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Abstract

Receiver operating characteristic (ROC) curve has been widely used in medical science for its

ability to measure the accuracy of diagnostic tests under the gold standard. However, in a

complicated medical practice, a gold standard test can be invasive, expensive, and its result may

not always be available for all the subjects under study. Thus, a gold standard test is implemented

only when it is necessary and possible. This leads to the so-called ‘verification bias’, meaning that

subjects with verified disease status (also called label) are not selected in a completely random

fashion. In this paper, we propose a new Bayesian approach for estimating an ROC curve based on

continuous data following the popular semiparametric binormal model in the presence of

verification bias. By using a rank-based likelihood, and following Gibbs sampling techniques, we

compute the posterior distribution of the binormal parameters intercept and slope, as well as the

area under the curve by imputing the missing labels within Markov Chain Monte-Carlo iterations.

Consistency of the resulting posterior under mild conditions is also established. We compare the

new method with other comparable methods and conclude that our estimator performs well in

terms of accuracy.

Keywords

binormal model; MAR assumption; posterior consistency; ROC curve; verification bias-correction

1. Introduction

The receiver operating characteristic (ROC) curve for a long time has been widely used in

diagnostic medicine [1] because of its ability to incorporate accuracy of all decision rules in

a curve plotted in the unit square. When the true disease status of each study subject is

known by the most accurate diagnostic test called the gold standard test, the ROC curve has

been used to compare the accuracy of other available diagnostic test(s) to the gold standard

test. The ROC curve is the plot of the true positive rate (abbreviated as TPR, also called

sensitivity) versus the false positive rate (abbreviated as FPR, also called one minus

specificity) by varying a decision threshold value c. The decision threshold value c is used to
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determine the diagnostic result as positive, or negative, depending on whether the test is not

less than, or less than c, respectively.

Because gold standard tests may be invasive and expensive, it is more ethical that

verification of the true disease status of study subjects would generally be obtained only for

high risk subjects according to the screening test. For example, liver biopsy is considered as

the gold standard in evaluating chronic hepatitis and fibrosis. It costed on an average over

US $1000 in 2004 without complications and about US $3000 with complications [2].

Further, liver biopsy procedure is invasive. Complications of liver biopsy include significant

bleeding and hospitalization. Fatal complications have been reported up to 0.038% among

the biopsy patients [3].

Because of a differential in the chance of verification between subjects with high and low

risk, it follows that the verified subjects are not sampled randomly from the population.

Hence, an estimator of the accuracy of a diagnostic test given by the area under the ROC

curve (AUC) based on only the subjects with labels may be biased. This is known as the

verification bias. Correcting for the verification bias involves dealing with the missing data.

Here, we use the commonly used assumption for missing verification of disease status,

assuming missing at random (MAR) introduced by Little and Rubin [4], which means the

chance of missing the verification of disease status is independent of the disease itself

conditional on the observed measurements.

In this paper, we focus on the problem of estimating diagnostic accuracy of a single test in

the presence of verification bias. When the screening test is binary or ordinal, under the

MAR assumption, Begg and Greenes [5] proposed an adjusted estimate of TPR and FPR.

Other more efficient methods are discussed by Reilly and Pepe [6], Zhou [7], Clayton et al.
[8]. Gastwirth, Johnson and Reneau [9] adopted a Bayesian analysis to estimate sensitivity

and specificity of a rare diseases for binary outcomes. When the diagnostic test is

continuous, under the MAR assumption, Alonzo and Pepe [10] considered the empirical

estimate of an ROC curve. They extended some existing imputation and re-weighting

methods designed for discrete diagnostic tests to the continuous ones in estimating TPR and

FPR. On the basis of the empirical ROC curve estimate, and by using the trapezoidal rule for

integration [11], the estimate of the AUC can be obtained. Their verification bias-corrected

estimators are dependent on the modeling of the probability of verification status, and

disease status given the screening test result and covariates. A different direction of research

deals with nonignorable missing mechanism, which assumes a specific model for the

probability of the verification of true disease status, depending on the true disease status.

Some early work was performed by Zhou [12, 13] and Kosinski and Barnhart [14]. Recently,

Rotnitzky, Faraggi, and Schisterman [15] suggested a doubly robust AUC estimator. Fluss et
al. [16] extended Rotnitzky et al. [15]’s method and obtained the asymptotic properties of

their estimator.

All of the existing methods differ in modeling the mechanism of the missingness.

Throughout the literature on estimation of ROC curves for continuous diagnostic variables,

the most popular semi-parametric model of ROC curve assumes binormality. In the binormal

model, the diagnostic test variables of non-diseased and diseased groups are normally
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distributed after some monotone increasing transformation H. Currently, there is no

verification bias-corrected method available to estimate the ROC curve under the

binormality assumption.

In the absence of the verification bias, a Bayesian method using a rank-based likelihood

(BRL) was introduced by Gu and Ghosal [17]. Exploiting the invariance of the rank-

likelihood with respect to monotone transformations, they eliminated the need of introducing

a prior distribution on the underlying monotone transformation H in the binormal model.

They developed Gibbs sampling techniques to simulate samples from the posterior

distribution of the parameters in the binormal model, which are obtained to construct a

Bayes estimator.

Our proposed verification bias-corrected estimator of ROC is an appropriate modification of

the BRL method in the situation with missing labels. We assume that the probability of

having labels is a monotone function of the diagnostic measurement. Then the distribution of

the unobserved labels conditional on the observations can be easily computed using the

Bayes theorem. Hence the missing labels can be imputed within the Gibbs sampling scheme

of the BRL method. Coupled with this additional step, the BRL method is hence extended in

this partial gold standard situation and will be abbreviated as PG-BRL.

