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Bone Mineral Density and Type 1
Diabetes in Children and
Adolescents: A Meta-analysis
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BACKGROUND

There is substantial evidence that adults with type 1 diabetes have reduced bone
mineral density (BMD); however, findings in youth are inconsistent.

PURPOSE

To perform a systematic review and meta-analysis of BMD in youth with type 1
diabetes using multiple modalities: DXA, peripheral quantitative computed
tomography (pQCT), and/or quantitative ultrasound (QUS).

DATA SOURCES

PubMed, Embase, Scopus, and Web of Science from 1 January 1990 to 31 Decem-
ber 2020, limited to humans, without language restriction.

STUDY SELECTION

Inclusion criteria were as follows: cross-sectional or cohort studies that included
BMD measured by DXA, pQCT, or QUS in youth (aged <20 years) with type 1 dia-
betes and matched control subjects.

DATA EXTRACTION

We collected data for total body, lumbar spine, and femoral BMD (DXA); tibia,
radius, and lumbar spine (pQCT); and phalanx and calcaneum (QUS). Weighted
mean difference (WMD) or standardized mean difference was estimated and meta-
regression was performed with age, diabetes duration, and HbA, as covariates.

DATA SYNTHESIS

We identified 1,300 nonduplicate studies; 46 met the inclusion criteria, including
2,617 case and 3,851 control subjects. Mean * SD age was 12.6 + 2.3 years. Youth
with type 1 diabetes had lower BMD: total body (WMD —0.04 g/cm?, 95% CI —0.06
to —0.02; P = 0.0006), lumbar spine (—0.02 g/cm?, —0.03 to —0.0; P = 0.01), femur
(—0.04 g/cm?, —0.05 to —0.03; P < 0.00001), tibial trabecular (—11.32 g/cm3,
—17.33 to —5.30; P = 0.0002), radial trabecular (—0.91 g/cm3, —1.55 to —0.27; P =
0.005); phalangeal (—0.32 g/cm>, —0.38 to —0.25; P < 0.00001), and calcaneal (stan-
dardized mean difference —0.69 g/cm3, —1.11 to —0.26; P = 0.001). With use of
meta-regression, total body BMD was associated with older age (coefficient —0.0063,
—0.0095 to —0.0031; P = 0.002) but not with longer diabetes duration or HbA,..

LIMITATIONS

Meta-analysis was limited by the small number of studies with use of QUS and
pQCT and by lack of use of BMD z scores in all studies.

CONCLUSIONS

Bone development is abnormal in youth with type 1 diabetes, assessed by multi-
ple modalities. Routine assessment of BMD should be considered in all youth
with type 1 diabetes.
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Type 1 diabetes is associated with abnor-
mal bone health and increased fracture
risk in adults with type 1 diabetes. This
was first described in 1927 (1), with
more recent studies, including two meta-
analyses, demonstrating significantly inc-
reased risk of fracture (6 studies, 35,925
adults with type 1 diabetes), lower bone
mineral density (BMD) (16 studies, 966
adults with type 1 diabetes), and osteo-
porosis (2—4).

In contrast, the evidence for an asso-
ciation between type 1 diabetes and
lower BMD in children and adolescents
with type 1 diabetes is more limited.
Evaluation of bone health in youth is
hampered by the fact that their bones
are still mineralizing, lengthening, and
acquiring bone mass, and puberty has a
major influence. Bone health may be
more vulnerable in those who develop
type 1 diabetes earlier in life because
childhood and adolescence are critical
periods for skeletal development (5).
Vascular complications are significantly
associated with longer diabetes dura-
tion and higher HbA,,, but the relation-
ship of these factors with abnormal
BMD is not well established across the
life span in type 1 diabetes (6,7).

A systematic review in 2014 (8) dem-
onstrated lower total body BMD (five
studies) and femoral BMD (four studies),
but not lumbar spine BMD (eight stud-
ies), in youth aged <20 years with type 1
diabetes. Only raw BMD values from use
of DXA were reported, whereas z scores
are more appropriate in youth to account
for age and pubertal status. Moreover,
the review did not include studies using
other measures of BMD, such as periph-
eral quantitative computed tomography
(pQCT), which measures trabecular and
cortical bone, thereby providing addi-
tional information regarding bone con-
tent. pQCT is safe, with the total effective
dose of a single pQCT scan <0.1 wSvy,
which is less than for DXA (9).

