a mild course in most
patients even if treated late, it might be preferable to control
resistance aswell as possible in order tomaintain efficient treat-
ment options with mild side effects for rare severe cases. As a
side remark, to put optimality scores into context, it would
be interesting to compare potential benefits of multi-drug strat-
egies with improvements achieved by other means, such as a
reduction in transmission.

3.2. The model implementation
3.2.1. The presence or the absence of an RAB compartment
Following Bergstrom et al. [3], some studies use a model var-
iant without the RAB compartment (figure 3a). This describes
the dynamics prior to the (stochastic) emergence and estab-
lishment of double resistance. Naturally, the total number of
uninfecteds in a given time interval can yield a different rank-
ing, depending on whether an RAB compartment is included
or not (figure 4).

In order to assess the risk of multiple resistance, studies
based on this model variant consider the rate at which double
resistance is generated from single-resistant strains or the sensi-
tive strain, given by χA(t)νARB(t) + χB(t)νB RA(t) + νABS(t) for
cycling andmixing and by νA RB(t) + νB RA(t) + νAB S(t) for com-
bination therapy.While such anapproach captures the timeuntil
the double-resistant strain first appears, it does not make any
statements about how fast itwill spread through the community.
Protocols that delay the first appearance are not necessarily the
best at slowing down its spread and vice versa. An example is
shown in electronic supplementary material, figure S3.1. In
this example, the double-resistant strain is generated with a
higher rate under cycling than under combination therapy
(andwith the highest rate formixing). However, it spreads slow-
est under cycling and fastest under combination therapy. This
occurs because competition with the single-resistant strains
hampers its frequency increase under cycling.

It is clear that excluding the possibility of double resistance
from the analysis neglects a core aspect of the problem. Yet,
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whether the model best contains an RAB compartment or not
depends on the question to be answered. The de novo emer-
gence of double resistance is a highly stochastic process. If
the double-resistant strain is initially absent, there is a phase
before it is generated (or is brought into the hospital from
the outside) and starts spreading. Models without the RAB

compartment allow us to assess the performance of protocols
during this phase and to estimate its length. Deterministic
models incorporating an RAB compartment ignore this phase
but allow us to study the spread of double resistance.

3.2.2. Deterministic versus stochastic models
The model can be implemented deterministically or sto-
chastically. Generally, a deterministic model implementation
assumes that all patient groups are large enough to neglect
stochastic fluctuations. However, many models focus on treat-
ment strategies in hospital wards, which normally only
accommodate a relatively small number of patients. Even
100 patients is not a large population size if ‘large’ refers
to the negligibility of stochasticity. Stochastic models are
therefore a priori more appropriate than deterministic
implementations. Especially, they may lead to different con-
clusions. Kouyos et al. [9] consider strategies where drugs
do not get switched with a fixed period but in response to
the frequency of resistance in the hospital. They find that
this brings an advantage over mixing only when stochasticity
is taken into account, while the difference disappears in a
deterministic system.
Stochasticity is very high in clinical trials, making it hard
to arrive at robust conclusions. Here, stochastic models can
help to assess which conclusions can and cannot be drawn
in the face of randomness and give a sense of the scale at
which clinical studies would need to be performed. However,
the role and importance of certain parameters and processes
can presumably be well assessed using deterministic models.

3.2.3. Model implementation with or without memory
The traditional modelling approach classifies compartments
only according to the infecting strain and does not take the
administered drug into account aswell [18]. This approach dis-
regards the associations that build up between the infecting
strain and the drug used. (These associations build up since
patients treated with the wrong drug recover more slowly.)
This simplified model is often a good approximation, leading
to similar predictions as a model that classifies patients
by both the infecting strain and thedrugused (figure 3b).How-
ever, awareness of the simplification seems important. Instead
of considering it as a simplification, the traditional modelling
choice can also be explained by a different interpretation of
the parameter τ, as done in several studies. These studies
assume that patients get treated at rate τ and, upon treatment,
recovery is instantaneous. Again, it is important to account for
the meaning of τ in the models when reading the results.

3.3. The model analysis
The models are challenging to analyse for two reasons.
First, owing to the model complexity, most studies rely on
numerical simulations rather than on analytical approxi-
mations. It is hence not possible to read off general results
from an analytical solution. Second, the parameter space is
very large and parameter estimates are lacking. Trivially, all
conclusions from numerical simulations are a priori only
valid for the chosen parameter sets (e.g. electronic supplemen-
tary material, figure S3.3). It has been less appreciated that not
only the chosen parameter values but also the initial
conditions for the ODE system (equation (2.1)) may influence
the relative ranking of treatment protocols, since the number
of patients in each compartment at time t = 0 influences
the early dynamics (electronic supplementary material,
figure S3.4).