The following notations will be used. Let ϕ and Φ stand for the density and cumulative

distribution function (CDF) of standard normal distribution, respectively, and Φ = 1 − Φ. We

use ϕ(μ,σ) to denote the density function of the normal distribution N(μ, σ2) with mean μ and

standard deviation σ. Let TN(μ, σ2, (e1, e2)) denote N(μ, σ2) distribution truncated to the

interval (e1, e2), where e1 < e2, e1, e2 ∈ ℝ ∪ { − ∞, ∞}.

The paper is organized as follows. The methodology is described in Section 2. In Section 3,

we obtain posterior consistency. Simulation studies and real data analysis are provided in

Sections 4 and 5, respectively. Estimation with covariates, and with nonignorable missing

mechanism is also discussed in Section 6.

2. Description of the methodology

2.1. Notation

Let S = SN = (S1, …, SN) = (X, Y) be the diagnostic measurements associated with N
subjects under study, where X and Y are defined in this section. We denote the number of

observations from healthy and diseased groups by m and n, respectively, m + n = N. Let D1,

…, DN stand for the true disease status of subjects, where 0 means healthy, and 1 means

disease. Thus m = i = 1
N 𝟙(Di = 0), and n = i = 1

N 𝟙(Di = 1), where 𝟙 stands for the indicator

function.

Under the partial gold standard scenario, we only observe a small fraction of subjects having

the true disease status Di, i = 1, …, N. Let L = (L1, …, LN), where Li is defined by
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Li =
0, if label is observed and Di = 0,
1, if label is observed and Di = 1,
2, if label is not observed.

(1)

Observe that in this representation, one single variable carries information on missingness,

as well as the labels if observed.

Let m* and n* stand for the number of observations having labels from healthy and diseased

groups, respectively, that is, m* = i = 1
N 𝟙 Li = 0 , n* = i = 1

N 𝟙 Li = 1  and put N* = m* +

n*. Let X = Xm = (X1, …, Xm) = (Si : Di = 0, i = 1, …, N) and Y = Yn = (Y1, …, Yn) = (Si :

Di = 1, i = 1, …, N). Note that X and Y are not observable. Let H be the unknown monotone

increasing transformation making the transformed observations normally distributed as

described in (2). Let the transformed measurements denoted by Z = H(X), W = H(Y), and Q
= H(S). Let Q, S, L, and D stand for the order statistic of Q, the order statistic of S, the

labeling and the disease status corresponding to Q, respectively. Moreover, let Qk and Sk

denote the kth element Q and S, respectively.

Let the rank of S be RN = R(S) = (R(S1), …, R(SN)) = (RN1, …, RNN). Define the collection

of unobserved and observed labels as Dun = {Di : Li = 2, i ⩽ N} and Dobs = {Di : Li = 0 or 1,

i ⩽ N} , respectively.

2.2. Model

We assume the disease prevalence rate in the population is 0 < λ < 1, that is, the underlying

true disease labels for N subjects as Di ∼i.i.d. Bin 1, λ . Conditional on the labels, we have

Si| Di = 0 ∼i.i.d. F, Si| Di = 1 ∼i.i.d. G, where F and G are continuous CDFs. We assume the

binormality assumption holds, that is, there exists some strictly monotone increasing

transformation H, such that

Qi| Di = 0 ∼i.i.d. N 0, 1 ; Qi| Di = 1 ∼i.i.d. N μ, σ2 , μ > 0, (2)

where Qi = H(Si).

It is well known that the ROC curve under binormality is given by

R t = Φ a + bΦ−1 t , where a=μ/σ, b = 1/σ . (3)

The area under the ROC curve (AUC) also has an explicit form

AUC = Φ a
1 + b2 = Φ μ

1 + σ2 . (4)
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Typically, in a clinical practice, doctors will prescribe more accurate diagnostic test to the

patients only if their screening test results show high risk of disease of interest. In particular,

subject with a higher diagnostic result will have higher chance of being forwarded to a more

thorough gold standard test. Hence, missing the gold standard test completely at random is

not an appropriate assumption. In general, we can model the probability of verifying the

disease status as

P Li ≠ 2|Qi, Di = g Qi , (5)

where g is a monotone increasing function. Note that Qi’s are masked by the unknown

transformation H. Hence Qi’s are actually not observed.

Alonzo and Pepe [10] specified the following model based on observed S:

P Li ≠ 2|S =
1, if S>S

p1, N
,

p2, otherwise,
(6)

Here, p1 and p2 are probabilities known from data source. Because Qs and Ss have the same

ordering, (6) can be rewritten as a special case of (5) with

g Q =

1, if Q>Q
p1N

,

p2, if Q ⩽ Q
p1N

.

Another reasonable model uses the probit link:

P Li ≠ 2|Qi = Φ α + βQi , α, β unknown and β > 0 . (7)

2.3. Prior distribution

We will follow a Bayesian approach to estimate (λ, μ, σ), equivalently, (λ, a, b). The prior

distributions are described as follows:

• The disease prevalence λ ~ Beta(l1, l0), where l1 and l0 are chosen to match the

mean and the standard error from our prior knowledge, that is, l1 and l0 are

chosen to equate to l1/(l1 + l0) with the prior guess for the population prevalence

of disease and l0l1/ l0 + l1 l0 + l1 + 1  with the anticipated uncertainty in the

prior guess.

• In general, it is difficult to specify a subjective prior for (μ, σ). We choose the

most commonly used improper prior π(μ, σ) ∝ σ−1 for location-scale

parameters.
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2.4. Posterior distribution

2.4.1. Invariant set.—Under the binormality assumption (2), the ranks and labels of Q,

denoted by R(Q) and L(Q), respectively, are invariant after the transformation H on S.