Therefore, we performed a system-
atic review and meta-analysis of BMD,
bone mineral content (BMC), and cross-
sectional area (CSA) in youth with type
1 diabetes using multiple modalities,
including DXA, pQCT, and quantitative
ultrasound (QUS). The latter two meth-
ods may be more appropriate for
assessing a maturing skeleton, as they
are less influenced by bone size (10-12)
and use less radiation. We performed

subgroup analysis by age and sex and
meta-regression for age, diabetes dura-
tion, and HbA;..

METHOD

Data Sources and Searches

We performed a systematic search
using PubMed, Embase, Scopus, and
Web of Science (from 1 January 1990 to
31 December 2020) with Medical Sub-
ject Headings (MeSH) terms “type 1 dia-
betes mellitus” AND “bone density or
bone health or bone geometry” and
limited the results to human studies.

Study Selection
Inclusion criteria were as follows: cross-
sectional, cohort, or case-control studies
that provided data on BMD, BMC, or
CSA, as measured by DXA, pQCT, or
QUS, in children and adolescents with
type 1 diabetes and healthy control sub-
jects (aged <20 years). Only published
studies or abstracts were considered.
Case reports, case series, review
articles, qualitative studies, and animal
studies were excluded. Publications in all
languages were considered. In addition,
we supplemented electronic searches by
hand searching reference lists of relevant
articles and reviews. The titles and abs-
tracts of the studies were reviewed by
three authors (P.L., K.N., and M.E.C.). Dis-
agreements about final study inclusion
were resolved by consensus.

Data Extraction and Quality
Assessment

The following data were extracted for
each eligible study and included in the
review: author(s), year of publication,
title, journal, study location, study
design, participant age, number of case
and control subjects, diabetes duration,
method of BMD measurement, BMD
measurement sites, mean + SD of BMD
measurements in case and control sub-
jects, z score for age and sex, BMC, vol-
umetric BMD (vBMD), CSA, HbA,., and
presence or absence of celiac autoanti-
bodies/celiac disease. If repeated meas-
urements were available, the latest
measurements were extracted for cross-
sectional analysis.

We sent email requests to authors of
11 studies or published conference
abstracts seeking data necessary for
inclusion. One author responded and
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provided data that were included in the
review (13).

Data Synthesis and Analysis

Data from included studies were pooled
on the basis of site and method sele-
cted for bone assessment. The weighted
mean difference (WMD) estimate was
calculated between case and control
subjects. Standardized mean difference
was used for one outcome measure
(QUS, calcaneal) because different mea-
surement scales were used between
studies. Statistical heterogeneity was
tested with the /> statistic, which pro-
vides the percentage of variance of the
summary effect attributable to hetero-
geneity between studies.

The Joanna Briggs Institute Critical
Appraisal tool, Checklist for Analytical
Cross Sectional Studies, was used for
assessment of study quality (14). The
checklist gives a score out of 8, and
good quality was defined as a score =6
(reported in Supplementary Table 1).

We conducted a sensitivity analysis
by excluding lower-quality trials (score
<6) and one study with some partici-
pants aged >20 years. Prespecified sub-
group analyses were planned for age
(<11, 11-14, and >14 years), sex, and
coexisting celiac disease in youth with
type 1 diabetes.

All analyses were conducted with the
use of Review Manager, version 5
(RevMan; The Cochrane Collaboration,
Oxford, U.K.). Meta-regression was per-
formed with Stata 14.2 to estimate the
effects of duration of illness, age, sex,
and HbA;. on BMD.

RESULTS

Characteristics of Included Studies

With the initial search strategy we identi-
fied 1,844 studies (PubMed search, 496,
and Embase, 198, with 544 duplicates).
One additional study was identified from
hand searching the reference lists. There
were 1,221 records excluded based on
titles and abstracts. A total of 79 full text
articles were subsequently assessed for eli-
gibility; 46 met the inclusion criteria, and
38 were included in the meta-analysis (Fig.
1). The 46 included studies, from 24 coun-
tries, involved 2,617 case subjects (1,144
male, 1,245 female, and 228 unspecified)
and 3851 control subjects (1,760 male,
1,826 female, 265 unspecified). Five stud-
ies only included females (15-18), and one
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| Figure 1—Flow diagram of study selection and search.

study only included males (19). Character-
istics of included studies are summarized
in Supplementary Table 1.

Two studies (16,20) included the same
participants; in each case, the later stud-
ies were included (16). Four studies (two
abstracts and two articles) reported on
the same group (21-24); the article with
the greater number of bone outcome
measures was included (21). This also
was the case for two other studies
(18,25).