Parameter sensitivity and structural sensitivity tests can
alleviate the problem (see Tepekule et al. [17] for a study
that implements random sampling of parameters, linear
discriminant analysis and particle swarm optimization
to systematically explore the parameter space and that also
investigates the influence of the initial conditions; for an
insightful discussion of structural sensitivity in between-host
models of antibiotic resistance, see Spicknall et al. [29]). Impor-
tantly, this includes allowing for asymmetry between the two
single-resistant strains and for unequal use of the two drugs,
e.g. a drug ratio other than 50 : 50 for the mixing strategy [5].
It is also important to investigate by how much strategies
differ from each other (and from mono-drug therapies,
which sometimes even outperform multi-drug strategies,
[17]). If differences are small, a ranking may be meaningless.

For the ranking of strategies, a numerical analysis is
required to be able to allow for sufficient model complexity.
For a more fundamental understanding of the model behav-
iour, e.g. for understanding the reasons why a strategy
performs better or worse than expected, an analytical
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4. Important model extensions
The modelling framework allows, of course, for innumerous
extensions but we will only discuss two potential directions
here.

Nested models that describe both thewithin-host dynamics
of the bacteria and the epidemiological dynamics could help to
gain a more realistic picture. In the current epidemiological
models, the transition rates (recovery rate, emergence of resist-
ance, etc.) are modelled by independent parameters. However,
these rates are in reality coupled and explicit modelling of
the within-host dynamics would account for these inter-
dependencies. Of course, the approach would require us to
make assumptions about the parameters at the within-host
level that are equally unknown as the parameters at the
between-host level, hence leading to considerable uncertainty
about the appropriate model and its parametrization. Nested
models should therefore not replace but complement the cur-
rent simpler models. To our knowledge, Beardmore et al. [16]
is the only study that has implemented a nested model in this
context so far. In a briefly presented model, the bacterial load
within individual patients is tracked, and discharge of patients
depends on their bacterial load, making the length of hospital
stay variable (there is no mortality in the model). The duration
of hospitalization is used to assess the performance of the two
treatment strategies, cycling and mixing. Further development
of models along these lines could greatly enhance our
understanding of the prospects of antibiotic treatment protocols.

Last, nosocomial infections are often caused by commensal
bacteria. Theymay either stem from the patient’s own flora and
may have already been present at admission or be acquired
asymptomaticallywithin the hospital. Or theymay be acquired
as pathogens from other patients. These different routes of
infection and ways of transmission are not accounted for by
most modelling studies. Most studies follow the approach of
traditional epidemic models for the spread of obligate patho-
gens. For example, transition from the X to any infected
compartment is only possible through infection from infected
patients rather than through self-infection from own commen-
sals. Rethinking the models in the context of commensal
bacteria as agents of infection seems to be important in order
to build a framework that is fully consistent with its objectives.
In this context especially, the consequences of horizontal gene
transfer should be considered. Clinically relevant resistance is
often encoded on plasmids. Yet, how this influences the effec-
tiveness of cycling, mixing or combination therapy has only
been touched upon [3].
5. Concluding remarks
Which strategy is optimal is determined by the interplay
of many factors, making general answers difficult. Yet,
systematic approaches can at least allow us to make probabil-
istic statements. For example, Tepekule et al. [17] determined
how likely each strategy is to ‘win’ across the parameter range
and identified parameter regimes for which combination
therapy is particularly likely to fail. By performing similar
analyses for different optimality criteria or model implemen-
tations and a comparison of results, we could learn more
about the conditions under which any strategy is particularly
good or bad. It would then also be important to assess how
robust the results are with respect to imperfections in the
implementation of strategies: in reality, treatment decisions
are based on the medical condition of the individual patient,
and it will never be possible to treat each single patient
according to a hospital-wide protocol.

Even if we might have preferred to identify one strategy
as universally the best, the complex picture that has emerged
from mathematical models so far should be appreciated as a
result in its own right. It should also be appreciated that it is
the result of a scientific discourse and a development brought
forward by a series of articles. It was by no means clear a
priori that no simple answer exists.