Therefore, a set Dobs invariant under the action of H can be defined as follows [17]:

𝒟obs = z, w ∈ ℝm + n: R z, w = R S , L z, w = L S ,
= z, w ∈ ℝm + n: zk < zk < zk, wl < wl < wl ∀k, l, L z, w = L S ,

(8)

where z = (z1, …, zm), w = (w1, …, wn), and

zk = max
i

zi: RNi < RNk ∨ max
j

w j: RN m + j < RNk ,

zk = min
i

zi: RNk < RNi ∧ min
j

w j: RNk < RN m + j ,

wl = max
i

zi: RNi < RN m + l ∨ max
j

w j: RN m + j < RN m + l ,

wl = min
i

zi: RN m + l < RNi ∧ min
j

w j: RN m + l < RN m + j ,

for all k, i = 1, …, m; l, j = 1, …, n. The maximum over the empty set is set to −∞, and the

minimum over the empty set is set to ∞.

2.4.2. Lemmas.—In order to obtain the posterior distribution and posterior consistency,

the following lemmas are needed. The proofs are deferred to the Appendix.

Lemma 1

For any c1 ∈ ℝ and c2 ⩾ 0,

Φ c1 + c2t ϕ μ, σ dt = Φ
c1 + c2μ

1 + c2
2σ2 . (9)

Lemma 2

Let S1, …, SN be the independent diagnostic variables with underlying disease status D1, …,

DN, which follow Bin(1, λ). Assume that (2) and (5) hold. Then, we have
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P Di = 1|Qi = t, Li = 2 = P Di = 1|Qi = t, Li ≠ 2 =
λϕ μ, σ t

λϕ μ, σ t + 1 − λ ϕ t , (10)

where Li is defined in (1).

Remark 1

Lemma 2 implies that D and 𝟙{L ≠ 2} are independent given the value of Qi. This

independence eliminates dependence on the parameters in the model of verification and

makes the calculation much simpler. Further, the expressions are free of g(·), thus allowing

us to compute the posterior without actually knowing the verification probability function

g(·), as long as it is monotone increasing. In particular, this means that the method is

completely protected against misspecification of the verification probability function, which

is hard to specify in practice. This is an extremely desirable robustness property of the

proposed method.

The following lemma will be used to study the large sample behavior of the posterior

distribution but has no role in computing the posterior given a data set.

Lemma 3

Assume that (2) and (5) hold. Then the conditional density of Q is given by

f Q t|L ≠ 2 = 1 − λ μ, σ, g* ϕ g* t + λ μ, σ, g* ϕ μ, σ, g* t , (11)

where λ μ, σ, g*  and ϕ μ, σ, g* t  are defined as

λ μ, σ, g* =
λ g s ϕ μ, σ s ds

g s 1 − λ ϕ s + λϕ μ, σ s ds
, (12)

ϕ μ, σ, g* t =
g t ϕ μ, σ t

g s ϕ μ, σ s ds
, (13)

and ϕ g* t  stands for ϕ 0, 1, g* t .

Remark 2

When (7) holds, (12) and (13) can be simplified to

λ μ, σ, g* =
λΦ α + βμ

1 + βσ 2

1 − λ Φ α

1 + β2 + λΦ α + βμ

1 + βσ 2

(14)
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ϕ μ, σ, g* t = ϕ μ, σ, α, β* t =
Φ α + βt ϕ μ, σ t

Φ α + βμ

1 + βσ 2

.
(15)

2.4.3. Likelihood and posterior distribution.—Based on the invariant set (8), a rank-

based partial likelihood under the gold standard can be constructed from

P Z, W ∈ 𝒟obs|μ, σ = P z, w ∈ ℝm + n: R z, w = R S , L z, w = L S |μ, σ . (16)

In the presence of the verification bias, the posterior distribution of (λ, μ, σ), given the ranks

and the observed labels, is complicated. However, by applying a data augmentation

technique, we can implement Gibbs sampling to compute the posterior distribution. More

specifically, augmentation variables Q, Dun will be used. The resulting posterior distributions

of one parameter conditional on the rest of the parameters, ranks, and observed labels are

relatively simple and can be described as follows:

• Posterior distribution of (μ, σ) given the rest:

σ2|rest ∼ inverse gamma n′ − 1 /2, n′ − 1 sw
2 /2

μ|rest ∼ TN Wn′, σ′/n′, 0, ∞ ,
(17)

where n′ = i = 1
N 𝟙 Di = 1, Li = 2 + 𝟙 Li = 1 , sw

2 =
j = 1
n′

W j − Wn′
2/ n′ − 1 ,

and Wn′ =
j = 1
n′ W j/n′.

• Q can be sequentially updated conditional on (μ, σ) by

Qi
new |rest ∼

TN 0, 1, Qi − 1
new , Qi + 1 , if Di = 0,

TN μ, σ2, Qi − 1
new , Qi + 1 , if Di = 1,

(18)

where i = 1, …, N, Q0 = − ∞, QN + 1 = ∞.

• Posterior distribution of λ given the rest:

λ|rest ∼ Beta l1 + n′, l0 + m′ , (19)

where m′ = i = 1
N 𝟙 Di = 0, Li = 2 + 𝟙 Li = 0 .

• Update the augmentation variable Di ∈ Dun by

Di
new | rest ∼indBin 1,

λϕ μ, σ Qi
new

λϕ μ, σ Qi
new + 1 − λ ϕ Qi

new , (20)
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The posterior mean of (μ, σ) was used as the Bayes estimator in the BRL method. In this

paper, the posterior median is used in place of posterior mean, primarily because the

posterior distribution is often considerably skewed.

2.5. Computational algorithm

By applying a data augmentation technique, we can implement Gibbs sampling to obtain

posterior median of π* Q, μ, σ, λ, Dun|S, L . Gibbs sampling procedure can be described as

follows:

1. Choose an initial value of (μ, σ). Generate any initial value of (Q1, …, QN),

which lies in 𝒟obs, in particular, a sample from the product m* many N(0,1) and

n* many N(μ, σ), where m* and n* are the number of observations having labels

from healthy and diseased groups, N* = m* + n*, and restricting the product

measure in Dobs. Then, initialize missing labels by a (N - N*) independent Bin(1,

p0) variables, where p0 = l1/(l1 + l0).