In all studies BMD was measured in
youth with type 1 diabetes and healthy
control subjects with use of DXA, QUS,
or pQCT. Mean + SD age of the study
participants was 12.6 + 2.3 years. One
study (26) included youth up to 24.8
years of age but was included by con-
sensus, as the median age was ~18
years (below the inclusion criteria of 20
years). One study was not included in
the meta-analysis because the method
of bone measurement was not specified
and attempts to contact the authors
were unsuccessful.

Study Quality

The majority of studies (44 of 46) were of
good quality. One study did not include a
representative sample of case subjects,

and control subjects were poorly
matched (27). The other study did
not specify inclusion and exclusion
criteria, potential confounders were
not identified, and the method for
outcome measurement was not
specified (19).

DXA Results
Figure 2 shows DXA results for total
body, lumbar spine, and femur BMD
and z scores for total body and lumbar
spine BMD.

Total Body BMD

Total body BMD was not different
between case and control subjects (14
studies, WMD —0.03 g/cm?, 95% Cl
—0.06 to 0.01; P = 0.10). When the
study of low quality was removed (27),
case subjects had lower total body BMD
(WMD —0.04 g/cm?, —0.06 to —0.02;
P = 0.0006 [Fig. 2]). There was signifi-
cant study heterogeneity (> = 75%).
The forest plot demonstrated one outly-
ing study (28), which included a dispro-
portionately large number of female
subjects in the case group; when this
study was removed, the effect estimate
was largely unchanged (WMD —0.03
g/cm?, —0.04 to —0.01). Total body

BMD z score was lower in case subjects
than in control subjects (seven studies,
WMD —0.70, —1.02 to —0.38; P <
0.0001). There was significant heteroge-
neity (> = 80%).

In subgroup analysis by sex, BMD was
lower in female case subjects (four stud-
ies, WMD —0.03 g/cmz, —0.06 to —0.01;
P 0.005). BMD was not different
between male case and control subjects
(two studies, WMD —0.01 g/cm?, 95% CI
—0.06 to 0.03; P = 0.54). In subgroup
analysis by age, the difference was only
significant for studies with a mean age
of >14 years: pooled WMD for studies
with a mean age of <11 years was
—0.01 g/cm? (two studies, 95% Cl —0.02
to 0.0; P = 0.07), 11-14 years —0.03
g/cm? (three studies, —0.07 to 0.01; P =
0.24), and >14 years —0.07 g/cm2 (four
studies, —0.12 to —0.03; P = 0.005).
BMC was not different (six studies, WMD
55.72 g, —73.58 to 185.03; P = 0.4).
This was unchanged following sensitivity
analysis (WMD —85.76 g, —220.04 to
38.51; P = 0.18).

Lumbar Spine BMD

BMD of the lumbar spine was lower in
case subjects (19 studies, WMD —0.02
g/cm?, 95% Cl —0.03 to —0.0; P =
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Total body (Z score)
TiD Control Mean Difference Mean Difference
Study or Subgroup ~ Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Dongare-Bhor 2020 -1.5 13 251 -0.5 1.3 250 18.6% -1.00[-1.23,-0.77] -
Leao 2020 0.15 1 34 1.625 1.3 17 10.3% -1.48[-2.18,-0.77] —
Loureiro 2014 -06 1.7 75 0.2 09 100 15.1% -0.80[-1.22,-0.38] -
Mitchell 2020 -0.52 1.01 62 -0.36 0.84 61 16.9% -0.16[-0.49,0.17] -
Roh, 2018 -1.17 3.87 29 -0.46 0.85 92 4.1% -0.71[-2.13,0.71] _—
Saki 2017 -1.07 0.92 76 -0.33 1.29 86 16.6% -0.74[-1.08, -0.40] -
Tsentidis 2016 0.23 0.17 40 0.56 0.77 40 18.3% -0.33[-0.57,-0.09] -
Total (95% CI) 567 646 100.0% -0.70 [-1.02, -0.38] <
Heterogeneity: t° = 0.13; %> = 30.27, df = 6 (P < 0.0001); I* = 80% _:4 _:2 i ‘:‘

Test for overall effect: Z = 4.27 (P < 0.0001) BMD worse in TID BMD worse in control