The focus of this article is on the role of mathematical
models in the assessment of antibiotic treatment protocols
and on ways to improve their contribution. However, a
joint effort is necessary to arrive at good solutions. The theor-
etical work reviewed in this article is not discussed here in the
context of clinical studies, while such a connection could lead
to more potent studies. This would be particularly valuable
if, through sequencing and the analysis of sequence data,
the pathway of resistance could be traced back along
patients in order to distinguish de novo acquired from trans-
mitted resistance. Besides models and clinical studies, a
third tool, which has surprisingly been understudied so far,
is in vitro experimental evolution. While evolution exper-
iments are widely used to investigate the evolution and
maintenance of antibiotic resistance and are also used to
study the effect of combining antibiotics, population-wide
treatment strategies have to our knowledge barely been
simulated in the laboratory (for a recent exception, see
[30]). As an intermediate between models and clinical trials,
they can help to close the gap between theoretical and clinical
studies in the future.
Data accessibility. The Mathematica notebooks used to generate the data
for the figures are available as electronic supplementary material.

Authors’ contributions. H.U. and S.B. designed the study. H.U. performed
the analysis and wrote the manuscript with input, comments and
revisions from S.B.

Competing interests. We declare we have no competing interests.

Funding. Open access funding provided by the Max Planck Society.
This work was supported by the European Research Council

(grant no. ERC: PBDR 268540) and the Swiss National Science Foun-
dation (grant no. SNF: 155866).

Acknowledgements. We thank Stephanie Fingerhuth and Andrew Read
for helpful discussions, Berit Siedentop for references on clinical
trials and Sally Otto and several anonymous reviewers for valuable
comments on the manuscript.
References
1. Cassini A et al. 2018 Attributable deaths and
disability-adjusted life-years caused by infections
with antibiotic-resistance bacteria in the EU and the
European Economic Area 2015: a population-level
modelling analysis. Lancet Infect. Dis. 19, 56–66.
(doi:10.1016/S1473-3099(18)30605-4)

http://dx.doi.org/10.1016/S1473-3099(18)30605-4


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210308

11
2. Bonhoeffer S, Lipsitch M, Levin BR. 1997 Evaluating
treatment protocols to prevent antibiotic resistance.
Proc. Natl Acad. Sci. USA 94, 12 106–12 111.
(doi:10.1073/pnas.94.22.12106)

3. Bergstrom CT, Lo M, Lipsitch M. 2004 Ecological
theory suggests that antimicrobial cycling will not
reduce antimicrobial resistance in hospitals. Proc.
Natl Acad. Sci. USA 101, 13 285–13 290. (doi:10.
1073/pnas.0402298101)

4. Levin BR, Bonten MJM. 2004 Cycling antibiotics
may not be good for your health. Proc. Natl Acad.
Sci. USA 101, 13 101–13 102. (doi:10.1073/pnas.
0404970101)

5. Beardmore RE, Peña-Miller R. 2010 Rotating
antibiotics selects optimally against antibiotic
resistance, in theory. Math. Biosci. Eng. 7, 527–552.
(doi:10.3934/mbe.2010.7.527)

6. Bonhoeffer S, Abel zur Wiesch P, Kouyos RD. 2010
Rotating antibiotics does not minimize selection for
resistance. Math. Biosci. Eng. 7, 919–922. (doi:10.
3934/mbe.2010.7.919)

7. Beardmore RE, Peña-Miller R. 2010 Antibiotic
cycling versus mixing: the difficulty of using
mathematical models to definitively quantify their
relative merits. Math. Biosci. Eng. 7, 923–933.
(doi:10.3934/mbe.2010.7.923)

8. Sun H-R, Lu X, Ruan S. 2010 Qualitative analysis of
models with different treatment protocols to
prevent antibiotic resistance. Math. Biosci. 227,
56–67. (doi:10.1016/j.mbs.2010.06.002)

9. Kouyos RD, Abel zur Wiesch P, Bonhoeffer S. 2011
Informed switching strongly decreases the
prevalence of antibiotic resistance in hospital wards.
PLoS Comput. Biol. 7, e1001094. (doi:10.1371/
journal.pcbi.1001094)

10. Chan CH, McCabe CJ, Fisman DN. 2011 Core groups,
antimicrobial resistance and rebound in gonorrhoea
in North America. Sex. Transm. Infect. 88, 200–204.
(doi:10.1136/sextrans-2011-050049)

11. Obolski U, Hadany L. 2012 Implications of stress-
induced genetic variation for minimizing multidrug
resistance in bacteria. BMC Med. 10, 89. (doi:10.
1186/1741-7015-10-89)