2. Start the iterations:

a. Conditional on (μ, σ), update Q, denoted as Q new  with constraint

Z, W ∈ 𝒟obs by following (18).

b. Update Z and W values based on Q new  and D.

c. By following the posterior distributions specified in Section 2.4.3,

update (μ, σ, λ, Dun).

3. After the burn-in period, we obtain the estimates â and b  of the intercept a and

the slope b in (3), respectively, by picking up the median of the sampled values

of μ/σ and 1/σ, respectively. We can also calculate the 100(1 – γ)% credible

interval for a as (qa,γ/2,qa,1−γ/2), where qa,γ/2 and qa,1−γ/2 denote γ/2 and 1 – γ/2

quantiles of the sampled values of a. The credible interval of (qb,γ/2,qb,1−γ/2) for

b is similarly defined. We also compute the estimate of AUC and its 100(1 – γ)%

credible interval.

3. Consistency of the posterior

Let (μ0, σ0) be the true value of (μ, σ). Consider a joint prior density π on (μ, σ) with respect

to the Lebesgue measure (denoted by ν). We shall show the posterior distribution Π(·|R(S),

L for (μ, σ) is consistent at (μ0, σ0), that is, the posterior distribution concentrates around

(μ0, σ0) as the sample size increases to infinity; see [18].

Theorem 1

Assume (2) and (5) hold, where the function g is a monotone increasing functions from ℝ to

(0, 1), and that π(μ, σ) > 0 a.e. [ν] over ℝ × ℝ+. Then for any neighborhood 𝒰0 of (μ0, σ0),

we have that
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lim
N ∞

Π μ, σ ∈ 𝒰0\R S , L = 1 a.s. Pμ0, σ0, g, H
∞ , (21)

for (μ0, σ0) a.e. [ν], where Pμ0, σ0, g, H
∞  denotes the true joint distribution of all observations

described by (2) and (5).

Since imputation of missing labels is the only additional step in the PG-BRL method

compared to the BRL method, we shall first sketch the proof of the consistency of the

posterior distribution of the binormal parameters (μ, σ) for the BRL method, and then point

out the difference with the present PG-BRL situation.

The main idea behind the proof of posterior consistency for the BRL or PG-BRL method is

based on a very general posterior consistency theorem due to Doob. This theorem applies to

any type of data, provided it can be shown that the parameter is expressible as a function of

the whole sequence of observations (see Theorem 2 in the Appendix). For a rank-based

method such as BRL, this was shown by essentially two major steps in Gu and Ghosal [17].

First, one shows that the ‘quantile of an observation in the whole mixed population’ Ui, as

defined in equation (5) of Gu and Ghosal [17], is retrievable from the information of only

the relative ranks and the labels at each stage of the asymptotics. Then one finds a consistent

estimator of the binormal parameters based on these Uj’s and the label information. This

shows that the binormal parameters can be expressed as functions of ranks and the labels

corresponding to all stages. Now in the PG-BRL method, we need to work with observations

with verified labels only, which makes the population distribution different from that of all

observations. This leads to a different notion of ‘population quantile of an observation’ Uj as

defined by (A.1) in the Appendix. These Ujs can be retrieved from all ranks and verified

labels information in the same way as before. However, the distribution of the Ujs given the

labels are different in this situation and will depend on the verification function g in (5). This

would be possible whenever the family of distributions of Uj corresponding to verified

disease status is identifiable. The identifiability condition will hold if no two functions in the

family 𝒢 are such that their ratio is the exponential of a quadratic function. The condition is

very mild—it is satisfied by (6), (7) and most conceivable verification mechanisms.

4. Simulation studies

Lemma 2 implies that within an MCMC iteration, updating of Dun will depend on (λ, μ, σ,
Q) only. Thus, none of the parameters in model (5) matter in the MCMC scheme, and hence

they could be ignored from a computational point of view. This makes our PG-BRL estimate

much simpler to calculate without a specified form of g in model (5). In this section, we

intend to show that verification bias-corrected estimators have less bias and variability than,

or are comparable with other well-known methods called semiparametric efficient estimator

using the estimated verification probabilities (SPE-E), SPE-E curve adjusted by isotonic

regression (SPE-E-A), full imputation (FI), mean score imputation (MSI), and inverse

probability weighting (IPW) estimators proposed by Alonzo and Pepe [10].
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4.1. Under the bionormality assumption

Sets of simulations letting true AUC equal to 0.65, 0.75, and 0.85, respectively, are

conducted to compare their estimates of the AUC under different forms of g in model (5),

different sample sizes based on 1000 simulated data sets. Within each simulated data setting,

two missing mechanisms based on verification models (7) for probit regression and (6) for

threshold value, are used to generate the partial gold standard data. In the former case, we fix

β = 0.3, and use the values α = −0.43 for AUC = 0.65, α = −0.48 for AUC = 0.75, α = −0.53

for AUC = 0.85. In the latter case, and p1 = 0.8 and p2 = 0.2 in (6). All these given on an

average 36% of the subjects having the labels. The PG-BRL estimates are obtained by

100,000 Gibbs samples after burn-in at 5000 for each replication. For each replication, there

are total 100 and 200 subjects whose diagnostic test results are generated from N(0,1) and

N 1 + σ2Φ−1 AUC , σ2  (4) with a disease prevalence rate 0.25, where σ is equal to 1.5 for

all cases. Thus, for AUC = 0.85, the true values of a and b are 1.2457 and 0.6667,

respectively; for AUC = 0.75, the true values of a and b are 0.8107 and 0.6667, respectively;

for AUC = 0.65, the true values of a and b are 0.4631 and 0.6667, respectively. We compare

our proposed PG-BRL method with SPE-E, PI, MSI, and IPW methods in terms of accuracy.