Total body (g/cm?)
TiD Control Mean Difference Mean Difference

Study or Subgroup Mean SD_Total Mean SD_Total Weight IV, Random, 95% CI 1V, Random, 95% CI
AboElAsrar 2012 0.9728 0.107 60 1.2262 0.269 40 4.4% -0.25[-0.34,-0.17] _—
Gunczler 1998 0.954 0.105 26 0.994 0.122 27 6.7% -0.04 [-0.10, 0.02] -
Gunczler 2001 0.907 0.141 23 0.894 0.07 17 6.1% 0.01 [-0.05, 0.08] T
Heap 2004 0.88 0.103 55 0.923 0.12 95 10.0% -0.04[-0.08, -0.01] -1
Heilman 2009 1.0028 0.14 30 1.067 0.16 30 5.3% -0.06 [-0.14, 0.01] -
Karaguzel 2006a 0.7359 0.1 49 0.7408 0.13 37 8.0% -0.00 [-0.06, 0.05] T
Kaur 2018 1.04646 0.1034 125 1.086 0.1155 80 10.8% -0.04[-0.07,-0.01] -
Leao 2020 1.0275 0.3 34 1.0725 0.1125 17 3.0% -0.04[-0.16, 0.07] -1
Maggio 2010 0.93 0.02 27 0.94 0.02 32 13.3% -0.01[-0.02, 0.00]
Mastrandrea 2008 1.069 0.08 37 1.09 0.08 36 10.0% -0.02[-0.06, 0.02] 1
Moyer-Mileur 2004 0.874 0.06 42 0.929 0.072 203 12.2% -0.06[-0.08,-0.03] -
Moyer-Mileur 2008 0.81 0.14 11 0.84 0.04 10 4.5% -0.03 [-0.12, 0.06] -1
Tsentidis 2016 1.03 0.17 40 1.041 0.15 40 5.8% -0.01[-0.08, 0.06] -1
Total (95% CI) 559 664 100.0% -0.04 [-0.06, -0.02] (]
Heterogeneity: t* = 0.00; % = 47.50, df = 12 (P < 0.00001); I* = 75% H <= o 7

Test for overall effect: Z = 3.42 (P = 0.0006) BMD worse in TID BMD worse in control

Lumbar spine (Z score)

TiD Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Brandao 2007 -1.15 1.2 44 -0.85 0.88 22 13.7% -0.30[-0.81, 0.21]
de Souza, 2016 -0.8 1.2 86 -0.1 1 90 18.5% -0.70[-1.03,-0.37] +——=+—
Dongare-Bhor 2020 -1.3 1.6 251 -0.6 1.5 250 20.0% -0.70[-0.97,-0.43] ———=—
Leao 2020 -0.425 1.14 34 0.6 1.14 17 10.5% -1.02[-1.69, -0.36] +———
Mitchell 2020 -0.05 1 62 0 0.84 61 18.5% -0.05[-0.38,0.28] —_—T
Roh, 2018 -1.17 3.87 29 -0.46 0.85 92 3.5% -0.71[-2.13,0.71]
Tsentidis 2016 0.17 1.08 40 0.23 0.96 40 15.3% -0.06[-0.51, 0.39] ——
Total (95% CI) 546 572 100.0% -0.46 [-0.75, -0.18] el
Heterogeneity: t* = 0.09; %> = 17.47, df = 6 (P = 0.008); I = 66% I t t 1

-1

-0.5 0 0.5
Test for overall effect: Z = 3.18 (P = 0.001) BMD worse in TID BMD worse in control

Lumbar spine (g/cm?)