12. Abel zur Wiesch P, Kouyos R, Abel S, Viechtbauer W,
Bonhoeffer S. 2014 Cycling empirical antibiotic
therapy in hospitals: meta-analysis and models.
PLoS Pathog. 10, e1004225. (doi:10.1371/journal.
ppat.1004225)
13. Campbell EM, Chao L. 2014 A population
model evaluating the consequences of the
evolution of double-resistance and tradeoffs
on the benefits of two-drug antibiotic treatments.
PLoS ONE 9, e86971. (doi:10.1371/journal.pone.
0086971)

14. Xiridou M, Soetens LC, Koedijk FDH, van der Sande
MAB, Wallinga J. 2014 Public health measures to
control the spread of animicrobial resistance in
Neisseria gonorrhoeae in men who have sex with
men. Epidemiol. Infect. 143, 1575–1584. (doi:10.
1017/S0950268814002519)

15. Obolski U, Stein GY, Hadany L. 2015 Antibiotic
restriction might facilitate the emergence of multi-
drug resistance. PLoS Comput. Biol. 11, e1004340.
(doi:10.1371/journal.pcbi.1004340)

16. Beardmore RE, Peña-Miler R, Gori F, Iredell J. 2017
Antibiotic cycling and antibiotic mixing: which one
best mitigates antibiotic resistance? Mol. Biol. Evol.
34, 802–817. (doi:10.1093/molbev/msw292)

17. Tepekule B, Uecker H, Frenoy A, Derungs I,
Bonhoeffer S. 2017 Modeling antibiotic treatment in
hospitals: a systematic approach shows benefits of
combination therapy over cycling, mixing, and
mono-drug therapies. PLoS Comput. Biol. 13,
e1005745. (doi:10.1371/journal.pcbi.1005745)

18. Uecker H, Bonhoeffer S. 2017 Modeling
antimicrobial cycling and mixing: differences arising
from an individual-based versus a population-based
perspective. Math. Biosci. 294, 85–91. (doi:10.1016/
j.mbs.2017.09.002)

19. Houy N, Flaig J. 2020 Informed and uninformed
empirical therapy policies. Math. Med. Biol. 37,
334–350. (doi:10.1093/imammb/dqz015)

20. Fuentes-Hernandez A, Plucain J, Gori F, Pena-Miller
R, Reding C, Jansen G, Schulenburg H, Gudelj I,
Beardmore R. 2015 Using a sequential regimen to
eliminate bacteria at sublethal antibiotic dosages.
PLoS Biol. 13, e1002104. (doi:10.1371/journal.pbio.
1002104)

21. Roderich R, Barbosa C, Beardmore RE, Jansen G,
Schulenburg H. 2015 Temporal variation
in antibiotic environments slows down
resistance evolution in pathogenic Pseudomonas
aeruginosa. Evol. Appl. 8, 945–955. (doi:10.1111/
eva.12330)

22. Roemhild R, Gokhale CS, Dirksen P, Blake C,
Rosenstiel P, Traulsen A, Andersson DI, Schulenburg
H. 2018 Cellular hysteresis as a principle to
maximize the efficacy of antibiotic therapy. Proc.
Natl Acad. Sci. USA 115, 9767–9772. (doi:10.1073/
pnas.1810004115)

23. Roemhild R, Schulenburg H. 2019 Evolutionary
ecology meets the antibiotic crisis: can we control
pathogen adaptation through sequential therapy?
Evol. Med. Public Health 2019, 37–45. (doi:10.
1093/emph/eoz008)

24. Fish DN, Piscitelli SC, Danziger LH. 1995
Development of resistance during antimicrobial
therapy: a review of antibiotic classes and patient
characteristics in 173 studies. Pharmacother.:
J. Hum. Pharmacol. Drug Ther. 15, 279–291.
(doi:10.1002/j.1875-9114.1995.tb04366.x)

25. Bliziotis IA, Samonis G, Vardakas KZ,
Chrysanthopoulou S, Falagas ME. 2005 Effect of
aminoglycoside and beta-lactam combination
therapy versus beta-lactam monotherapy on the
emergence of antimicrobial resistance: a meta-
analysis of randomized, controlled trials. Clin. Infect.
Dis. 41, 149–158. (doi:10.1086/430912)

26. Brown EM, Nathwani D. 2005 Antibiotic cycling or
rotation: a systematic review of the evidence of
efficacy. J. Antimicrob. Chemother. 55, 6–9. (doi:10.
1093/jac/dkh482)