From Table I, where the data labels are generated by (7) and (6), respectively, we can see

that PG-BRL performs consistently better in term of accuracy in most of the cases when the

true AUC is moderate among these five methods. When the AUC is equal to 0.75, which is

often considered to be a very realistic value in practical situations, PG-BRL clearly is more

accurate than the other methods. However, when AUC goes down to 0.65, SPE-E, SPE-E-A,

and IPW methods are less biased than PG-BRL, PI, and MSI methods. Comparing mean

squared error (MSE), PG-BRL method does have the smallest value among all methods. The

estimates of (a, b), which are available only for the PG-BRL method, are shown in Table II.

The accuracy of PG-BRL estimates in Table II varies for different verification functions but

improves with more samples. Theorem 1 implies accuracy of estimates with sufficient

amount of data under various verification functions.

4.2. Departure from the bionormality assumption

Because our method is based on the binormality assumption, it is important to study the

effect of departure from binormality. We generate (X1, …, Xm) independently from beta

distribution with mean 0.15 and standard deviation 0.15, (Y1, …, Yn) independently from

beta distribution with mean 0.25 and standard deviation 0.15, where m = 50, n = 150. The

corresponding AUC is equal to 0.715, and 1000 simulated data sets are used in the study. For

the parameters in the verification models, we use α = −0.40, β = 0.3 for model (7), and p1 =

0.8, p2 = 0.2 for model (6) to make on an average 36% of the subjects having the labels. The

PG-BRL estimates are obtained by 100,000 Gibbs samples after burn-in at 5000 for each

replication. From the results shown in Table III, we can see that even though the PG-BRL

estimator has higher bias than SPE-E and IPW estimators, but its MSE is much smaller. The

simulation results show that our procedure has reasonable robustness properties against

departure from binormality.
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4.3. Departure from missing at random assumption

When MAR assumption does not hold, the dependence of the verification probability in (5)

on disease status will make the probabilities in (10) different and dependent on the

functional form of g in (5). More precisely, let

P Li ≠ 2|Qi, Di = 0 = g0 Qi , (22)

P Li ≠ 2|Qi, Di = 1 = g1 Qi , (23)

then proceeding as in the proof of Lemma 2, it follows that

P Di = 1|Qi = t, Li = 2 =
λg1 t ϕ μ, σ t

λg1 t ϕ μ, σ t + 1 − λ g0 t ϕ t . (24)

Here, we illustrate a case non-MAR (NMAR) where the MAR assumption fails. Assume

P(D = 1) = 0.25. To achieve 36% verification, that is, P(Li ≠ 2) = 0.36, we can choose P(Li ≠

2 | D = 1) = 0.80 and hence will need to set P(Li ≠ 2 | D = 0) = 0.213. Let g0(t) = Φ(α0 +

β0t), and g1(t) = Φ(α1 + β1t). We wish to choose pairs (α0, β0) ≠ (α1, β1) (i.e., NMAR),

which will yield verification probabilities 0.80 and 0.213 under disease and non-disease

situations, respectively. To this end, use Lemma 1 with β0 = β1 = 0.3 and solve the following

equations:

Φ
α1 + β1μ

1 + β1
2σ2 = 0.8, Φ

α0
1 + β0

2 = 0.213,

given α0 = −0.831 and α1 = 0.558, when the actual values of μ and σ are 1.216 and 1.5,

respectively.

We compare estimates shown in Table IV by NMAR with MAR imputed by threshold

model, where simulation setting for MAR exactly follows Section 4.1 with true AUC equal

to 0.75. We observe that even under departure from the MAR assumption, the proposed PG-

BRL method leads to smaller MSE compared with other methods.

5. Real data analysis

One common issue with ROC curves and biopsy verification occurs whenever biopsy results

are used as the gold standard for other measurements, usually with respect to fibrosis or

steatosis. The biopsy may not be representative of the liver as a whole, and there is always

interpretation noise (inter and intra-observer variability). The clinical test may not be a

perfect match for the histological observation. However, to explore the relationship between

the specified liver enzyme test and the degree of cholestasis in drug-induced liver injury

(DILI), liver biopsy database is still helpful. Here, the specified liver enzyme tests include

serum total bilirubin (STB) level and alkaline phosphatase value (AKP). Because the

bilirubin may rise without the accumulation of visible bile in the liver, there is not a perfect
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match between the serum bilirubin and the biopsy. Nevertheless, the biopsy still gives

precise information about the degree of cholestasis.

We shall use the data from DILI network (DILIN). The DILIN, sponsored by the National

Institutes of Health in 2003, is a consortium of a data coordinating center, five academic

medical centers later expanded to nine starting from the renewal of the second 5-year grant.

The DILIN prospective study is an ongoing observational study of over 1000 patients with

suspected liver injury due to various drugs and complementary and alternative medications.

The goals of this study include the earliest recognition of DILI, the development of

standardized instruments and terminology to help identify cases of DILI, and investigating

clinical and genetic risk factors that predict DILI. The study design and development of the

prospective study, and the process of causality assessment, were presented by Fontana et al.
[19], and Rockey et al. [20], respectively.

Up to January 2011, there were 898 subjects enrolled in DILIN prospective study. Among

these subjects, we include 405 subjects in this study, who had STB and AKP values at DILI

first abnormal date (DILI onset date) and had causality score either definitely, very likely, or

probably adjudicated by DILIN causality committee. The subjects follow up on the sixth

month after their baseline visits. The biopsy samples were restricted to either baseline or

historical biopsy samples collected within 60 days of DILI onset and closest to DILI onset

for multiple biopsy data. We dichotomize the degree of cholestasis into 0–1 or 2–3 to reduce

intra-observer variability, where 80 subjects (56%) had no disease, and 64 subjects (44%)

had disease. The STB or AKP values were chosen to be closest to the biopsy date with a

time window of 7 days. If not, then the corresponding lab value at onset was used instead.

Because only 144 subjects out of 405 had biopsy results, verification bias may occur if the

analysis is just based on these 144 subjects with the degree of cholestasis. Hence,

verification bias-correction methods are needed in this content. By using PG-BRL and other

methods listed in the simulation study, we have the following results for STB and AKP in

Table V and Figure 1.