T1DM Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD_Total Weight IV, Random, 95% CI IV, Random, 95% CI
AboElAsrar 2012 0.881 0.169 40 0.923 0.162 60  3.2% -0.04[-0.11,0.02] e
Brandao 2007 0.82 0.13 44 081 0.12 22 3.5% 0.01 [-0.05, 0.07] =
Ersoy 1999 0.732 015 30 0.812 063 23 0.3% -0.08[-0.34,0.18]
Gunczler 1998 0.81 0.228 26 0.96 0.215 27 1.2% -0.15 [-0.27, -0.03] e —
Gunczler 2001 0.718 0.176 23 0721 0.07 17 2.4% -0.00[-0.08, 0.08] S
Halper-Stromberg 2020 Female 0.78 0.02 49 0.81 0.02 51 14.4% -0.03[-0.04, -0.02] -
Halper-Stromberg 2020 Male 0.8 0.01 67 0.8 0.01 40  14.9% 0.00 [-0.00, 0.00]
Heap 2004 0.842 0.154 55 0.896 0.168 95 4.5% -0.05 [-0.11, -0.00] E——
Heilman 2009 0.88 0.24 30 1.007 0.29 30 0.9% -0.13 [-0.26, 0.01] SR S ®
Ingberg 2003 1.212 0.115 18 1.216 0.13 18 2.4% -0.00 [-0.08, 0.08] L i
Karaguzel 2006 0.698 0.178 58 0.669 0.192 44 2.8% 0.03 [-0.04, 0.10] —pe—=
Leao 2020 0.96 0.185 34 0.9725 0.1275 17 2.1% -0.01[-0.10, 0.07] i
Maggio 2010 0.8 0.03 27 0.81 0.04 32 11.9% -0.01[-0.03,0.01] -
Mastrandrea 2008 15 0.1 37 1.01 0.11 36 5.1% -0.01[-0.06, 0.04] =
Moyer-Mileur 2004 0.851 0.12 42 0.893 0.16 203 6.0% -0.04 [-0.08, 0.00] e
Moyer-Mileur 2008 0.84 0.17 11 0.86 0.13 10 1.0% -0.02 [-0.15, 0.11] —_—c
Okumus 2006 0.836 0.201 31 0.864 0.231 32 1.4% -0.03[-0.13, 0.08] (e
Salvatoni 2004a 0.815 0.082 46 0.818 0.085 46 7.6% -0.00 [-0.04, 0.03] e
Sav 2017 0.66 0.1 50 0.66 0.1 130 8.0% 0.00 [-0.03, 0.03] i i
Vina Simon 2000 Female 0.782 0.155 27 0.777 0.1867 135 3.2% 0.01 [-0.06, 0.07] =
Vina Simon 2000 Male 0.726 0.1194 18 0.795 0.187 111 3.3% -0.07 [-0.13, -0.00] _—
Total {(95% CI) 763 1179 100.0% -0.02 [-0.03, -0.00] L)
Heterogeneity: 12 = 0.00; 3 = 66.26, df = 20 (P < 0.00001); I* = 70% e ol & 055 o5

Test for overall effect: Z = 2.59 (P = 0.010) BMD lower in TID BMD lower in control

| Figure 2—WMD for DXA measurements of BMD in youth with type 1 diabetes vs. healthy control subjects. IV, inverse variance; T1D, type 1 diabetes.

0.010 [Fig. 2]), with high study hetero- studies were removed, the effect esti- was lower in case subjects (seven stud-
geneity (I> = 70%). There was asymme- mate was reduced but remained signifi- ies, WMD —0.46, —0.75 to —0.18; P =
try in the funnel plot, indicating cant (WMD —0.01 g/cm? —0.02 to 0.001). There was moderate heteroge-
publication bias. When the outlying —0.0; P = 0.02). Lumbar spine z score  neity (*=66%).
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Femur (Z score)
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T1D Control Mean Difference Mean Difference
Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Random, 95% CI
Mitchell 2020 -0.25 1.08 62 -0.09 0.97 61 59.7% -0.16[-0.52, 0.20] —
Roh, 2018 -0.45 1.11 29 -0.27 0.87 92 40.3% -0.18[-0.62, 0.26] -_—
Total (95% CI) 91 153 100.0% -0.17 [-0.45,0.11] ——
Heterogeneity: t° = 0.00; %> = 0.00, df = 1 (P = 0.95); I* = 0% I t } {
. -1 -0.5 0 0.5 1
Test for overall effect: Z = 1.18 (P = 0.24) RMD wor<e in T1D RMD warse in contral
2
Femur (g/cm?)
TiDM Control Mean Difference Mean Difference
Study or Subgroup  Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
Gunczler 1998 0.82 0.107 26 0.868 0.142 27 2.8% -0.05(-0.12,0.02] =
Gunczler 2001 0.787 0.161 23 0.792 0.08 17 2.2% -0.01[-0.08, 0.07) —
Heap 2004 0.798 0.162 55 0.86 0.146 95 4.8% -0.06 [-0.11, -0.01) =
Ingberg 2003 1.091 0.099 18 1.098 0.114 18 2.7% -0.01[-0.08, 0.06] E—
Karaguzel 2006 0.743 0.147 58 0.744 0.17 44 3.3% -0.00 [-0.086, 0.06) e
Maggio 2010 0.82 0.02 27 0.86 0.03 32 78.2% -0.04 [-0.05, -0.03] |
Mastrandrea 2008 0.872 0.1 37 0.891 0.12 36 5.0% -0.02 [-0.07, 0.03) b
Moyer-Mileur 2008 0.85 0.14 11 0.86 0.13 10 1.0% -0.01(-0.13,0.11) o F—
Total (95% CI) 255 279 100.0% -0.04 [-0.05, -0.03] +
Heterogeneity: t* = 0.00; 3> = 4.55, df = 7 (P = 0.72); I = 0% ; 3 Si