27. van Duijn PJ et al. 2018 The effects of antibiotic
cycling and mixing on antibiotic resistance in
intensive care units: a cluster-randomised crossover
trial. Lancet Infect. Dis. 18, 401–409. (doi:10.1016/
S1473-3099(18)30056-2)

28. Li X-J, Liu YL, Di L, Kang Y. 2020 The effect of
antibiotic-cycling strategy on antibiotic-resistance
bacterial infections or colonization in intensive care
units: a systematic review and meta-analysis.
Worldviews Evid. Based Nurs. 17, 319–328. (doi:10.
1111/wvn.12454)

29. Spicknall IH, Foxman B, Marrs CF, Eisenberg JNS.
2013 A modeling framework for the evolution
and spread of antibiotic resistance: literature
review and model categorization. Am. J. Epidemiol.
178, 508–520. (doi:10.1093/aje/kwt017)

30. Angst DC, Tepekule B, Sun L, Bogos B,
Bonhoeffer S. 2021 Comparing treatment
strategies to reduce antibiotic resistance in an in
vitro epidemiological setting. Proc. Natl Acad. Sci.
USA 118, e2023467118. (doi:10.1073/pnas.
2023467118)

http://dx.doi.org/10.1073/pnas.94.22.12106
http://dx.doi.org/10.1073/pnas.0402298101
http://dx.doi.org/10.1073/pnas.0402298101
http://dx.doi.org/10.1073/pnas.0404970101
http://dx.doi.org/10.1073/pnas.0404970101
http://dx.doi.org/10.3934/mbe.2010.7.527
http://dx.doi.org/10.3934/mbe.2010.7.919
http://dx.doi.org/10.3934/mbe.2010.7.919
http://dx.doi.org/10.3934/mbe.2010.7.923
http://dx.doi.org/10.1016/j.mbs.2010.06.002
http://dx.doi.org/10.1371/journal.pcbi.1001094
http://dx.doi.org/10.1371/journal.pcbi.1001094
http://dx.doi.org/10.1136/sextrans-2011-050049
http://dx.doi.org/10.1186/1741-7015-10-89
http://dx.doi.org/10.1186/1741-7015-10-89
http://dx.doi.org/10.1371/journal.ppat.1004225
http://dx.doi.org/10.1371/journal.ppat.1004225
http://dx.doi.org/10.1371/journal.pone.0086971
http://dx.doi.org/10.1371/journal.pone.0086971
http://dx.doi.org/10.1017/S0950268814002519
http://dx.doi.org/10.1017/S0950268814002519
http://dx.doi.org/10.1371/journal.pcbi.1004340
http://dx.doi.org/10.1093/molbev/msw292
http://dx.doi.org/10.1371/journal.pcbi.1005745
http://dx.doi.org/10.1016/j.mbs.2017.09.002
http://dx.doi.org/10.1016/j.mbs.2017.09.002
http://dx.doi.org/10.1093/imammb/dqz015
http://dx.doi.org/10.1371/journal.pbio.1002104
http://dx.doi.org/10.1371/journal.pbio.1002104
http://dx.doi.org/10.1111/eva.12330
http://dx.doi.org/10.1111/eva.12330
http://dx.doi.org/10.1073/pnas.1810004115
http://dx.doi.org/10.1073/pnas.1810004115
http://dx.doi.org/10.1093/emph/eoz008
http://dx.doi.org/10.1093/emph/eoz008
http://dx.doi.org/10.1002/j.1875-9114.1995.tb04366.x
http://dx.doi.org/10.1086/430912
http://dx.doi.org/10.1093/jac/dkh482
http://dx.doi.org/10.1093/jac/dkh482
http://dx.doi.org/10.1016/S1473-3099(18)30056-2
http://dx.doi.org/10.1016/S1473-3099(18)30056-2
http://dx.doi.org/10.1111/wvn.12454
http://dx.doi.org/10.1111/wvn.12454
http://dx.doi.org/10.1093/aje/kwt017
http://dx.doi.org/10.1073/pnas.2023467118
http://dx.doi.org/10.1073/pnas.2023467118

	Antibiotic treatment protocols revisited: the challenges of a conclusive assessment by mathematical modelling
	Introduction
	The modelling framework
	Challenges in the assessment of treatment strategies
	The optimality criterion
	The model implementation
	The presence or the absence of an RAB compartment
	Deterministic versus stochastic models
	Model implementation with or without memory

	The model analysis

	Important model extensions
	Concluding remarks
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