We obtain point-estimates of the AUC using the proposed PG-BRL method based on the

measurements STB and AKP, which are given by 0.7388 and 0.6550. This seems to indicate

that categorization of degree of cholestatis based on STB is more accurate than that based on

AKP. A formal comparison of the accuracies of these two diagnostic measurements will

have to involve a test of hypothesis of the equality of the two AUC values, which will

necessarily involve a joint modeling of both STB and AKP for each subject. This will allow

us to draw MCMC sample from the joint posterior distribution of all parameters in the two

binormal models for STB and AKP, and consequently from the posterior distribution of the

difference or ratio of the corresponding AUC. Presently, such a joint binormal model has not

been developed, so we refrain from such an analysis.

Although SPE-E estimator is ‘doubly robust’, ensuring either verification model or disease

model can be challenging. A difficulty with the SPE-E method is that the estimated ROC

curve may not be monotone due to negative component in the formula of estimates of

TPR(c) and FPR(c). Hence, SPE-E-A ROC curve is displayed in Figure 1 instead of SPE-E

ROC curve.
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For all the other approaches, we used to compare with our method, it is difficult to know or

estimate S(p1N) in (6), because two populations of AKP values are well mixed. Thus, we

conclude that PG-BRL method is more flexible when the disease and non-disease population

are well mixed, and no hyperparameters are needed in its calculation.

6. Discussion

In this paper, we considered modeling the diagnostic variable as an independent variable in

the binormal model. Sometimes a set of covariates, say V, is also observed, which

contributes a linear effect through an unknown regression coefficient β, that is, the binormal

model will become

H Xi − βTVi |Di = 0 ∼i.i.d. N 0, 1 ,

H Yi − βTVi |Di = 1 ∼i.i.d. N μ, σ2 .

In this case, the BRL and the PG-BRL methods are not applicable because the ranks of the

covariate adjusted observations may change between MCMC iterations due to the changes in

the sampled value of β. This will destroy the invariance structure that the rank-likelihood is

based on. In order to accommodate covariates in the BRL and PG-BRL methods, we can

adopt a preprocessing step to replace the diagnostic test values with the residuals after

adjusting for the covariates using a regression model and estimating the regression

coefficient by the method of least squares. If a handful of covariates among several needs to

be selected as well, then the LASSO estimator may be used in place of the least square

estimator. Of course, a fully Bayesian analysis is possible by using the full likelihood instead

of the rank-likelihood, but that will need a prior on the transformation H as well.

In a clinical practice, sometimes the MAR assumption may be violated. For instance, when a

patient is too sick or old, or is unable to bear the cost of the gold standard test, he or she may

not be able to follow the physician’s recommendation to take the gold standard test. In these

cases, probability of verification will depend on covariates and disease status as well unless

all the relevant health and financial information are collected also, and are properly

accounted in the model (5) for verification. The PG-BRL is nevertheless applicable, but the

posterior will depend on the verification functions g0 and g1 in (22) and (23), respectively,

which will have to be explicitly known.
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Appendix

Proof of Lemma 1

The result is well known, but we give a proof for completeness. First, we can show that
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Φ c1 + c2t ϕ t dt = Φ
c1

1 + c2
2 .

Let J c1 = Φ c1 + c2t ϕ t dt. Then, by differentiation under the integral sign which can be

justified by the dominated convergence theorem,

J′ c1 = − Φ c1 + c2t ϕ t dt

= − 1
2π exp − 1

2 c1
2 + 2c1c2t + c2

2t2 + t2 dt

= − 1
2π

exp −
c1
2

2 1 + c2
2

1
2π

exp − 1
2 u + w 2 du

1 + c2
2

= − ϕ
c1

1 + c2
2

1
1 + c2

2,

where we have used the substitution u = t 1 + c2
2, w = c1c2/ 1 + c2

2. Hence,

J c1 = − Φ c1/ 1 + c2
2 + c, for some constant c. Because J(∞) = 0, we have c = 1, and

hence J c1 = 1 − Φ c1/ 1 + c2
2 = Φ c1/ 1 + c2

2 .

Now letting s = t − μ
σ , we have

Φ c1 + c2t ϕ μ, σ dt = Φ c1 + c2μ + c2σs ϕ(s ds = Φ
c1 + c2μ

1 + c2
2σ2 .

Proof of Lemma 2

By Bayes’ theorem, we have

P Di = 1|Qi = t, Li = 2 =
P Di = 1 f Qi

t|Di = 1 P Li = 2|Qi = t, Di = 1

d = 0

1
P Di = d f Qi

t|Di = d P Li = 2|Qi = t, Di = d

Because fQi(t | Di = 1, Li = 2) = fQi(t | Di = 1) and P(Li = 2 | Qi = t, Di = 1) = P(Li = 2 | Qi =

t, Di = 0) = 1 − g(t), we have
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P Di = 1|Qi = t, Li = 2 =
λϕ μ, σ t 1 − g t

λϕ μ, σ t 1 − g t + 1 − λ ϕ t 1 − g t

=
λϕ μ, σ t

λϕ μ, σ t + 1 − λ ϕ t ,

and P(Li = 2) = ∫ P(Li = 2 | Qi = t)fQi(t)dt = ∫(1 − g(t)){λϕ(μ,σ)(t) + (1 − λ)ϕ(t)}dt.

By following the same lines, we have

P Di = 1|Qi = t,Li ≠ 2 =
λϕ μ, σ t g t

λϕ μ, σ t g t + 1 − λ ϕ t g t

=
λϕ μ, σ t

λϕ μ, σ t + 1 − λ ϕ t ,

and P(Li ≠ 2) = ∫P(Li ≠ 2 | Qi = t)fQi(t)dt = ∫ g(t){λϕ(μ,σ)(t) + (1 − λ)ϕ(t)} dt.