Test for overall effect: Z = 6.38 (P < 0.00001)

| Figure 2—Continued

In subgroup analysis by sex, lumbar
spine BMD in female subjects was lower
in the female case subjects (five studies,
WMD —0.03 g/cm?, 95% Cl —0.04 to
—0.02; P < 0.00001). Lumbar spine
BMD was not different between groups
(two studies, WMD —0.03 g/cm?, —0.09
to —0.04; P = 0.43).

One study reported lumbar spine BMC
in male and female subjects separately
(9). BMC was lower in male subjects
(MD —0.53, 95% Cl —0.88 to —0.18;
P = 0.003) but not female (—0.14,
—0.34 to 0.06; P = 0.17). In subgroup
analysis by age, BMD was lower in case
subjects aged 11-14 years (nine studies,
WMD —0.07 g/cm?, —0.1 to —0.02; P =
0.0004) and >14 vyears (11 studies,
WMD —0.03 g/cm? —0.04 to —0.01,
P = 0.002) but not in case subjects
aged <11 vyears (four studies, WMD
—0.01 g/cm?, —0.03 to 0.01; P = 0.22).

Femur BMD
BMD was lower in case subjects (eight
studies, WMD —0.04 g/cm?, 95% Cl
—0.05 to —0.03; P < 0.00001). There
was low heterogeneity (> = 0%) and
no publication bias suggested by forest
plot. Two studies reported z score and
did not show a significant difference
(WMD —0.17, —0.45 t0 0.11; P = 0.24).
In subgroup analysis by age, there was
lower BMD for case subjects with a mean
age of <11 years (two studies, WMD
—0.04 g/cm?, 95% Cl —0.05 to —0.03;
P < 0.00001) and a trend toward lower
BMD for case subjects aged >14 years

-0.5

(three studies, WMD —0.03 g/cmz, —0.07
to —0.00; P = 0.05) but not for those
aged 11-14 vyears (three studies, WMD
—0.02 g/cm?, —0.06 to 0.02; P = 0.03).

pQCT
Figure 3 shows pQCT results of BMD in
youth in trabecular bone.

Trabecular

vBMD was lower in subjects with type 1
diabetes (four studies, WMD —11.32
g/cm®, 95% Cl —17.33 to —5.30; P =
0.0002). Three studies reported vBMD in
the trabecular bone of the radius (WMD
—0.40 g/cm®, —0.73 to —0.07; P =
0.02). One study reported vBMD in the
trabecular bone of the lumbar spine
(MD —0.52 g/cm®, —0.92 to —0.11; P =
0.01). One study reported the z score for
trabecular bone of the radius and found
significantly lower vBMD in subjects with
type 1 diabetes (MD —0.9, —1.09 to
—0.71; P < 0.00001).

In subgroup analysis by sex, there was
no significant difference in tibial trabecular
BMD, though there were few studies
included (female subjects, two studies,
WMD —-8.84 g/cma, 95% Cl —21.05 to
3.37; P = 0.16; male subjects, one study,
MD —13.00 g/cm® —28.19 to 2.19; P =
0.09). There was a significant difference in
radial trabecular BMD in females (two
studies, WMD —0.50 g/cm®, —0.89 to
—0.11; P = 0.01) but not males (two
studies, WMD —0.05 g/cm®, —0.48 to
0.38; P = 0.83).

-0. [ 0.25
Lower BMD in TID Lower BMD in control

Cortical

There was no significant difference in cor-
tical vBMD in the tibia between case and
control subjects (four studies, WMD 0.36
g/cm®, 95% Cl —5.79 to 6.50; P = 0.91)
(Supplementary Fig. 1). Three of these
studies also reported BMC and demon-
strated significantly lower BMC in
subjects with type 1 diabetes (WMD
—19.12 g, —33.74 to —4.49; P = 0.01).
Cortical vBMD of the radius was not
different (three studies, MD 0.10 g/cm®,
—0.24 to 0.43; P = 0.56) (Supplementary
Fig. 1). Cortical vBMD z score of the
radius was significantly greater in children
with type 1 diabetes (one study, mean
difference [MD] 0.46, 0.25-0.67; P <
0.00001). Cortical vBMD of lumbar spine
was not different (one study, —0.36 g/cm3,
—0.76 to 0.05; P = 0.08).