Proof of Lemma 3

By Bayes’ theorem, we have

f Q t|L ≠ 2 =
P L = 0 or 1|Q = t f Q t

P L = 0 or 1|Q = s f Q s ds

=
g t 1 − λ ϕ t + λϕ μ, σ t

g s 1 − λ ϕ s + λϕ μ, σ s ds

= g t ϕ t
g s ϕ s ds × 1 − λ g s ϕ s ds

g s 1 − λ ϕ s + λϕ μ, σ s ds
+

g t ϕ u, σ t

g s ϕ u, σ s ds
×

λ g s ϕ u, σ s ds

g s 1 − λ ϕ s + λϕ μ, σ s ds

= 1 − λ μ, σ, g* ϕ g* t + λ μ, σ, g* ϕ μ, σ, g* t ,

where λ μ, σ, g*  and ϕ μ, σ, g* t  are defined in (12) and (13), respectively.

The following version of a well-known theorem by Doob’s theorem was used, whose proof

can be found in Ghosal and Van der Vaart [21].

Theorem 2 (Doob’s Theorem)

Let X(n) be observations whose distribution depends on a parameter θ, and both X(n) and θ
take values in Polish spaces. Let Π be a prior distribution on θ. Assume that θ is equivalent

to a measurable function f on (X(n) : n ⩾ 1), that is, θ = f(X(n) : n ⩾ 1) a.s. with respect to the

joint distribution of θ and (X(n) : n ⩾ 1). Then the posterior Π(·|X(n)) is strongly consistent at

θ for almost every θ [Π].

Proof of Theorem 1
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Because the posterior distribution of (μ, σ) given the ranks and labels do not depend on g
and H, we may treat them as known for the purpose of theoretically studying consistency of

the posterior distribution of (μ, σ), even though g and H need not be actually known.

Let ΩN stand for a set of all permutations of {1, …, N}. If we can show that there exists a

function h*:Ω1 × Ω2 × … × 0, 1, 2 ∞ ℝ × ℝ+ × ℝ × ℝ+, such that (μ, σ) = h*(RN, N ⩾ 1,

(L1, L2, …)), then by applying Doob’s Theorem, (21) holds.

Let 1 ⩽ i1 < ⋯ < iN* ⩽ N be the collection of indices for which Lij = 0 or 1, and j = 1, …,

N*. From Lemma 3, f Q t|Li ≠ 2 = 1 − λ μ, σ, g* ϕ g* t + λ μ, σ, g* ϕ μ, σ, g* t , with notations as

in Lemma 3. Hence, disregarding the disease status, we can regard the overall sample

coming independently from the mixture distribution, that is,

Qi j
∼i.i.d. 1 − λ μ, σ, g* ϕ g* + λ μ, σ, g* ϕ μ, σ, g* , where Φ g* t  and Φ μ, σ, g*  are the CDFs of ϕ g* t

and ϕ μ, σ, g* t , respectively. Thus, we have

U j = 1 − λ μ, σ, g* Φ g* + λ μ, σ, g* Φ μ, σ, g* Qi j
∼i.i.d. Uniform(0, 1) . (A.1)

Let R′N*1, …, R′N*N*  be the rank vector of (U1, …, UN*), and L′N*1, …, L′N*N*  stand for

their labels. Now, as in Theorem a on page 157 of Hájek and šidák [22], we have

E U j −
R′N*i j
N* + 1 = 1

N* k = 1

N*
E U j − k

N* + 1
2

R′N*i j
= k

= 1
N* k = 1

N*
k N* − k + 1

N* + 1 2 N* + 2
< 1

N*,

which tends to 0 as N → ∞, where the expectation is interpreted as conditional on the

labels. Therefore,

U j = lim
k ∞

R′Nk*i j
Nk* + 1

(A.2)

for j ⩾ 1, with probability 1 for some subsequence Nk*  of N* , and hence Uj = hj(RN, N ⩾

1, L1, L2, …) for some function hj : Ω1 × Ω2 × … × {0, 1, 2}∞ → [0, 1].

Now given Qi j
:Li j

= 0 ∼i.i.d. Φ g* , so that U j:Li j
= 0 ∼i.i.d. V μ, σ, g , say, where V(μ,σ,g) is the

distribution of 1 − λ μ, σ, g* Φ g* + λ μ, σ, g* Φ μ, σ, g* ξ , ξ ∼ Φ g* . Since clearly V(μ,σ,g) is

consistently estimable by the empirical distribution of (Uj : Lij = 0), it now suffices to show

that the family {V(μ,σ,g) : μ, σ > 0} is identifiable.
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If (μ1, σ1) and (μ2, σ2) are such that V(μ1,σ1,g) = V(μ2,σ2,g) then it follows that

λ
μ1, σ1, g

* = λ
μ2, σ2, g

*  and ϕ
μ1, σ1

* = ϕ
μ2, σ2

* , which then implies that (μ1, σ1) = (μ2, σ2).

Therefore, there exists a function h of (U1, U2, …, L1, L2, …) and hence h* of all ranks and

observed labels such that a.s. Pμ0, σ0, g, H
∞ , we have

μ, σ, g = h U1, U2, …,
= h h1 RN, N ⩾ 1, L1, L2, … , h2 RN, N ⩾ 1, L1, L2, … , …
= h* RN, N ⩾ 1, L1, L2, … .
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Figure 1.
Real data analysis: ROC curve estimates for serum total bilirubin and alkaline phosphatase.
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Table I.

Simulation studies: estimates of AUC using methods PG-BRL, SPE-E, SPE-E-A, FI, MSI, and IPW.