In subgroup analysis by sex, there was
no difference in cortical vBMD of the tibia
or radius in male and female subjects.
There was, however, smaller CSA of the
tibia by sex in case subjects (female sub-
jects, two studies, WMD —63.17 cm?,
95% Cl —84.8 to —41.52; P < 0.00001;
male subjects, two studies, WMD —33
cm?, —54.1 to —11.9; P = 0.005). The
tibial cortical CSA was also smaller in the
one study that reported it in male sub-
jects but not in female subjects. This
parameter was not statistically significant
in the radius of either sex.

Qus
Four studies reported QUS measure-
ments, including 267 case and 461
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Figure 3—WMD for pQCT measurements of trabecular BMD in youth with type 1 diabetes vs. healthy control subjects. IV, inverse variance; T1D,
type 1 diabetes.

control subjects. There were signifi-
cantly lower z scores measured by QUS
(amplitude-dependent speed of sound)
in the proximal phalanges of the nondo-
minant hand of the case group (two
studies, WMD —0.32, 95% Cl —0.38 to
—0.25; P < 0.00001).

Two studies measured BMD at the
left calcaneum and reported either
broadband ultrasound attenuation =z
scores (29) or speed of sound z score
(30) and therefore are not directly com-
parable. BMD was lower in youth with
type 1 diabetes (standardized mean dif-
ference —0.69, 955 Cl —1.11 to —0.26;
P = 0.001). This information is displayed
in Supplementary Fig. 2.

Meta-Regression

Meta-regression analysis revealed a sig-
nificant correlation between age and
effect size of total body BMD (coeffi-
cient —0.0063, 95% ClI —0.0095 to
—0.0031; P = 0.002). This was following
exclusion of the one outlying study (28)
with a disproportionately large number
of female subjects in the case group. Due
to the relationship between sex and puber-
tal age, this study was excluded from the
meta-regression analysis, as we felt it dis-
torted the results. In meta-regression mod-
els with examination of age and effect size
on DXA measurements of the lumbar spine
and femoral neck, results were not
significant.

There was a trend toward an inverse
relationship between effect estimate of
diabetes duration and total body BMD
measured by DXA (coefficient —0.0074,
95% Cl —0.019 to 0.004; P = 0.2). This
was not replicated at other sites.

Meta-regression analysis did not show
a significant relationship between HbA,.
and effect size of total body BMD (coeffi-
cient —0.0312, —0.11 to 0.04; P =
0.39). Similarly, HbA,. was not associated
with the effect estimate for lumbar spine
and femoral neck measured by DXA.
There were insufficient data to establish
a relationship between age, diabetes
duration, HbA;., and BMD as measured
by pQCT and QUS.


https://doi.org/10.2337/figshare.14618409

1904 BMD and Type 1 Diabetes in Youth
|

DISCUSSION

This systematic review and meta-analy-
sis of 46 studies involving 6,468 partici-
pants demonstrates lower BMD in
youth with type 1 diabetes than in
healthy control subjects, based on stud-
ies using DXA, pQCT, and/or QUS. This is
the first meta-analysis to examine multi-
ple modalities measuring BMD and to
report z scores, with adjustment for age
and sex. We demonstrate lower total
body, spine, and femoral neck BMD, as
well as lower total body BMD and lum-
bar spine BMD z scores (by DXA) and
lower phalangeal and calcaneal BMD
(QUS). pQCT demonstrated a differential
effect of type 1 diabetes on the trabec-
ula and cortical components of bone.
Age was significantly associated with
BMD in meta-regression but not with
longer diabetes duration or HbA,.. Our
findings support routine monitoring of
BMD in youth with type 1 diabetes,
since lower BMD and smaller CSA may
increase the risks of fractures and
osteoporosis, although these outcomes
were not examined in our review.