Imputation N = 100 N = 200

Model Method Bias MSE Bias MSE

Probit PG-BRL −0.0321 0.0085 −0.0156 0.0046

AUC=0.85 SPE-E 0.0162 0.0066 0.0136 0.0036

SPE-E-A 0.0156 0.0065 0.0135 0.0036

FI 0.0357 0.0050 0.0349 0.0032

MSI 0.0309 0.0050 0.0303 0.0031

IPW −0.0349 0.0100 −0.0357 0.0060

Probit PG-BRL 0.0155 0.0068 0.0084 0.0043

AUC=0.75 SPE-E 0.0339 0.0126 0.0208 0.0062

SPE-E-A 0.0335 0.0125 0.0207 0.0062

FI 0.0624 0.0113 0.0535 0.0065

MSI 0.0559 0.0111 0.0465 0.0060

IPW −0.0188 0.0137 −0.0312 0.0078

Probit PG-BRL 0.0622 0.0083 0.0529 0.0059

AUC=0.65 SPE-E 0.0360 0.0164 0.0343 0.0093

SPE-E-A 0.0358 0.0164 0.0343 0.0093

FI 0.0729 0.0168 0.0725 0.0109

MSI 0.0647 0.0160 0.0644 0.0100

IPW −0.0130 0.0154 −0.0117 0.0082

Threshold PG-BRL −0.0067 0.0078 0.0013 0.0038

AUC=0.85 SPE-E 0.0144 0.0098 0.0110 0.0045

SPE-E-A 0.0129 0.0096 0.0104 0.0044

FI 0.0391 0.0060 0.0383 0.0035

MSI 0.0329 0.0059 0.0330 0.0033

IPW 0.0068 0.0100 0.0078 0.0046

Threshold PG-BRL 0.0220 0.0077 0.0146 0.0052

AUC=0.75 SPE-E 0.0213 0.0146 0.0120 0.0077

SPE-E-A 0.0199 0.0143 0.0116 0.0076

FI 0.0595 0.0107 0.0572 0.0073

MSI 0.0517 0.0103 0.0493 0.0067

IPW 0.0098 0.0151 0.0055 0.0078

Threshold PG-BRL 0.0687 0.0105 0.0482 0.0053

AUC=0.65 SPE-E 0.0245 0.0203 0.0182 0.0091

SPE-E-A 0.0233 0.0199 0.0180 0.0090

FI 0.0744 0.0167 0.0729 0.0104

MSI 0.0645 0.0159 0.0634 0.0094

IPW 0.0114 0.0206 0.0103 0.0090
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Table II.

Simulation studies: estimates of a and b using method PG-BRL.

Imputation N = 100 N = 200

Model Method Bias MSE Bias MSE

Probit PG-BRL a 0.0134 0.4438 0.0121 0.2236

AUC=0.85 b 0.0044 0.0846 −0.0080 0.0442

Probit PG-BRL a 0.1764 0.3247 0.0844 0.1314

AUC=0.75 b 0.0206 0.0794 0.0063 0.0331

Probit PG-BRL a 0.2792 0.2179 0.2209 0.1209

AUC=0.65 b 0.0253 0.0714 0.0409 0.0332

Threshold PG-BRL a 0.2420 0.6750 0.1483 0.3226

AUC=0.85 b 0.0955 0.1097 0.0506 0.0535

Threshold PG-BRL a 0.2409 0.4305 0.1316 0.1905

AUC=0.75 b 0.0667 0.0927 0.0310 0.0373

Threshold PG-BRL a 0.3382 0.3463 0.1995 0.1046

AUC=0.65 b 0.0684 0.0833 0.0373 0.0268
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Table III.

Simulation studies (Departure from binormality assumption): estimates of AUC using methods PG-BRL, SPE-

E, SPE-E-A, FI, MSI, IPW.

Imputation N = 200

Model Method Bias MSE

Probit PG-BRL 0.0257 0.0022

AUC=0.715 SPE-E 0.0070 0.0040

SPE-E-A 0.0055 0.0040

FI −0.0560 0.0076

MSI −0.0381 0.0055

IPW 0.0066 0.0042

Threshold PG-BRL 0.0268 0.0026

AUC=0.715 SPE-E 0.0063 0.0057

SPE-E-A 0.0017 0.0052

FI −0.0930 0.0125

MSI −0.0746 0.0093

IPW 0.0041 0.0055
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Table IV.

Simulation studies (Departure from MAR assumption): estimates of AUC using methods PG-BRL, SPE-E,

SPE-E-A, FI, MSI, IPW.

Assumption N = 200

Model Method Bias(True AUC=0.75) MSE

MAR PG-BRL 0.0146 0.0052

Threshold SPE-E 0.0120 0.0077

SPE-E-A 0.0116 0.0076

FI 0.0572 0.0073

MSI 0.0493 0.0067

IPW 0.0055 0.0078

NMAR PG-BRL −0.0569 0.0052

SPE-E −0.0855 0.0126

SPE-E-A −0.0855 0.0126

FI −0.0408 0.0050

MSI −0.0479 0.0058

IPW −0.1184 0.0188
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Table V.

Real data setting: estimates of AUCs and corresponding 95% confidence intervals (CI) for total bilirubin and

alkaline phosphatase.

Lab Test Method AUC(sd) 95% CI

STB PG-BRL 0.7388 (0.0559) (0.6389, 0.8601)

SPE-E 0.7198 (0.0655) (0.5970, 0.8495)

SPE-E-A 0.7109 (0.0573) (0.5938, 0.8145)

FI 0.6704 (0.0357) (0.6055, 0.7337)

MSI 0.7041 (0.0417) (0.6201, 0.7849)

IPW 0.6714 (0.0481) (0.5790, 0.7643)

AKP PG-BRL 0.6550 (0.0738) (0.5624, 0.8527)

SPE-E 0.6283 (0.0962) (0.4421, 0.8183)

SPE-E-A 0.6248 (0.0865) (0.4517, 0.7727)

FI 0.5683 (0.0289) (0.5156, 0.6353)

MSI 0.5953 (0.0447) (0.5036, 0.6788)

IPW 0.5768 (0.0498) (0.4693, 0.6716)
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