Quantifying the effect of type 1 dia-
betes on BMD in youth is challenged
by outcome assessment involving mul-
tiple sites, methods, and equipment,
which limit generalizability. DXA has
been used traditionally to examine
BMD in children and adolescents,
while more recent modalities such as
pQCT and QUS remain largely research
tools. The smaller previous systematic
review (10 studies, 341 youth and 624
adults with type 1 diabetes) demon-
strated significantly lower absolute
total body and femoral BMD (8) and
lower lumbar spine BMD in males
aged <20 years (3). While DXA is cur-
rently the gold standard for measuring
BMD in youth, it may be imprecise in
growing bones because it is an areal
measurement rather than a true volu-
metric density. Therefore, lower BMD
measured by DXA could be due to
smaller bone size and not be a reflec-
tion of abnormal bone development.
This may be particularly important in
type 1 diabetes because affected girls
may have smaller bones (31).

In contrast, pQCT measures vBMD and
provides information surrounding bone
geometry and mineral distribution within
the bone CSA. It also separates the mea-
surement of trabecular and cortical bone

compartments, which may allow for ear-
lier detection of changes in bone (12).
We found significantly lower trabecular
vBMD, irrespective of site examined, and
higher radial cortical vBMD z score (one
study) in case compared with control
subjects. Trabecular bone is more meta-
bolically active and therefore more sus-
ceptible to the effects of chronic
hyperglycemia (26,32), which may also
explain the reduced trabecular vBMD,
while the high material density in cortical
bone may be due to reduced bone
turnover or abnormities in collagen
glycosylation.

BMD was significantly lower in youth
with type 1 diabetes in the four studies
that reported QUS measurements. The
benefits of QUS for assessment of BMD in
youth include its ease of use, low cost,
and safety profile, particularly the absence
of ionizing radiation. It is less dependent
on bone size compared with DXA, there-
fore potentially improving accuracy (10).
Studies in adults have suggested similar
prognostic values for osteoporotic frac-
tures and also in detecting low BMD in
youth with fragility fractures (33).

The impact of HbA;. on BMD has
been controversial in previous studies.
In meta-regression, we did not find a
significant relationship between BMD
and HbA;.. However, we could only
include HbA; results that were either a
single measurement at the time of
bone examination or a result averaged
over the previous 12 months. It would
have been preferable to include HbA;.
averaged over the disease course, and
this is recommended in future studies.
Indeed, there was a significant correla-
tion between BMD and average HbA;.
over disease course, and the last 12
months, but not for the acute measure-
ment at the time of BMD measurement
(34). It has been hypothesized that
chronic hyperglycemia leads to both
altered osteoblast differentiation and
maturation (35), and also alteration of
osteoclast activity, therefore characteriz-
ing type 1 diabetes as a state of low
bone turnover (22).

There was no consistent association
between sex and BMD. In some studies,
control subjects were not well matched,
with a sex disparity between case and
control groups. Conflicting data have
been observed in other studies: no sex
difference (36,37), male subjects with
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lower BMD (38,39), and female subjects
with lower BMD (40).

The strength of this review is that it
included multiple modalities for measur-
ing BMD (DXA, pQCT, and QUS). It also is
the first meta-analysis to include studies
that reported BMD by z score and
to examine the effect of putative
effect-modifying variables such as HbA;,
diabetes duration, and age using meta-
regression. The significant sources of het-
erogeneity between included studies
resulted from varied inclusion criteria of
each study, in age, pubertal stage, race,
diabetes duration, and HbA,., but only
age was significant in meta-regression.
Weaknesses of the review include the
overall sample size, with few studies
evaluating cortical BMD by pQCT or QUS,
which, although beyond our control,
may have influenced the ability to detect
differences in all outcome measures.

In conclusion, we found evidence of
abnormal bone development in youth
with type 1 diabetes, assessed by multi-
ple modalities. Future studies, ideally
longitudinal in design, should evaluate
lifetime HbA,., glycemic variability, sex,
measurement of celiac antibodies, vita-
min D status, and reversibility of adverse
bone measures. We recommend that
future studies report z scores for all
bone measurements, as well as consis-
tency in the sites and methods of assess-
ment. The utility of pQCT and QUS
remains unclear, along with the predic-
tive role and functional effects of early
detection of lower trabecular bone min-
eral density in youth with type 1 diabe-
tes. Further research is also required to
establish the mechanism of abnormal
bone development in type 1 diabetes so
as to inform recommendations for pri-
mary and secondary prevention. In the
absence of diabetes-specific data, recom-
mendations for youth with type 1 diabe-
tes should align with general population
guidelines, including lifestyle modification,
such as regular weight-bearing exercise
and a diet sufficient in calcium.
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